# SoM-1062M

# **User Manual**

October 2025

Revision 1.00

Copyright © 2025

EMAC, Inc.







# **Table of Contents**

| 1 | Intro    | oduction                   | 4 -        |
|---|----------|----------------------------|------------|
|   | 1.1 Fea  | tures                      | 4 -        |
| 2 | Har      | dware                      | 5 -        |
|   | 2.1 Spec | cifications                | 5 -        |
|   | 2.2Rea   | I-Time Clock               | 6 -        |
|   | 2.3 Wat  | tchdog Timer               | 6 -        |
|   | 2.4 Exte | ernal Connections          | <i>7</i> - |
|   | 2.4.1    | External Bus               | 7 -        |
|   | 2.4.2    | JTAG                       | 8 -        |
|   | 2.4.3    | I2C                        | 8 -        |
|   | 2.4.4    | Ethernet                   | 9 -        |
|   | 2.4.5    | Wi-Fi/Bluetooth [Optional] | 9 -        |
|   | 2.4.6    | USB                        | 10 -       |
|   | 2.4.7    | SPI                        | 10 -       |
|   | 2.4.8    | SDIO Multimedia Card       | 10 -       |
|   | 2.4.9    | UART                       | 11 -       |
|   | 2.4.10   | 12S                        | 12 -       |
|   | 2.4.11   | CAN                        | 12 -       |
|   | 2.4.12   | IRQs                       | 12 -       |
|   | 2.4.13   | Oscillators                | 13 -       |
|   | 2.4.14   | ADC                        | 13 -       |
|   | 2.4.15   | GPIO                       | 14 -       |
|   | 2.4.16   | LCD & Touchscreen          | 14 -       |
|   | 2.5 Pow  | ver Connections            | 16 -       |
|   | 2.6Boo   | t Options                  | 16 -       |
| 3 | Des      | ign Considerations         | 17 -       |
|   | 3.1 Off- | the-Shelf Carriers         | 17 -       |
|   | 3.1.1    | SoM-200GS                  | 17 -       |
|   | 3.1.2    | SoM-250GS                  | 17 -       |
|   | 3.2 Sem  | ni-Custom Carriers         | 18 -       |
|   | 3.3 Des  | igning Your Own Carrier    | 18 -       |



# SoM-1062M User Manual

|   | 3.4 Pow | ver18               |
|---|---------|---------------------|
|   | 3.4.1   | Shutdown Logic Pins |
|   | 3.4.2   | Battery Backup 18   |
|   | 3.4.3   | Analog Reference 19 |
|   | 3.4.4   | Analog Voltage 19   |
| 4 | Soft    | - 20                |
|   | 4.1 Mic | roPython20          |
|   | 4.2Free | eRTOS20             |



# **Disclaimer**

EMAC Inc. does not assume any liability arising out of the application or use of any of its products or designs. Products designed or distributed by EMAC Inc. are not intended for, or authorized to be used in, applications such as life support systems or for any other use in which the failure of the product could potentially result in personal injury, death or property damage.

If EMAC Inc. products are used in any of the aforementioned unintended or unauthorized applications, Purchaser shall indemnify and hold EMAC Inc. and its employees and officers harmless against all claims, costs, damages, expenses, and attorney fees that may directly or indirectly arise out of any claim of personal injury, death or property damage associated with such unintended or unauthorized use, even if it is alleged that EMAC Inc. was negligent in the design or manufacture of the product.

EMAC Inc. reserves the right to make changes to any products with the intent to improve overall quality, without further notification.

Revision 1.00 © 2025 - 3 -



# 1 Introduction

This document describes EMAC's SoM-1062M System on Module (SoM). The SoM-1062M is a System on Module, designed to be compatible with EMAC's 200-pin SODIMM form factor. This module is built around the NXP MIMXRT1062 microcontroller which provides several of its key features. Designed and manufactured in the USA, this industrial temperature 600 MHz SoM utilizes 16MB of Serial Data Flash, 32 MB of onboard NAND Flash and has 17MB of SDRAM. Additional Flash storage can be had using the modules SDIO interface allowing the use of external SD flash cards. In addition to the standard SoM features, the SoM-1062M also features a fast 32-bit core, open source software support, and a wide range of controller I/O pins.

#### 1.1 Features

- NXP RT1062 ARM Coretx-M7 Crossover MCU Microcontroller
- Small, 200 pin SODIMM form factor (2.66" x 2.375")
- Up to 17 MB SDRAM (1 MB on CPU, 16 MB external)
- 16MB of Serial Data Flash (32MB optional)
- 1x 10/100 BASE-T Ethernet with On-board PHY
- 1x RMII Interface for additional 10/100 BaseT Ethernet PHY
- 1x WiFi 802.11b/g/n, Bluetooth v5.1 (Optional)
- 2x USB 2.0 Host Port (1x on Bare-Bones) & 1x USB 2.0 OTG Port
- 4x Serial Ports
- 2x SPI Ports
- 16x GPIOs
- 1x SD/MMC Flash Card Interface
- 1x I2S Audio Port
- 1x CAN Port
- 2x Programmable Timer Output Ports
- 2x I2C Ports (1x I2C internal to SoM, 1x external to card edge)
- 4x A/D Channels (12-Bit)
- 4x Wire Resistive Touch
- Typical Running Current Consumption 175mA
- JTAG for debug

Revision 1.00 © 2025 -4-



# 2 Hardware

## 2.1 **Specifications**

- CPU: NXP RT1062 ARM Coretx-M7 Crossover MCU Microcontroller
- Flash: 16MB of Serial Data Flash (32MB optional)
- RAM: Up to 17 MB SDRAM (1 MB on CPU, 16 MB external)
- Flash Disk: 1x SD/MMC Flash Card Interface
- System Reset: External Reset Button
- RTC: Internal real time clock with external battery backup
- Timer/Counters: 2x Programmable Timer Output Ports
- Watchdog Timer: External Watchdog Timer (ADM8320)
- Digital I/O: 16x GPIO
- Analog I/O: 4x A/D Channels (12-Bit)
- Power: Power Management Controller allows selectively shutting down on-processor I/O functionality and running from a slow clock
- JTAG: JTAG for debug, including real-time trace
- Clocks: Programmable clock output

#### **Serial Interfaces**

- UARTS: 4x Serial Ports
- **SPI:** 2x SPI Port
- Audio: I2S Synchronous Serial Controller with analog interface support
- USB: 2x USB 2.0 Host Port (1x on Bare-Bones) & 1x USB 2.0 OTG Port
- I2C: 2x I2C Ports (1x I2C internal to SoM, 1x external to card edge)

#### **Ethernet Interfaces**

- MAC:
  - 1x 10/100 BaseT Ethernet MAC with Real Time PHY
  - o 1x RMII 10/100 BASE-T Ethernet output for second LAN
- PHY: Microchip Technology KSZ8081 10/100 Ethernet PHY
- Interface: 10/100 BaseT Ethernet

#### **Bus Interface:**

 Local Bus accessible through SODIMM provides 16 address lines, 16 data bus lines, and control lines.

Revision 1.00 © 2025 -5 -



#### **Mechanical and Environmental**

■ **Dimensions:** Small, 200 pin SODIMM form factor (2.66" x 2.375")

■ Power Supply Voltage: 3.3 Volts DC +/- 5%

Power Requirements (typical):

3.3 Volts @ mA (XXX watts)

Max current draw during boot process: TBD

Constant busy loop: TBD

■ Idle system: TBD

Idle system with Ethernet PHY disabled: TBD

APM sleep mode with Ethernet PHY disabled: TBD

APM sleep mode with Ethernet PHY enabled: TBD

• Operating Temperature: 0 to 85°C / -30 to 70°C / -40 to 85°C

Operating Humidity: 0% ~ 90% relative humidity, non-condensing

# 2.2 Real-Time Clock

The SoM-1062M uses an external to the processor, Maxim DS1337U Real-time Clock. Battery backup is provided from the carrier board by providing 3.0V to the VSTBY pin. The SoM-1062M will retain the RTC during reset. The RTC has the provision to set alarms that can interrupt the processor. For example, the processor can be placed in sleep mode and then later awakened using the alarm function.

#### 2.3 Watchdog Timer

The SoM-1062M provides an external Watchdog Timer/ Supervisor (ADM8320) with an extended watchdog timeout period of 1.6 seconds. Upon power-up the Watchdog is disabled and does not require pulsing. To start the Watchdog, it must first be enabled. This is done by configuring port line GPIO\_AD\_B1\_10 as an output and setting it low in software. Once enabled, the Watchdog should be pulsed, using port line GPIO\_AD\_B1\_10, continually every 1.40 seconds or faster to prevent the Watchdog from timing out and resetting the module. If you are using the watchdog to force a system reset, you may need up to 2.24 seconds of inactivity before the Watchdog reset will occur. The watchdog is automatically disabled upon reset but it can also be disabled by setting GPIO\_AD\_B1\_10 high.

Revision 1.00 © 2025 - 6 -



#### **2.4 External Connections**

The SoM-1062M connects to a carrier board containing its connectors, power supply and any expansion IO, through a standard ENIG-plated (Electroless Nickel Immersion Gold) SODIMM 200-pin edge card connection shown below.



The SoM model will fit in any standard 200-pin SODIMM socket. These connections are designed to be compatible with all EMAC 200-pin SoM products. See EMAC SoM 200-pin SODIMM Pinout Specification to see how other 200-pin SoM pinouts line up with the SoM-1062M's pinout. The use of the DDR SODIMM form-factor for EMAC's SoMs is a sound choice that has been proven rugged and reliable in the laptop and embedded SBC markets. The remainder of this section describes the pinout as it applies specifically to the SoM-1062M processor.

#### 2.4.1 External Bus

The SoM-1062M provides a flexible external bus for connecting peripherals. The CPLD of the SoM-200GS carrier connects through a subset of these connections. The WKUP pin has a Maximum input voltage of 3.3V and Shutdown has a maximum output voltage of 3.3V. The Flash WP for the Serial Flash is active-low and pulled up on-module.

| SODIMM<br>Pin# | SoM<br>Pin Name | Processor<br>Pin Name(s) | Port Line     | Description                  |  |
|----------------|-----------------|--------------------------|---------------|------------------------------|--|
| 145            | GP_CSA          | SEMC_CSX_0               | GPIO_EMC_41   | General Purpose Chip Select  |  |
| 146            | GP_CSB          | SEMC_CSX3                | N/A*          | General Purpose Chip Select  |  |
| 147            | GP_CSC          | No Connect               | N/A           | N/A                          |  |
| 148            | GP_CSD/Shutdown | ON_OFF                   | N/A           | Processor On/Shutdown Output |  |
| 149            | WR              | SEMC_WE#                 | GPIO_EMC_28   | Write Signal                 |  |
| 150            | RD              | SEMC_RE#                 | N/A           | Read Signal                  |  |
| 151            | RST_IN          | RST_IN#                  | N/A           | Processor Reset Input        |  |
| 152            | RST_OUT         | POR                      | N/A           | Processor Reset Output       |  |
| 153            | WAIT            | No Connect               | N/A           | N/A                          |  |
| 154            | ~FLASH WP       | No Connect               | N/A           | N/A                          |  |
| 54             | WKUP            | WAKEUP                   | N/A           | Processor Wakeup Input       |  |
| 157            | BOOT_OPTION0    | BOOT_0                   | GPIO_AD_B0_04 | Boot0 Option Select          |  |
| 158            | BOOT_OPTION1    | BOOT_1                   | GPIO_AD_B0_05 | Boot1 Option Select          |  |
| 175-190        | A0 - A15        | D0 - D15                 | GPIO_EMC_DATA | Address Bus                  |  |
| 191-196        | A16 - A21       | No Connect               | N/A           | N/A                          |  |
| 159-174        | D0 - D15        | D0 - D15                 | GPIO_EMC_DATA | Data Bus                     |  |

**Table 1: External Bus** 

Revision 1.00 © 2025 -7 -

<sup>\*</sup> In order for SEMC\_CSX3 to be available as a chip select, a 0 ohm resistor needs to be populated at R1. Note this pin is muxed with LCDIF\_HSYNC which will not be available when used as a chip select.



#### 2.4.2 JTAG

The SoM-1062M provides access to the MIMXRT1062's JTAG interface for programming and debugging. The pins listed in the table below (e.g., JTAG\_TCK for clock, JTAG\_TDI for data input, and JTAG\_TDO for data output) facilitate these operations, ensuring effective communication with the processor.

**Table 2: Processor JTAG** 

| SODIMM<br>Pin# | SoM<br>Pin Name | Processor<br>Pin Name(s) | Description         |
|----------------|-----------------|--------------------------|---------------------|
| 139            | JTAG_TCK        | GPIO_AD_B0_07            | JTAG Clock          |
| 140            | JTAG_TDI        | GPIO_AD_B0_09            | JTAG Serial In      |
| 141            | JTAG_TDO        | GPIO_AD_B0_10            | JTAG Serial Out     |
| 142            | JTAG_TMS        | GPIO_AD_B0_06            | JTAG Operation Mode |
| 143            | JTAG_TRST       | GPIO_AD_B0_11            | Test Reset Signal   |
| 144            | JTAG_RTCK       | No Connect               | Dynamic Clock Sync  |

#### 2.4.3 I2C

The SoM-1062M provides two low power I2C ports.

**Table 3: External I2C Port** 

| SODIMM<br>Pin# | SoM<br>Pin Name | Processor<br>Pin Name(s) | Port Line     | Description |
|----------------|-----------------|--------------------------|---------------|-------------|
| 29             | CLK             | LPI2C1_SCL               | GPIO_SD_B1_04 | Clock Pin   |
| 30             | DATA            | LPI2C1_SDA               | GPIO_SD_B1_05 | Data Pin    |

The second I2C interface is shared with the Touchscreen, ADC, RTC, and GPIO. The I2C addresses already used by SOM devices are as follows:

LPI2C3 Addresses: Touch Controller 0x48, ADC 0x21, RTC 0x68, GPIO Expander 0x20.

Table 3.1: Internal I2C Port

| SODIMM<br>Pin# | SoM<br>Pin Name | Processor<br>Pin Name(s) | Port Line     | Description |
|----------------|-----------------|--------------------------|---------------|-------------|
| N/C            | CLK             | LPI2C3_CLK               | GPIO_AD_B1_07 | Clock Pin   |
| N/C            | DATA            | LPI2C3_DATA              | GPIO_AD_B1_06 | Data Pin    |

Revision 1.00 © 2025 -8 -



#### 2.4.4 Ethernet

The SoM-1062M provides a Microchip Technology KSZ8081 10/100 Ethernet PHY IC on board. Carrier designers need only run these lines through the appropriate magnetics layer to have a functional Ethernet connection. Remember the RX and TX lines are differential pairs and need to be routed as such.

SODIMM SoM {PHY} Description Pin# Pin Name Pin Name 12 GIG D-No Connect GIG Ethernet D-pin 14 GIG D+ No Connect GIG Ethernet D+ pin 13 GIG C-No Connect GIG Ethernet C- pin 15 GIG C+ No Connect GIG Ethernet C+ pin 16 Ethernet Rx-/GIG B-**RXM** Low differential Ethernet receive Ethernet Rx+/GIG B+ High differential Ethernet receive 18 RXP Ethernet Tx-/GIG A-Low differential Ethernet transmit **17** TXM Ethernet Tx+/GIG A+ TXP High differential Ethernet transmit 19 Ethernet Link LED/Configuration 38 LED LINK/CFG 2 LEDO/NWAYEN 39 LED ACT/CFG 3 LED1/SPEED Ethernet Activity LED/Configuration

**Table 4: Ethernet** 

#### 2.4.5 Wi-Fi/Bluetooth [Optional]

The SoM-1062M provides one Wi-Fi/Bluetooth antenna jack (JK1) which utilizes the on-board Wi-Fi/Bluetooth Murata module (LBEE5KL1DX). This module interfaces to the processor using SDHC1 SDIO interface for Wi-Fi and LPUART5 for Bluetooth. The antenna jack, (U.FL-R-SMT(10)) offers high frequency performance from DC to 6GHz, with a V.S.W.R of 1.3 to 1.5 max. EMAC provides an antenna kit: 2.4GHz Duck Antenna RP-SMA and U.FL.(IPEX) to RP-SMA male pigtail cable that plugs into the SoM's antenna jack. Alternatively, EMAC can provide a 2.4GHz IPEX MHF flat adhesive patch antenna.

#### WLAN/Bluetooth Features:

- 2.4GHz functionality
- 802.11 b/g/n data rates
- IC/Firmware: Infineon/CYW4343W
- Bluetooth 5.1 +EDR

Revision 1.00 © 2025 - 9 -



#### 2.4.6 USB

The SoM-1062M has the provision for 2 USB 2.0 Host ports and 1 USB OTG (On-The-Go) port.

Table 5: USB

| SODIMM<br>Pin# | SoM<br>Pin Name      | Processor<br>Pin Name(s) | Description          |
|----------------|----------------------|--------------------------|----------------------|
| 5              | Host_A+ (To USB Hub) | USBDN_DP2 (From Hub)     | Host USB 2.0 Port A+ |
| 7              | Host_A- (To USB Hub) | USBDN_DM2 (From Hub)     | Host USB 2.0 Port A- |
| 6              | Host_B+ (To USB Hub) | USBDN_DP3 (From Hub)     | Host USB 2.0 Port B+ |
| 8              | Host_B- (To USB Hub) | USBDN_DM3 (From Hub)     | Host USB 2.0 Port B- |
| 9              | HostC/Device/OTC_C-  | USB_OTG1_DN              | OTG USB 2.0 PortC -  |
| 11             | HostC/Device/OTG_C+  | USB_OTG1_DP              | OTG USB 2.0 Port C+  |
| 10             | USB_OTG_VBUS         | USB_OTG1_VBUS            | OTG VBUS             |
| 40             | USB_OTG_ID           | GPIO_AD_B0_11            | OTG ID               |

# 2.4.7 **SPI**

The SoM-1062M provides 2 SPI Ports. The second SPI port is utilized by the external serial flash. The SPI\_MI and SPI\_MO lines are for data input and output, SPI\_SCK for clock signals, and multiple chip select lines (e.g., SPI\_CS0, SPI\_CS1...) to enable communication with various peripherals.

**Table 6: Serial Peripheral Interface Channel 0** 

| SODIMM<br>Pin# | SoM<br>Pin Name   | Processor<br>Pin Name(s) | Description                |
|----------------|-------------------|--------------------------|----------------------------|
| 22             | SPI_MI            | GPIO_AD_B0_02            | LPSPI3 serial data in      |
| 23             | SPI_MO            | GPIO_AD_B0_01            | LPSPI3 serial data out     |
| 24             | SPI_SCK           | GPIO_AD_B0_00            | LPSPI3 serial clock out    |
| 25             | SPI_CS0           | GPIO_AD_B0_03            | LPSPI3 chip select line 0  |
| 26             | SPI_CS1           | GPIO_AD_B0_04            | LPSPI3 chip select line 1  |
| 27             | SPI_CS2           | GPIO_AD_B0_05            | LPSPI3 chip select line 2  |
| 28             | SPI_CS3/SPI_Frame | GPIO_AD_B0_06            | *LPSPI3 chip select line 3 |

<sup>\*</sup> This SOM pin defaults to JTAG\_TMS. To use as CS3, R7 should be populated with a 0 ohm resistor.

#### 2.4.8 SDIO Multimedia Card

The SoM-1062M provides one MMC/SD card interface through an external Microchip Technology USB Hub (USB2660i). This interface facilitates communication with external memory devices such as MMC or SD cards. Key pins include SCLK for the clock signal, CMD for sending commands, and DATO through DAT3 for transferring data. The SDIO port can also be used to interface to WiFi modules should wireless communication be needed.

Revision 1.00 © 2025 - 10 -



| Table 7 | MMC | /SD Card | Interface |
|---------|-----|----------|-----------|
|---------|-----|----------|-----------|

| SODIMM<br>Pin# | SoM<br>Pin Name | USB2660i<br>Pin Name(s) | Description  |
|----------------|-----------------|-------------------------|--------------|
| 31             | SCLK            | SD2_CLK/GPIO26          | SDIO Clock   |
| 32             | CMD             | SD2_CMD_GPIO27          | SDIO Command |
| 33             | DAT0            | SD2_D0/GPIO18           | SDIO DO      |
| 34             | DAT1            | SD2_D1/GPIO19           | SDIO D1      |
| 35             | DAT2            | SD2_D2/GPIO20           | SDIO D2      |
| 36             | DAT3            | SD2_D3/GPIO21           | SDIO D3      |
| 37             | Card_Detect     | SD2_nCD/GPIO16          | Card Detect  |

#### 2.4.9 **UART**

UART (Universal Asynchronous Receiver-Transmitter) enables asynchronous serial communication between devices. The SoM-1062M utilizes four communications ports, COMA (includes Handshaking), COMB, COMC, and COMD. These communication ports facilitate connections with peripherals, sensors, and other devices providing flexibility for developers to implement serial communication in their applications. These signals are all logic level at the card edge. Any physical layer signal levels need to be generated by the carrier board.

**Table 8: Serial Ports** 

| SODIMM<br>Pin# | SoM<br>Pin Name | Processor<br>Pin Name(s) | Description      |  |
|----------------|-----------------|--------------------------|------------------|--|
| 95             | COMA_TXD        | GPIO_AD_B1_02            | LPUART2 Transmit |  |
| 96             | COMA_RXD        | GPIO_AD_B1_03            | LPUART2 Receive  |  |
| 97             | COMA_CTS        | GPIO_AD_B1_00            | LPUART2 CTS      |  |
| 98             | COMA_RTS        | GPIO_AD_B1_01            | LPUART2 RTS      |  |
| 99             | COMA_DTR        | No Connect               | LPUART2 DTR      |  |
| 100            | COMA_DSR        | No Connect               | LPUART2 DSR      |  |
| 101            | COMA_RI         | No Connect               | LPUART2 RI       |  |
| 102            | COMB_TXD        | GPIO_AD_B0_12            | LPUART1 Transmit |  |
| 103            | COMB_RXD        | GPIO_AD_B0_13            | LPUART1 Receive  |  |
| 104            | COMB_CTS        | No Connect               | LPUART1 CTS      |  |
| 105            | COMB_RTS        | No Connect               | LPUART1 RTS      |  |
| 106            | COMC_TXD        | GPIO_SD_B1_00            | LPUART4 Transmit |  |
| 107            | COMC_RXD        | GPIO_SD_B1_01            | LPUART4 Receive  |  |
| 108            | COMC_CTS        | No Connect               | LPUART4 CTS      |  |
| 109            | COMC_RTS        | No Connect               | LPUART4 RTS      |  |
| 110            | COMD_TXD        | GPIO_B1_12               | LPUART5 Transmit |  |
| 111            | COMD_RXD        | GPIO_B1_13               | LPUART5 Receive  |  |
| 112            | COMD_CTS        | No Connect               | LPUART5 CTS      |  |
| 113            | COMD_RTS        | No Connect               | LPUART5 RTS      |  |

Revision 1.00 © 2025 - 11 -



#### 2.4.10 I2S

The SoM-1062M provides one I2S audio port. Note that there is no CODEC on the SoM and therefore must be provided on the Carrier. In addition, the CODEC will require either SPI or I2C for control.

**Table 9: 12S** 

| SODIMM<br>Pin# | SoM<br>Pin Name    | Processor<br>Pin Name(s) | Description            |
|----------------|--------------------|--------------------------|------------------------|
| 86             | AudioA_SCLK        | GPIO_AD_B1_14            | I2S Serial Clock       |
| 87             | AudioA_LRCLK/Frame | GPIO_AD_B1_15            | I2S Left / Right Clock |
| 88             | AudioA_MCLK        | GPIO_AD_B1_09            | I2S Master Clock       |
| 89             | AudioA_DIN         | GPIO_AD_B1_12            | I2S Data Input         |
| 90             | AudioA_DOUT        | GPIO_AD_B1_13            | I2S Data Output        |

#### 2.4.11 CAN

The SoM-1062M has one CAN (Control Area Network) port. This port is available at the card edge as listed in the table below.

Table 10: CAN

| SODIMM<br>Pin# | SoM<br>Pin Name | Processor<br>Pin Name(s) | Description  |
|----------------|-----------------|--------------------------|--------------|
| 93             | CANTX           | GPIO_SD_B1_02            | CAN Transmit |
| 94             | CANRX           | GPIO_SD_B1_03            | CAN Receive  |

#### 2.4.12 IRQs

The SoM-1062M provides 3 dedicated Interrupt requests (IRQs) lines. However, any GPIOs coming directly from the RT1062 processor may be programmed for interrupts.

**Table 11: Interrupt Lines** 

| SODIMM<br>Pin# | SoM<br>Pin Name | Processor<br>Pin Name(s) | Description |
|----------------|-----------------|--------------------------|-------------|
| 129            | IRQA            | *GPIO_AD_B1_05           | Interrupt A |
| 130            | IRQB            | PMIC_STBY_REQ            | Interrupt B |
| 131            | IRQC            | PMIC_ON_REQ              | Interrupt C |

<sup>\*</sup> This IRQ is shared with the Wi-Fi. If the Wi-Fi option is installed then IRQA is not available.

Revision 1.00 © 2025 -12 -



#### 2.4.13 Oscillators

The SoM-1062M features one clock input/output that provides precise clock signal for various peripheral devices and system operations. Note the CCM\_CLK1 pins are differential clock input to the processor and not a typical clock output. See the RT1062 user manual for further information.

**Table 12: Oscillators** 

| SODIMM<br>Pin# | SoM<br>Pin Name | Processor<br>Pin Name(s) | Description |
|----------------|-----------------|--------------------------|-------------|
| 132            | OSC0            | CCM_CLK1_P               | Clock       |
| 133            | OSC1            | CCM_CLK1_N               | Clock       |

# 2.4.14 ADC

The SoM-1062M has an onboard four channel 12-bit analog to digital converter. The SoM uses an Analog Devices AD7994 A/D converter.

**Table 13: Analog to Digital Converters** 

| SODIMM<br>Pin# | SoM<br>Pin Name | AD7994<br>Pin Name(s) | Description |
|----------------|-----------------|-----------------------|-------------|
| 49             | SX+/ADC4        | IN1                   | ADC0        |
| 50             | SX-/ADC5        | IN2                   | ADC1        |
| 51             | SY+/ADC6        | IN3                   | ADC2        |
| 52             | SY-/ADC7        | IN4                   | ADC3        |

Revision 1.00 © 2025 -13 -



#### 2.4.15 GPIO

The GPIO section outlines the SoM's General-Purpose Input/Output capabilities, where pins can be configured as digital input/output ports or utilized for specific internal SoM-1062M functions. The I2C GPIO expander (Microchip MCP23017T) extends flexibility for additional peripherals or custom applications with I2C control. These configurable pins offer versatility for controlling and monitoring various hardware components.

**Table 14: General Purpose IO** 

| SODIMM<br>Pin# | SoM<br>Pin Name | GPIO Expander<br>Pin Name(s) | Description                     |
|----------------|-----------------|------------------------------|---------------------------------|
| 114            | GPIO0           | GPA0                         | General Purpose 0 Input/Output  |
| 115            | GPIO1           | GPA1                         | General Purpose 1 Input/Output  |
| 116            | GPIO2           | GPA2                         | General Purpose 2 Input/Output  |
| 117            | GPIO3           | GPA3                         | General Purpose 3 Input/Output  |
| 118            | GPIO4           | GPA4                         | General Purpose 4 Input/Output  |
| 119            | GPIO5           | GPA5                         | General Purpose 5 Input/Output  |
| 120            | GPIO6           | GPA6                         | General Purpose 6 Input/Output  |
| 121            | GPIO7           | GPA7                         | General Purpose 7 Input/Output  |
| 122            | GPIO8           | GPB0                         | General Purpose 8 Input/Output  |
| 123            | GPIO9           | GPB1                         | General Purpose 9 Input/Output  |
| 124            | GPIO10          | GPB2                         | General Purpose 10 Input/Output |
| 125            | GPIO11          | GPB3                         | General Purpose 11 Input/Output |
| 126            | GPIO12          | GPB4                         | General Purpose 12 Input/Output |
| 127            | GPIO13          | GPB5                         | General Purpose 13 Input/Output |
| 128            | GPIO14          | GPB6                         | General Purpose 14 Input/Output |
| 134            | GPIO15          | GPB7                         | General Purpose 15 Input/Output |

#### 2.4.16 LCD & Touchscreen

The resistive touch screen LCD utilizes a four-wire I2C touchscreen controller (TI TSC2004IRTJR) allowing for accurate touch detection. This interface works by measuring voltage changes across the layers of the touchscreen providing reliable input in various environmental conditions. The touch lines are listed below.

**Table 15: Touch Screen Controller** 

| SODIMM<br>Pin# | SoM<br>Pin Name | Controller<br>Pin Name(s) | Description      |
|----------------|-----------------|---------------------------|------------------|
| 45             | X+/ADC0         | X+                        | X+ Channel Input |
| 46             | X-/ADC1         | X-                        | X- Channel Input |
| 47             | Y+/ADC2         | Y+                        | Y+ Channel Input |
| 48             | Y-/ADC3         | Y-                        | Y- Channel Input |

Revision 1.00 © 2025 - 14 -



The display is driven by a 16-bit LCD controller that facilitates high-resolution color depth and precise pixel control and provides a PWM for Display brightness control. Since only 16 LCD data lines are available the low order bits of each color are tied together.

**Table 15.1: LCD** 

| SODIMM | SoM                | Processor     |                      |
|--------|--------------------|---------------|----------------------|
| Pin#   | Pin Name           | Pin Name(s)   | Description          |
| 57     | LCD BLUE0          | GPIO_BO_04    | LCD Blue             |
| 58     | LCD_BLUE1          | GPIO_B0_04    | LCD Blue             |
| 59     | LCD_BLUE2          | GPIO_B0_04    | LCD Blue             |
| 60     | LCD_BLUE3          | GPIO_B0_04    | LCD Blue             |
| 61     | LCD_BLUE4          | GPIO_B0_05    | LCD Blue             |
| 62     | LCD_BLUE5          | GPIO_B0_06    | LCD Blue             |
| 63     | LCD_BLUE6          | GPIO_B0_07    | LCD Blue             |
| 64     | LCD_BLUE7          | GPIO_B0_08    | LCD Blue             |
| 65     | LCD_GREEN0         | GPIO_B0_09    | LCD Green            |
| 66     | LCD_GREEN1         | GPIO_B0_09    | LCD Green            |
| 67     | LCD_GREEN2         | GPIO_B0_09    | LCD Green            |
| 68     | LCD_GREEN3         | GPIO_B0_10    | LCD Green            |
| 69     | LCD_GREEN4         | GPIO_B0_11    | LCD Green            |
| 70     | LCD_GREEN5         | GPIO_B0_12    | LCD Green            |
| 71     | LCD_GREEN6         | GPIO_B0_13    | LCD Green            |
| 72     | LCD_GREEN7         | GPIO_B0_14    | LCD Green            |
| 73     | LCD_RED0           | GPIO_B0_15    | LCD Red              |
| 74     | LCD_RED1           | GPIO_B0_15    | LCD Red              |
| 75     | LCD_RED2           | GPIO_B0_15    | LCD Red              |
| 76     | LCD_RED3           | GPIO_B0_15    | LCD Red              |
| 77     | LCD_RED4           | GPIO_B1_00    | LCD Red              |
| 78     | LCD_RED5           | GPIO_B1_01    | LCD Red              |
| 79     | LCD_RED6           | GPIO_B1_02    | LCD Red              |
| 80     | LCD_RED7           | GPIO_B1_03    | LCD Red              |
| 81     | LCD_HORZ/LP        | GPIO_B0_02    | LCD Horizontal Sync  |
| 82     | LCD_VERT/FP/FLM    | GPIO_B0_03    | LCD Vertical Sync    |
| 83     | LCD_ENABLE/DE/M    | GPIO_B0_01    | LCD Enable           |
| 84     | LCD_CLK/SFK/SHFCLK | GPIO_B0_00    | LCD Clock            |
| 85     | BCKLIGHT           | GPIO_AD_B1_08 | Backlight Brightness |

Revision 1.00 © 2025 - 15 -



#### 2.5 Power Connections

The SoM-1062M requires a 3.3V supply for the bus and I/O voltages. The 1.26V core voltage is regulated on the module from the 3.3V. Unlike some other modules, no supply voltage other than 3.3V is required.

SODIMM SoM Processor Description Pin# Pin Name Pin Name(s) 3,4,43,44,135, **3.3VCC 3.3VCC** 3.3 Volt SoM Supply Voltage 136,197,198 1,2,20,21,41,42, 91,92,137,138, **GND GND Digital Ground** 155,156,199,200 Analog\_GND **GND** 53 System Ground Voltage standby, this is the backup voltage provided to the SoM's RTC. If RTC readings are 56 **VSTBY** Vstandby\_3.3 not important for the application, this can be attached to the 3.3V rail. Analog power/reference. It can be typically No Connection 55 AV\_REF connected to 3.3V. LC filtering for this power Requires L25 signal is provided on-module.

**Table 16: Power Connections** 

# 2.6 **Boot Options**

The SoM-1062M provides two pins for boot-time configuration.

SODIMM<br/>Pin#SoM<br/>Pin NameProcessor<br/>Pin Name(s)Description157BOOT\_OPTION0GPIO\_AD\_B0\_04Boot0 Option Select158BOOT\_OPTION1GPIO\_AD\_B0\_05Boot1 Option Select

**Table 17: Boot Options** 

## BOOT\_MODE[1:0] -> Boot Type

- 00 -> Boot From Fuses [Works like Internal Boot, except it ignores GPIO boot pins]
- 01 -> Serial Downloader [Provides means to download Program Image to on-chip RAM over USB or UART]
- 10 -> Internal Boot from Flash
- 11 -> Reserved

The boot code performs the hardware initialization, loads the program image from the chosen boot device, performs the image validation using the HAB library (see Boot security settings), and then jumps to an address derived from the program image. If an error occurs during the internal boot, the boot code jumps to the Serial Downloader (see Serial Downloader (BOOT\_MODE[1:0] = 01b)). A secure boot using the HAB is possible in all the three boot modes.

Revision 1.00 © 2025 -16 -



# 3 Design Considerations

One of the goals of the SoM-1062M is to provide a modular, flexible and inexpensive solution capable of delivering high-end microcontroller performance with low power requirements.

### 3.1 Off-the-Shelf Carriers

Many SoM-1062M applications can make use of EMAC's off-the-shelf carriers. These carriers provide power to the SoM as well as a wealth of connectors and interfaces to access peripheral I/O including audio and LCD.

#### 3.1.1 SoM-200GS

This is a Half-EBX mounting hole form factor (4.37" x 6.00") carrier that comes with a 4.3" LCD interface as well as full schematics and a BOM, and can be used as is, or as a reference for a customer's own design.

- 10/100/1000 BaseT Ethernet with Status LEDs
- 3x serial RS232 ports and 1 RS232/422/485 port
- Resistive Touchscreen interface
- 480 x 272 Graphic LCD with Touchscreen
- Battery for nonvolatile RAM and Real Time Clock
- Micro SD Card Socket
- 2x USB Host & 1 USB OTG ports
- 1x I2S Audio port with Line-In/Line-Out
- 5 VDC Power Requirement

http://emacinc.com/products/system on module/SoM-200GS

#### 3.1.2 SoM-250GS

This is a 6.55" x 4.15" carrier designed as a basis for a 7" or 10" Panel PC.

- 10/100/1000 BaseT Ethernet with onboard Magnetics and RJ45
- 3x serial RS232 ports and 1 RS232/422/485 port
- Resistive Touchscreen interface
- 800 x 480 (WVGA) or 1024 x 600 (WSVGA) Graphic LCD with Touchscreen
- Battery for nonvolatile RAM and Real Time Clock
- Micro SDHC/MMC Flash Card Socket
- 2x USB Host & 1 USB OTG ports
- 1x I2S Audio port with Line-In/Line-Out
- 1x Audio Beeper
- Timer/Counters and Pulse Width Modulation (PWM) ports
- Operating Voltage of 12 to 28 Vdc
- Graphic LCD Interface

http://emacinc.com/products/system on module/SoM-250GS

Revision 1.00 © 2025 - 17 -



#### **3.2** Semi-Custom Carriers

EMAC also offers a semi-custom engineering service. By modifying one of our existing designs, EMAC can offer quick-turn, low-cost engineering, for your specific application.

## 3.3 Designing Your Own Carrier

It is best to start with the SoM-200GS as a reference. When designing a carrier be sure to use a 200 pin DDR1 SODIMM socket instead of the more common DDR2 socket. The DDR2 socket is keyed in such a way as to prevent the SoM from being inserted into it. The part number for a compatible DDR1 socket made by Tyco is 1473005-1. This socket will provide 3.0 mm of height from the top of carrier PCB to the bottom of the module PCB. The module specification allows for a 1.5 mm maximum height for bottom components. Therefore, this allows the user < 1.5 mm for placing components safely under the module. If more height is needed, Tyco as well as other manufacturers make SODIMM sockets with additional height, although these are more expensive.

If using the SoM-1062M's external bus, it is highly recommended to buffer the bus on the carrier board in close proximity to the SoM SODIMM connector (see the SoM-200 carrier schematics for reference).

#### 3.4 Power

The SoM-1062M requires a voltage of 3.3V. For a bare-bones population, users can get away with using only 3.3V, and simply provide this to all the voltage inputs listed in Power Connections section. This however, will not provide battery backup for the RTC.

#### 3.4.1 Shutdown Logic Pins

The ON/OFF is a digital input tied to 3.3V, which is driven by the Shutdown Controller on the processor and is not accessible.

The WKUP pin has a Maximum input voltage of 3.3V.

Both of these pins are connected directly to the processor.

#### 3.4.2 Battery Backup

The SoM-1062M Real-Time Clock (Maxim DS1337U) requires a backup voltage to maintain its data. This backup voltage comes from the VSTBY pin, and should be connected to 3.0 volt Li-ion battery.

The I2C RTC will draw approximately ~1.5uA when the processor is not powered by the 3.3V supply. When the module is powered no current is drawn from the backup battery supply. If the RTC is not needed, this can be tied to 3.3V.

Revision 1.00 © 2025 -18 -



The SoM-200GS and SoM-250GS provide battery backup voltage through a socketable BR2032, which is a standard 3V 190mA/H 20MM coin battery that can be picked up from most electronics stores.

#### 3.4.3 Analog Reference

No external Analog Reference voltage (VREF) is required for the SoM-1062M so this pin is normally a No Connect on the Module. The ADC (AD AD7994BRUZ) VREF is tied to filtered 3.3V. To utilize an external reference utilizing the ADC\_VCC SOM pin (pin 55), the inductor at L24 needs to be relocated to L25.

#### 3.4.4 Analog Voltage

When designing power for the Analog subsystem there are 2 main considerations: range and accuracy.

## Range

The AV\_VCC and V\_REF pins normally will have an effect on the range, however, on the SoM-1062M these pins are no-connects since the processor's Analog VCC is directly connected to filtered 3.3V. This voltage reference defines the voltage range of the A/D convertor to 0v to 3.3V.

#### Accuracy

The accuracy of the A/D converters is determined by the voltage reference that is provided to the analog subsystem. Since the stability of the voltage between this reference and ground will affect the accuracy of the subsystem's measurements, this has been built into the SoM in this design.

#### Range

The V\_REF pin provides the range. This pin provides power to the analog subsystem, and can take any voltage from 0 to 3.3 Volts. The power supplied to the analog subsystem limits the range of voltages that can be accurately measured. The internal analog converters cannot measure a voltage higher than their power rail. The Analog input range is ~0 to 3.0V when powered by 3.3V. Note if the AV\_VCC is powered with less than 3.3V, the full 0 to 3.0V span may not be had.

#### Accuracy

The accuracy of the A/D converters is determined by the quality of the voltage applied to the V\_REF pin, which provides the supply/reference voltage to the analog subsystem. The stability of the voltage between this pin and ground will affect the accuracy of the subsystem's measurements.

Revision 1.00 © 2025 - 19 -



# 4 Software

The SoM-1062M offers a wide variety of software support from both open source and proprietary sources. The hardware core utilizes the NXP RT1062 ARM Coretx-M7 Crossover MCU Microcontroller.

The SoM-1062M offers the ability to use different operating systems to meet different customer needs. There are available board support packages (BSPs) for the SoM-1062M from EMAC that uses MicroPython and FreeRTOS. EMAC provides a fully functional MicroPython and FreeRTOS BSPs loaded on the SoM-1062M at no additional charge. Middleware has been added to compliment the already available middleware to make these packages available for easy integration into user developed applications targeted for the SoM-1062M.

# 4.1 MicroPython

MicroPython is one of the packages that is offered for the SoM-1062M. It is an implementation of the Python 3 programming language optimized to run on microcontrollers in a constrained environment. The SoM-1062M can be preloaded with the MicroPython BSP at no charge. For more information on MicroPython support, please visit the following links:

https://micropython.org/

http://wiki.emacinc.com/wiki/Micropython

#### 4.2 FreeRTOS

FreeRTOS is one of the many packages available for application development that can be included when using the SoM-1062M. The FreeRTOS package can be downloaded from https://www.freertos.org/.

FreeRTOS has their own board support package for many of the available NXP RT development platforms. When using the SoM-1062M, a wrapper is provided for most of the FreeRTOS functionality to make development even more simple.

https://www.freertos.org/FreeRTOS-Plus/BSP Solutions/ST/index.html

Revision 1.00 © 2025 - 20 -