EQUIPMENT MONITOR AND CONTROL

Our Products Make Your Products Better®

Designing Low Power Embedded Systems

Presented by Eric Rossi Engineering Manager EMAC, Inc

EMAC, Inc Overview

- Engineering Services both Software & Hardware
- Integration Services (Box Builds, Wiring Panels, etc.)
- Manufacturer of Electronic Assemblies
- Sale of Off-The Shelf SBCs, SOMs, PPCs, Servers

Low Power Overview

Embedded System designers need high reliability, but also must conform to typical design constraints of low-power, long life, and extended temperature operation.

Typical Constraints-

- Extended Product & Battery Life (5 to 10yrs)
- Operating at High or Low Ambient Temperatures-
- Operating in Harsh Environments
- Seasonal Battery Charging-
- Safety Concerns-
- Cost

Low Power Overview

Presentation Topics & Case Studies

- Low Power Considerations (what is a low power system?)
- Power Sources
- Memories
- Peripherals
- Software
- Tools
- Microcontroller Systems
- Microprocessor Systems
- Mixed Multi-Core Systems

Low Power Considerations

- Low Power Considerations
 - Clock Frequency-
 - Dynamic External Oscillator (eg. SI5351A)
 - Crystals & Load Capacitance-
 - Internal RC Oscillators (varies over temperature)-
 - Dynamic Programmable Processor Clock
 - Regulators & System Voltage
 - Linear Regulators
 - Low-Dropout Regulator (LDO)
 - (Dynamic) Switching Regulator (efficiency)-
 - Undriven Inputs, Pullups & Voltage Dividers

- Low Power Considerations
 - Caps
 - Avoid Aluminum Electrolytic Caps (High Leakage)-
 - Leakage Current can be decreased by increasing voltage rating of the Cap
 - Use low ESR Caps in switching circuits (switching regulators)
 - Minimize the number of Caps-
 - Use SuperCaps for Additional Power-

- Power Sources
 - Battery & Charging
 - Always Low Power or just when on Battery
 - Last Gasp (SuperCap or Battery)
 - Non-Rechargeable
 - Carbon Zinc (3-5 yr shelf life; poor capacity)
 - Alkaline (5-10 yr shelf life; ok capacity)
 - Lithium (10+ yr shelf life; good capacity)

- Power Sources
 - Battery & Charging
 - Rechargeable Battery
 - NiCad (~2 yr shelf life; Temp tolerant; 1000+ cycles; Memory)
 - Nickel Metal Hydride (~3 yr shelf life; No Memory; ~800 cycles)
 - Lithium Ion (~3 yr shelf life; ~1000 cycles)
 - Lead Acid (<1 yr shelf life; ~200 cycles; wide temp)

- Power Sources
 - Battery & Charging
 - Smart Batteries (SMBus)
 - Protected Batteries
 - Energy Harvesting
 - Storage (Cap or Battery)
 - Types: Light, Wind, Running Water, RF,
 Mechanical (Kinetic), Thermal

- Memories
 - Cache (enable or disable)
 - RAM
 - Static RAM (~5.5uW)
 - LP DDR Self Refresh
 - Flash
 - Serial NOR (~2x more power than Parallel NOR)
 - Parallel Flash NOR (int; lower standby) & NAND (lower active)
 - Managed NAND (eMMC, Thumb Drives, etc.)
 - <u>FRAM/MRAM</u> (Non-Volatile Faster, Lower Power, expensive, lower capacity)

- Peripherals
 - Serial & CAN Ports
 - Ethernet
 - USB-
 - LCDs (OLED, reflective, e-paper, transmissive)-
 - Analog
 - Analog Bias Settings (reduce bias current)
 - References
 - Analog Blocks in Micros (Comparator, A/D, D/A)
 - Analog Switch & Relays (Pick-up vs Holding)-

- Peripherals
 - Wireless
 - LANs Low Power Local Area Networks
 (6Lowpan, Thread, Zigbee, Zwave, BLE, Wi-Fi
 HaLow 802.11ah)
 - WANs Low Power Wide Area Networks (LoRa [10 yr battery], LTE Cat-M1, NB-IoT, Sigfox)
 - Combo Integrated Microcontroller & Radio
 - Radios and Battery Operation (Repeaters)

- Peripherals
 - Global Positioning System (GPS; I2C or Serial)
 - First Fix (Searching; ~35mA)
 - Tracking (~25mA)
 - Hibernate/Sleep/Standby (No RF; microamps)
 - Autonomous Peripherals
 - Smart Sensors (event driven)
 - Smart I2C (ADT75 Temperature & H3LIS100DL Accelerometer)
 - DMA (Sleep DMA)

Software & Tools

- Software Techniques
 - Polling Loops vs Timers (idle mode)
 - Event Reduction (increase the number of tics when scheduling threads)
 - CPU Frequency (dynamic prescaling; PLLs)
 - I/O Line contention & I/O Line Pull-Ups
 - Low Power Sleep
 - To Sleep or not to Sleep
 - Going into and Coming out of Sleep
 - Delays
 - Power Restoration
 - Interrupt Sleep-On-Exit feature

Tools Software & Tools (cont)

- Energy Profilers (ULPBench)
- Battery Life Estimator (BLE; Microchip)
- EEVbog uCurrent Meter
- Qoitech OTII-ARC
- Hitex PowerScale (multi-channel but expensive)
- Benchmarks (used for comparing processors;
 CoreMark & ULPmark)
- ARM Mbed OS (supports Sleep modes)
- MicroPython (supports Sleep modes)
- FreeRTOS & Atollic (supports Sleep modes)
- Linux (Xenomi, Qt, OE, Yocto, Qt Creator; ACPI)
- Windows 10 (Battery Saver; ACPI)

Low Power Microcontrollers

- Microchip PIC
 - Sleep/Standby Modes (Microchip PIC)
 - Run Modes (Fast Run; Low Power Run Slower Clk Source)
 - Idle Modes (CPU Halted; Int Wkup; Periphals Active)
 - Sleep Modes (CPU Halted; Int Wkup; Limited Peripheral Operation, GPIOs continue to drive)

Low Power Microcontrollers (cont)

- Microchip/Atmel AVR (Arduino)
 - Sleep/Standby Modes
 - Idle Mode (Stop CPU & Flash Clocks; Int Wkup)
 - Power-Down (Stop EXT Osc; Single Int Wkup)
 - Power-Save (Same as Power-Down but Timer/Counter 2 continues to run)
 - Standby (Same as Power-Down but CPU Clock is kept running; fast wakeup)
 - Extended Standby (Same as Power-Save but CPU Clock is kept running; fast wakeup)

Low Power Microcontrollers (cont)

- ARM M0, M3, M4
 - Sleep/Standby Modes (Silicon Labs ARM Cortex M)
 - EM0 Run/On
 - EM1 Sleep (No CPU Clock)
 - EM2 Deep Sleep (Slow Clock 32KHz)
 - EM3 Stop (Interrupt wakeup)
 - EM4 Shutoff (Reset wakeup)

Low Power Microcontrollers (cont)

- General Low Power Selection Criteria
 - Minimize the number of I/O pins
 - Minimize the number of internal peripherals
 - Verify that a low-power timer is included on the MCU
 - Make sure that a DMA controller is included
 - Pay attention to Sleep Modes

Low Power Microprocessors

ARM

- ARM9 (older & slower but less leakage)
- ARM Cortex A5
- ARM Cortex A7
- ARM Cortex A32

• X86

- Vortex (DMP)
 - SX, DX, DX2, EX, DX3
 (~1 watt for DX; ~4 watts for a DX system)
- Atom
- i3

Low Power Microprocessors (cont)

- Sleep/Standby Modes (APM/ACPI)
 - Run/On
 - Idle mode (System Idle Process; Automatically enters Standby)
 - Standby (Partial Clock; Subsystems in LP mode; RAM active)
 - Slow Clock Mode (APM Sleep; Slow Clock 32khz; RAM Self Refresh)
 - Suspend (Suspend to RAM; Deep Sleep; No Clock; Long Restore Time)
 - Hibernate (Suspend to Disk; Long Restore Time)
 - Stop/ Off

Low Power Microprocessors (cont)

- Utilization of <u>PLD</u> or <u>Low Power Coprocessor</u>
 - Shared Memory & DMA
 - Buffering
 - Power Management
- Mixed Multi-Core Technology
 - TI ARM Cortex A8 & Programmable Real Time Unit (PRU) (eg. AM335x)
 - NXP ARM Cortex A & Cortex M (eg. i.MX6 SoloX)

EMAC, Inc. Solutions Our Products Make Your Products Better®

ISO 9001: 2008 *Certified*

EMAC's OEM products are designed and manufactured in the USA.

Case Study #1 (<u>Back -></u>) SoM-IMX6U System on Module

- Power Source 3.3v
- NXP i.MX 6 Ultralight ARM Cortex A7 Processor
- Dynamic Core Regulation
- ~ 2.5mA in APM Slow Clock Mode (32KHz)
- ~ 130ms to come out of sleep
- Ethernet & CAN Connectivity
- Linux OS

Case Study #2 Windows Industrial Tablet

- Power Source
 - 19.2 Vdc Laptop Power Supply
 - 2x Smart 14.4 Vdc Li Ion batteries (hot swap)
- ST Micro ARM M4 Coprocessor (power management)
- Intel E3900 Atom SMARC SOM based
- APM Power Management
- Windows 10 Embedded OS
- Wifi & Bluetooth Connectivity via PCIe Module

Case Study #2 (Back ->)

Case Study #3 (<u>Back -></u>) Wifi Communication Module

- Power Source
 - 5 Vdc Supply
- SuperCap (2.5F) for Last Gasp (~15 Seconds @ ~250mA)
- ST Micro ARM Cortex M4 Processor
- FreeRTOS OS
- Wifi Connectivity (Silicon Labs)

Case Study #4 (Back ->) Water Purity Device

- Power Source
 - 12V Wall Power Supply
 - Non-Rechargeable Battery (6x AA Cell battery pack)
- ST Micro ARM Cortex M4 Processor
- MicroPython OS
- Wifi & Bluetooth Radios (Redpine)
- IBM Bluemix Cloud
- 3 Independent Power Modes
 - Processor, Radio, Analog Sleep

Case Study #5 Automated Camera Tracking System

- Power Source
 - 3.5 Vdc Lithium Ion Battery (x4 in parallel)
 - USB 5Vdc alternate power and charging
- Qualcomm Snapdragon 410E ARM A53 64-bit processor
- Camera Interface
- Wifi & Bluetooth Connectivity
- Android Embedded OS

Case Study #5 (<u>Back -></u>) Automated Camera Tracking System

Case Study #6 Medical Patient Simulator

- Power Source
 - 19.2 Vdc Laptop Power Supply
 - 2x Smart 14.4 Vdc Li Ion batteries (hot swap)
 - LTC1760 Dual Smart Battery Manager
- Intel E3845 Atom COM Express SOM based
- APM Power Management
- Linux Embedded OS (EMAC OE 5.0)
- 1000 BaseT & Wifi Connectivity
- 8 Regulators (1.5v, 3.3v, 2x 5v buck, 3.3v LDO, 24v Boost, 2x 12v Boost/Buck

Case Study #6 (<u>Back -></u>) Medical Patient Simulator

Case Study #7 (<u>Back -></u>) Ambient Ear Buds

- Power Source
 - Rechargeable Battery 3.3v Lithium Ion (with protection)
 - 5v (USB; for power and charging)
- ST Micro M0 Power Management & Control Processor
- CSR Bluetooth Radio
- Analog Device DSP

Case Study #8 Artic Glacier Monitor

- Power Source
 - Rechargeable Battery 12v Lead Acid (Gel Cell)
 - Solar Energy Harvesting
 - ~3.2mA in Sleep
- SoM-9260 (AT91SAM9260) & SoM-IMX6U (IMX6UL)
- Microchip PIC Power Management & Watchdog Proc.
- Satellite Radio
- USB Camera
- Magnetostrictive, Accelerometer, Pressure,
 Temperature, Humidity Sensors
- 5 Serial Ports & CAN

Case Study #8 (Back ->) Arctic Glacier Monitor

Case Study #9 (Back ->)

Custom System on Module (SoM)

- Power Source
 - 3.3v
- Coldfire Processor
- Lynx PCI Video Controller
- Linux OS
- MRAM (4Mb; Everspin)
- USB
- Ethernet & CAN Connectivity

Case Study #10 (Back ->)

CutiPyTM IoT Device

- Power Source
 - 5V Power Supply or USB
 - 3.8v rechargeable Li-Ion battery (LT4085 Battery Power Manager)
- ST Micro ARM Cortex M4 Processor
- MicroPython or Free RTOS OS
- Bluetooth, Zigbee, Thread & Wifi
- Graphic LCD & Pushbuttons

Case Study #11 (<u>Back -></u>) Electric Vehicle Charging Station

- Power Source
 - 5v Power Supply
- SoM-9G45 Module (AT91SAM9G45)
- Linux OS
- Cell Modem (Telit; 3g LTE)
- Wifi (Wi2Wi)
- TPM (Trusted Platform Module) Chip (high security application)

Case Study #12 (<u>Back -></u>) Emergency Vehicle Location Device

- Power Source
 - 9v 15v Vehicle Power Supply (Alternator)
 - 12v Vehicle Battery
- ST Micro ARM Cortex M4 Proc.
- MicroPython OS
- Cell Modem (Telit 4g LTE)
- GPS Location
- Amazon AWS Cloud

Case Study #13 Open Road Tolling (ORT) System

- Power Source
 - 12vdc Power Supply
- SoM-IMX6M ARM A9 Dual Core Module
- Linux OS with Xenomai Real Time Extensions
- 2 Ethernets with 6 Port on board Switch & CAN Connectivity
- PIC 12F635 ATX Power Management Coprocessor (~12uA in sleep; wakes up every 90 sec to reset timer)
- Replaces a Atom based solution with active cooling

Case Study #13 (<u>Back -></u>) Open Road Tolling (ORT) System

Case Study #14 (Back ->) Gas & Water Metering System

- Power Source
 - 12.0 vdc Power Supply
 - 12.6 vdc Lead Acid (Gel Cell) Standby Battery
- SoM-9260 ARM9 Module
- Altera PLD for Pulse Counting (< 150uA in Standby)
- Ethernet & Cell Modem Connectivity
- Over 30 days on Standby Battery
- Linux OS

Case Study #15 (<u>Back -></u>) SoM-3354 System on Module

- Power Source 3.3v
- TI AM3354/3357 ARM Cortex A9 Processor
- Programmable Real Time Unit (PRU) / Industrial Communication SubSystem (ICSS; PRU-ICSS)
 - EtherCAT
 - PROFIBUS/PROFINET RT/IRT
 - HSR/PRP
- Ethernet & CAN Connectivity
- Linux OS

Figure #1 (Back ->)

Figure #2 (Back ->)

	Wi-Fi HaLow	Bluetooth low energy (5)	ZigBee	Thread	Sub-GHz IEEE 802.15.4
Max. data throughput	347 Mbps	2 Mbps	250 kbps	250 kbps	100 bps
Max. line-of-sight range*	N/A ¹	750 m	130 m	100 m ⁷	4000 m
Power consumption	N/A ²	Years from a coin cell	Years from a coin cell	Years from a coin cell	Years from a coin cell ⁸
Mesh networking	Yes	Yes ⁴	Yes	Yes	No
IP at the device node	Yes	Yes ⁵	No	Yes	No
OC/mobile OS support	Yes	Yes	No	No	No
Infrastructure in place	Yes, routers ³	Yes, mobiles ⁶	No	No	No

- 1. Said to be greater than Bluetooth 5
- 2. Said to be comparable with Bluetooth 5

Figure #3 (<u>Back -></u>) Silicon Labs Energy Modes

Figure #4 (Back ->)

Figure #5 (Back ->)

		- C A D A A	A 1
- $ -$	narieon	$\Delta t \Delta U M$	$\Lambda tom I/I$
	Janson	OI AINIVI.	Atom, i7
		· · · · · · · · · · · · · · · · · · ·	,,

	Cortex A15 (no L2, 32nm)	Cortex A9 (no L2, 40nm)	Atom N270 (45nm)	I7 960 (45nm)
Number of Cores	2 (4 maximum)	2 (4 maximum)	1 Core, 2 HT threads	4 Cores, 8 HT threads
Frequency	1Ghz – 2.5 Ghz	800Mhz (Po) 2Ghz (Per)	1.6 Ghz	3.2 Ghz
Out-of-Order?	Yes	Yes	No	Yes
L1 cache size	32KB I/D	32KB I/D	32KB I/D	32KB I/D
L2 cache size	N/A	N/A	512KB	1MB + 8MB L3
Issue Width	4	4	2	4?
Pipeline Stages	?	8	16	14 ~ 24 (?)
Supply Voltage	?	1.05V (Per)	0.9 – 1.1625 V	0.8-1.375 V
Transistor Count	?	26,00,000?	47,000,000	731,000,000
Die size	?	4.6 mm2 (Po) 6.7 mm2 (Per)	26 mm2	263 mm2
Power Consumption	?	0.5 W (Po) 1.9 W (Per)	2.5W (TDP)	130W (TDP)