User Manual

SuUsI® Library

Trusted ePlatform Services

ADMVNTECH

Copyright

The documentation and the software included with this product are copyrighted 2009
by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right
to make improvements in the products described in this manual at any time without
notice. No part of this manual may be reproduced, copied, translated or transmitted
in any form or by any means without the prior written permission of Advantech Co.,
Ltd. Information provided in this manual is intended to be accurate and reliable. How-
ever, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringe-
ments of the rights of third parties, which may result from its use.

Part No. 2006SUSIO0 Edition 1
Printed in Taiwan August 2009

SUSI Library User Manual ii

Contents

Chapter 1 Introduction....................
1.1 INtroductionoooviiiiiice e,

1.2 SUSI FUNCLIONSvvviiiiiiiiiieieee e,

1.3 Benefits ..o,

Chapter 2 Environments.................
2.1 ENVIrONMENTSooveiiiiiiiiiiiiiieeece e

Chapter 3 Package Contents
3.1 Package Contents..............uvvvveveiiiiiiiiniieneeeeenn,

Chapter 4 Additional Programs
4.1 VGA Control Hotkey Utilitycoccvvvvienennnn.

4.2 Demo Program..........ccoovvvveevviiiiiiniiinenn e

4.3 SUSIDEMO.EXEvivieiee ittt

P0G 0 A = ToTo] i o T T =

4.3.2 Watchdog.........cccovvviiivieie e,

4.3.3 GPIO it

4.3.4 Programmable GPIOccccvvvneeee.

4.3.5 SMBUS ..coviieiiiee e

4.3.6 Multibyte lIC.......ccvvveeeeeeeei e,

4.3.7 VGA CONrol......ccoveviiiieiiiiiiiieeeiiiieen,

4.3.8 Hardware MONitorcccceeevivieeeennns

4.3.9 Hardware Control..........ccoceeeeviiiienenns

0 0 O 1Y o To 11 SR

Chapter 5 Programming Overview

51 INtroductionoooviiiiiiic e,
5.2 Core fUNCLONSoevveiiiiiiieeeie e,
5.3 Watchdog (WD) functionscoeeevvvvvvennnn.
5.4 GPIO (IO) funCtioNS.....ccvvvveeeeeeiiiiciireeeee e,
55 SMBUS fUNCLIONS ...oeeveeiiiiiieeiiiiiee e,
5.6 IIC fUNCLIONS ..coiiiiiiiicei e
5.7 VGA Control (VC) functionsccoecvvvvvnnen.
5.8 Hardware Monitoring (HWM) functions............

Chapter 6 SUSI API Programmer's

Documentation
6.1 SUSIDIINIE ..
6.2 SUSIDIUNINIT. ...
6.3 SUSIDIIGELVErSIONccevviiieeeeeeeeeeee e
6.4 SUSIDIIGEtLASLEITOrccvveiiieeeeeee e
6.5 SusiCoreAvailable..........cccoooeeiiiiiiiiiiiee
6.6 SusiCoreGetBIOSVersion.......c.ccceeeevvveeevnnenne.

iii

SUSI Library User Manual

6.7

6.8

6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60

Appendix A

Al

SUSI Library User Manual

SuSiCoreGetPlatfOrMNAMEcvuiiiieiee e e e 32

SusiCoreAcCesSBOOICOUNLETuvuuiieieieieieeeeeeeeeeeeeeeeeeeeeeee e 33
SUSICOreACCESSRUNTIMET .. .cceviiieieeiieeee et e e e e e eraae e 34
SSCORE_RUNTIMER ...ttt ettt 35
SusiCoreSetThrotthingSpeedcoooiiiiiiiiiii e 35
SusiCoreGetThrotthingSPeed..........coovviiiiiiiiiii e 36
SusiCoreGetThrotthingDULYeeiiiiiiiiie e 36
SusiCoreSetThrotthingDULYccuuviiiiiiiiiiiee e 37
SUSICOreGetMaxXCPUSPEEU.uvviieiiiiiiiie ettt 37
SUSICOreGEtCPUVENUONceiiiiiiiiiie ittt ettt 38

SUSIWDAVAIIADIE ... 38
SUSIWDGEIRANGE.eeeiiiiiiiiee ettt 39
SUSIWDSELCONTIG ..ttt 39
SUSIWD TIIGOE ettt ettt et et e s sanbneee s 40
SUSIWDDISADIE ... e 40

SUSIHOAVAIIADIE........cceviie i 41
SUSIHOCOUNIEX ...ttt e e e e e e e eab e e e aees 41
SUSIHOQUEIYMASKeeiiiiiiiiiii ittt 42
YUY (@ 1571 ¢ B (=Tox 1o o F TR 43
SuSIlOSEtDIreCtiONMUIIcceeeviie e 43
YUY (@R T=T= 1o | ot SRR 44
SUSIHOREAAMUIIEXcvveieeeiieie e 44
SUSIHOWITEEXuu ittt e e e e e et e e e s e e e eaees 45
SUSIHOWIEMUIIEXcvvviieeeieiie e e e e e 45
SUSIBABItSIOQUENYMASKoeiiiiiiiiie it 46
SUSIBABItSIOSEIDIrECION......ccvveieieieeee e 47
Susi64BitslOSetDirectioNMUlti..............euieiiiiiiiiii 48
SUSIBABItSIOREAAMUILIEX........uuiiiiiiiiiiei e 48
SUSIBABItSIOWITEMUIIEXccvveieiiiiiiieeeeeeeee e 49
SUSISMBUSAVAIIADIEccoeviieieeeiee e 49
SUSISMBUSSCANDEVICEcciieeiiiieeeeeeee e e e s e ae e 50
SUSISMBUSREAAQUICK.....cceiiieeeeiiii i 50
SUSISMBUSWIEQUICKeeeeiiiiieeee ettt e e e e e e e 51
SUSISMBUSRECEIVEBYLEcccoiiiiiiiiiiiiiiieee et 51
SUSISMBUSSENABYLE ...t 52
SUSISMBUSREAABYLE.........eiiiiiiiiiiie e 52
SUSISMBUSWIIEEBYLEcciiiiiiiiei ittt 53
SUSISMBUSREAAWOITuiiiiiiiiieieeeeee et 53
SUSISMBUSWITEWOIToiiieiiieeeeeee et s e 54
SUSIHICAVAIADIEo 54
SUSIHICREAAee i et e e e e eaees 55
Y WIS L1 (@AY (TR 56
SUSIlICWriteReadCombiNeooovveviiieieeeee e 56
SUSIVCAVAIIADIE ... 57
SUSIVCGELBIGNIRANGEeeiiieiiiiiie e 58
SUSIVCGEIBIIGNL......eeeieieieee e 58
SUSIVCSEIBIIGNT ... 59
YUY AV 08 Yo (=11 o 1O] o HR R 59
SUSIVCSCIEENOTt e e e eaees 60
SUSIHWMAVAIIADIEovviiiiieeiei e 60
SUSIHWMGELFANSPEEA.eeiiiiiiiiiie it 60
SUSIHWMGEtTEMPEIATUIC.....ciitiiiiee ettt ettt 61
SUSIHWMGELVOIAGE ...ttt 62
SUSIHWMSELFANSPEEAoeiiiiiiiiiie it 63

GPIO Informationcececevvvvvennn.... 65

(€12 (O [9) (o]0 4 T=11[0] o [T 66

Appendix B

B.1

Appendix C

Cl1

Programming Flags Overview.......... 71
Programming Flags OVEIVIEW...........cceiiiiiiiieiiiiiieee et 72
API Error Codes.....cccoevvvviiiiniiniinnnnnnn, 75
AP EITON COUBS ...ttt 76

% SUSI Library User Manual

SUSI Library User Manual

Vi

Chapter 1

Introduction

1.1 Introduction

SUSI - A Bridge to Simplify & Enhance H/W & Application Implementation Effi-
ciency

When developers want to write an application that involves hardware access, they
have to study the specifications to write the drivers. This is a time-consuming job and
requires lots of expertise.

Advantech has done all the hard work for our customers with the release of a suite of
APIs (Application Programming Interfaces), called the Secured & Unified Smart
Interface (SUSI).

SUSI provides not only the underlying drivers required but also a rich set of user-
friendly, intelligent and integrated interfaces, which speeds development, enhances
security and offers add-on value for Advantech platforms. SUSI plays the role of cat-
alyst between developer and solution, and makes Advantech embedded platforms
easier and simpler to adopt and operate with customer applications.

1.2 SUSI Functions

Control
m GPIO

GPIO

L

General Purpose Input/Output is a flexible parallel interface that allows a variety
of custom connections. It supports various Digital I/O devices - input devices like
buttons, switches; output devices such as cash drawers, LED lights®jetc. And,
allows users to monitor the level of signal input or set the output status to switch
on/off the device. Our API also provide Programmable GPIO, allows developers
to dynamically set the GPIO input or output status

B SMBus

SMBus

south I=——0-SMBDAE
) L o oL eveok
@) @z)

SMBus is the System Management Bus defined by Intel? Corporation in 1995. It
is used in personal computers and servers for low-speed system management
communications. Today, SMBus is used in all types of embedded systems.

The SMBus API allows a developer to interface a Windows XP or CE PC to a
downstream embedded system environment and transfer serial messages using
the SMBus protocols, allowing multiple simultaneous device control.

SUSI Library User Manual 2

I12C is a bi-directional two wire bus that was developed by Philips for use in their
televisions in the 1980s. Today, 12C is used in all types of embedded systems.

The 12C API allows a developer to interface a Windows XP or CE PC to a down-
stream embedded system environment and transfer serial messages using the
I2C protocols, allowing multiple simultaneous device control.

Monitor
B Watchdog

Watchdog

'i'_::;:li'TI.p'

A watchdog timer (WDT) is a device or electronic card that performs a specific
operation after a certain period of time if something goes wrong with an elec-
tronic system and the system does not recover on its own.

A watchdog timer can be programmed to perform a warm boot (restarting the
system) after a certain number of seconds during which a program or computer
fails to respond following the most recent mouse click or keyboard action.

B Hardware Monitor

Hardware Monitor

AR

The Hardware Monitor (HWM) API is a system health supervision API that
inspects certain condition indexes, such as fan speed, temperature and voltage.

B Hardware Control

Hardware Control

02— 255

The Hardware Control API allows developers to set the PWM (Pulse Width Mod-
ulation) value to adjust Fan Speed or other devices; can also be used to adjust
the LCD brightness.

3 SUSI Library User Manual

Display
B Brightness Control

Brightness

V'ﬁi‘_‘

The Brightness Control API allows a developer to interface Windows XP and
Windows CE PC to easily control brightness.

B Backlight

Backlight
On/Off

The Backlight API allows a developer to control the backlight (screen) on/off in
Windows XP and Windows CE.

Power Saving
B CPU Speed

Make use of Intel SpeedStep technology to save the power consumption. The
system will automatically adjust the CPU Speed depend on the system loading.

B System Throttling

Refers to a series of methods for reducing power consumption in computers by
lowering the clock frequency. These API allow user to lower the clock from
87.5% to 12.5%.

SUSI Library User Manual 4

1.3

Benefits

Faster Time to Market

SUSI's unified API helps developers write applications to control the hardware
without knowing the hardware specs of the chipsets and driver architecture.
Reduced Project Effort

When customers have their own devices connected to the onboard bus, they
can either: study the data sheet and write the driver & API from scratch, or they
can use SUSI to start the integration with a 50% head start. Developers can ref-
erence the sample program on the CD to see and learn more about the software
development environment.

Enhances Hardware Platform Reliability

SUSI provides a trusted custom ready solution which combines chipset and
library function support, controlling application development through SUSI
enhances reliability and brings peace of mind.

Flexible Upgrade Possibilities

SUSI supports an easy upgrade solution for customers. Customers just need to
install the new version SUSI that supports the new functions.

5 SUSI Library User Manual

SUSI Library User Manual

Chapter 2

Environments

2.1 Environments

Operating Systems that SUSI supports include:

B Windows XP Embedded

B Windows XP Pro or Home Edition

For the complete list of SUSI-enabled platforms, please refer to Appendix A. Note
that the list may be changed without notice. For the latest support list, please check:
http://www.advantech.com.tw/ess/SUSI.asp

Should you have any questions about your Advantech boards, please contact us by
telephone or E-mail.

SUSI Library User Manual 8

Chapter 3

Package Contents

3.1 Package Contents

SUSI currently supports Windows XP. Contents listed below:

Operating System Location Installation
Windows XP(e) C:\ProgramFiles\Advantech\SUSIV30 Setup.exe
Directory Contents
User Manual SUSI.pdf
B Susilib
Library Files Function export
y ® Susidil
Dynamic link library
. | Susi.h
Include Files ® Debug.h/Errdrv.h / Errlib.h
B SusiDemo.exe
. Demo program execution file
Susibemo = susidl
Dynamic link library
SusiDemo\SRC\ C# Source code of SusiDemo program in C#, VS2005

SUSI Library User Manual

10

Chapter 4

Additional Programs

4.1

4.2

4.3

VGA Control Hotkey Utility

The VGA control hotkey utility, SusiHotkey.exe, automatically runs during system
startup in both Windows XP and Windows CE. It provides users with an easy access
to VGA functions with the following hotkey assignments.

Key Action

Ctrl + Alt + '+ Increase brightness by 10%
Ctrl + Alt +*' Decrease brightness by 10%
Ctrl + Alt + ‘6’ Set brightness to 60 %

Ctrl + Alt + 1 Turn VGA display on

Ctrl + Alt + 'O’ Turn VGA display off

Demo Program

The SUSI demo program demonstrates how to incorporate SUSI library into user's
own applications. The program is written in C# programming language and based
upon .NET Compact Framework 2.0, Visual Studio 2005.

SusiDemo.exe

The execution file, SusiDemo.exe, released with source code can be run on both
Windows XP and Windows CE.

The following pages are a detailed introduction to the SusiDemo program:

4.3.1 Boot Logger

-

Boot Logger | Watchdog| GFIO | Programmable GPIO| SMBus| Multibyte TIC| wGa | 4

Boot Counter

Enable I:l {hoolearn)

Get Set

Run Timer

RLnning I:l (1orm
Autorun I:I {1aord)
Continualon I:l FriifT
Tawlon [| min

Get Set

SUSI Library User Manual 12

This part belongs to the feature Core in SUSI APIs.
B Select or clear the check box to select the information to get or set in its text

box.
In Boot Counter

B To reset the BootTimes parameter to 0, just type 0 in the BootTimes text box
with its check box selected, and then click the "Set" button.

In Run Timer

B Set the Running text box to 1 to start the timer, or O to stop the timer.
B Set the Autorun text box to 1 to start the timer when the system restarts.

4.3.2 Watchdog

SusiDemo

Dielary

Timeout

Left

Boot Logger| Watchdog | GFIO | Programmable GRIO| SMBus | Multibyte 11C| vaa 4] »

Timeout Information

L
L
]

Timeout Setting

P
P |

Courtdown Walue

|

Unit {ms)

Unit {ms)

Unit {ms)

Start

Refresh

Stop

When the SusiDemo program executes, it shows watchdog information in the "Time-
out Information” fields - "Min", "Max", and "Step" in milliseconds. For example, for a
range of 1 ~ 255 seconds, 1000 appears in the "Min" text box, 255000 appears in the
"Max" text box, and 1000 appears in the "Step" text box.

Here is an example of how to use the watchdog timer:

B Type 3000 (3 sec.) in the "Timeout" text box and optionally type 2000 (2 sec.) in
the "Delay" text box. Click the "Start" button. The "Left" text box will show the
approximate countdown value the watchdog timer. (This is a software timer in
the demo program, not the actual watchdog hardware timer so it is not very

accurate.)

B Before the timer counts down to zero, you may reset the timer by clicking the
"Refresh” button, stop it by clicking the "Stop" button.

13 SUSI Library User Manual

4.3.3 GPIO

Boot Logger | Watchdog GPIO | Programmable GPIO| SMBus| Muttibyte 1ic| vea 4] ¥
Bin Information
N

Pin Conirol
() Single-pin E {Pin number
) Multi-pins |:| {Hex)
®RAyResutt [] (Hew

Read ‘ Write

This page is only for backward compatibility with previous APIs that are bidirectional.
So in new GPIO supported platforms such as SUSI V12, this page will not be shown.
We highly recommend you use the new Programmable GPIO.

When the SusiDemo program executes, it displays the fixed numbers of input pins
and output pins in "Pin Information” field. You can click the "Single-pin" or "Multi-pins"
radio button to choose single or multiple pins. For GPIO pinout information for each
platform, please refer to the Appendix.

Read Single Input Pin
B Click "Single-Pin" radio button.

B Type the input pin number to read the status from. Pins are numbered from 0 to
the total number of input pins minus 1.

B Click "Read" button and the status of the GPIO pin appears in "(R/W) Result".

Read Multiple Input Pins
B Click "Multiple-Pins" radio button.

B Type a pin number from '0x01' to 'OxOF' to read the status of the input pins. The
pin numbers are bitwise-ORed, i.e. bit 0 stands for input pin 0, bit 1 stands for
input pin 1, etc. For example, to read input pins 0, 1, and 3, type '0x0B' into the
"Multi-Pins" text box.

B Click the "Read" button and the status of the GPIO pins appears in the "(R/W)
Result" text box.

Write Single Output Pin
B Click the "Single-Pin" radio button.

SUSI Library User Manual 14

Type the output pin number to write the status to. Pins are numbered from O to
the total number of input pins minus 1.

Type either '0' or '1'in "(R/W) Result" to set the output status as low or high.
Click "Write" button to perform the operation.

Write Multiple Output Pins

Click the "Multi-Pins" radio button.

Type a pin number from '0x01' to 'OxOF' to choose the output pins to write. The
pin numbers are bitwise-ORed, i.e. bit 0 stands for output pin 0, bit 1 stands for
output pin 1, etc. For example, to write input pins 0, 1, and 3, type '0x0B' into the
"Multi-Pins" text box.

Type a value from '0x01' to 'OxOF" into the "(R/W) Result" text box to set the sta-
tus of the output pins. Again, the pin statuses are bitwise-ordered, i.e. bit O
stands for the desired status of output pin 0, bit 1 for output pin 1, etc. For exam-
ple, if you want to set pin 0 and 1 high, 3 to low, the value given in text box of
"(R/W)Result" should be '0x0A'.

Click "Write" button to perform the operation.

4.3.4 Programmable GPIO

Boot Logger | Watchdog| GPIO | Programmable GRIO | ShiBus| mMultibyte 1c | vGa [4] #
jo[e) g 0 b

Fin MNumber Direction Change / RW Access
Single Pin
<. e T
Get Pin Count walue [Jew

Set Direction
MASK
[l Full Pin (23 I:l (Bin} [0 Read
in
[110 Configurable () I:l (E'.) 10 Wirite
[T 10 Direction MNow I:I (Bin)
Get Mask

Pin Number

Get the numbers of input pins and output pins respectively. Each number may
vary with the direction of current pins, but the sum remains the same.

MASK

Choose the mask of interest by selecting or clearing its check box, then clicking
"Get Mask".

15 SUSI Library User Manual

Direction Change / RW Access
B Choose either "Single Pin" or "Multiple Pin".

B The possible values that the "Single Pin" text box can be set to ranges from 0 to
the total number of GPIO pins minus 1.

Single Pin Operation - "10 Write" / " Set Direction”

B Give avalue of '1' (output status high / input direction) or '0' (output status low /
output direction) to set the pin then click the "IO Write" or "Set Direction" button.

Single Pin Operation - "IO Read"
B Click "IO Read" to get the pin input status.

Multiple Pin Operation - "1O Write" / " Set Direction”

If there are 8 GPIO pins:

B To write the status of GPIO output pins 0, 1, 6 and 7, give the "Multiple Pin" text
box the value 11000011. Bit 0 stand for GPIO 0, bit 1 stand for GPIO 1, and so
on.

To set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low, give the "Value"
text box the value 01XXXXO01, where X stands for a don't care pin.
Please simply assign a O for don't care pins, e.g. 10000001.

B To set the direction of GPIO pins 0, 1, 6 and 7, give the "Multiple Pin" text box
the value 11000011. Again bit O stands for GPIO 0, bit 1 stands for GPIO 1, and
so on. To set pin 0 as an input, pin 1 as an output, pin 6 as an input and pin 7 as
an output, give the "Value" text box with 01XXXX01, where X is for don't care
Please simply assign a 0 for don't care pins, e.g. 10000001.

Multiple Pin Operation - "10O Read"

B For example, if you want to read the status of GPIO pins 0, 1, 6 and 7, give the
"Multiple Pin" text box the value 11000011. Bit 0 stands for GPIO 0, bit 1 stands
for GPIO 1, and so on. Again, if the pin is in status high, the value in the relevant
bit of the "Value" text box will be 1. If the pin status is low, the "Value" text box
will be 0.

Note! 1. "lO Write" can only be performed on pins in the output direction.
30 2. "Set Direction" can only be performed on bidirectional pins.
=l 3. "lO Read" can get the status of both input and output pins.
Please get the information first in the "MASK" field.

SUSI Library User Manual 16

4.3.5 SMBus

Protocols

BootLogger | Watchdog| GPIO | Programmable GPIO| SMBus | Multioyts 1IC| waa 4] ¥

Protocals
() QUICK () WORD DATA
(") BYTE () BLOCK DATA
{hytes)
o e |

Slave address

10 {Hesx) 0 {Hex

Reqister offset

Result (Hex

b

0x0

Read Wirite

Scan Address Occupancy

B Choose one of the protocol operations by selecting a radio button.
B Give the proper value to the "Slave address" and "Register offset” text boxes.

Some protocol operations don't have register offsets.

B Click the "Read" button for read/receive operations, and the "Write" button for
write/send operations.
B The values read or to be written are in the "Result (Hex)" text box.

"Scan Address Occupancy" Button
B Click this button to get the addresses currently used by slave devices connected
to the SMBus.
B The occupied addresses will be shown in the "Result (Hex)" text box. The
addresses are already in an 8-bit format.

17

SUSI Library User Manual

4.3.6 Multibyte IIC

' Boot Logger | watchdog| GPIO | Programmable GPIO| SMBus| Multibyte 1C | vGa 4| b

Multi-bytes Access

Slave addres Read num Write num) Primary
0 | ey P | P | O ShBus-IC
Input Data {ex. 00 fF 7.0 (Hex)
Result (Hex)
Read Wit WR Cornbine

B Select the "Primary” or "SMBus-1IC" radio button. If one of them is not sup-
ported, its radio button will be unavailable.

Primary

B Connect the IIC devices to the 1IC connector.

B Type in the data bytes to be written in the "Input Data" text box.
B The bytes read will be shown in the "Result" text box.

SMBus-IIC
B Connect the lIC devices to the SMBus connector.
B In AMD platforms, all the IIC functions are fully supported.

B InIntel or VIA platforms, only Read and Write with "Read num" =1 or "Write
num" = 1 are supported. "WR Combine" is not supported.

SUSI Library User Manual 18

4.3.7 VGA Control

You may control VGA functions from the "VGA Control" tab or directly by hotkey.

If the brightness control is not supported, the control parts are unavailable (grayed-
out).

19 SUSI Library User Manual

swelboid [euonippy v 1o1deyd

4.3.8 Hardware Monitor

De i
Multibyte IIC| ¥GA Contral| Hardware Monitor | Hardware Control| sbout..,] R :
Yoltage Temperature

veore p] cu P]

Y25 El S E

vas b]

van El Fan Speed

vizo P | a0 .

- aam | Hm

vear P] s

wso P]

i I Monitor

vt P]

Click "Monitor" to get and display the hardware monitor values. If a data value is not
supported on the platform, its text box will be unavailable (grayed-out).

SUSI Library User Manual 20

4.3.9 Hardware Control

This function now includes Pulse Width Modulation (PWM) control over parameters
such as fan speed, panel brightness etc.

The bigger the value given, the higher the duty cycle (power) of the pulse, e.g. the fan
will have a higher speed.

21 SUSI Library User Manual

swelibold reuonippy 1 181deyd

4.3.10 About

This page contains the platform name, the BIOS version etc., i.e. the information
retrieved by the SUSI APIs.

SUSI Library User Manual 22

O

Programming
Overview

5.1

Introduction

Header Files
B SUSI.H includes API declaration, constants and flags that are required for pro-
gramming.
B DEBUGH/ERRDRV.H/ERRLIB.H are for debug code definitions.
DEBUG.H - Function index codes
ERRLIB.H - Library error codes
ERRDRV.H - Driver error codes

Library Files

B Susi.lib is for library import and Susi.dll is a dynamic link library that exports all
the API functions.

Demo Program

B The SusiDemo program, released with source code, demonstrates how to fully
use SUSI APIs. The program is written in the latest programming language C#.

Drivers
There are seven drivers for SUSI: CORE, WDT, GPIO, SMBus, IIC, VC and HWM.
E.g. Driver CORE is for SusiCore- prefixed APIs, and so on.

A driver will be loaded only if its corresponding function set is supported by a plat-
form.

Installation File

In Windows XP, you have to run Setup.exe for installation. To avoid double installa-
tion, please make sure you have removed any existing SUSI drivers, either by using
Setup.exe or by manually removing them in Device Manger.

DIl functions

SusiDIl- APIs are driver-independent, i.e. they can be called without any drivers. In
Windows XP, after drivers having been installed, users have to call SusiDllInit for ini-
tialization before using any other APIs that are not SusiDlI- prefixed. Before the appli-
cation terminates, call SusiDIlUnInit to free allocated system resources.

When an API call fails, use SusGetLastError to get an error report. An error value will
be either

Function Index Code + Library Error Code, or
Function Index Code + Driver Error Code

The Function Index Code indicates which API the error came from and the library /
Driver Error Code indicates the actual error type, i.e. whether it was an error in a
library or driver. For a complete list of error codes, please refer to the Appendix

SusiDllInit
SusiDIlUnInit
SusiDIllIGetLastError
SusiDIlIGetVersion

SUSI Library User Manual 24

5.2

5.3

5.4

Core functions

SusiCore- APIs are available for all Advantech SUSI-enabled platforms to provide
board information such as the platform name and BIOS version. New SusiCoreAc-
cessBootCounter and SusiCoreAccessBootCounter APIs are Boot Logger features
that enable monitoring of system reboot times, total OS run time and continual run
time. SusCoreThrottlingSpeed to SusiCoreGetCpuMaxSpeed APIs are CPU throt-
tling features.

SusiCoreGetPlatformName

SusiCoreGetBIOSVersion

SusiCoreAccessBootCounter

SusiCoreAccessRunTimer

SusiCoreGetThrottlingSpeed

SusiCoreSetThrottlingSpeed

SusiCoreGetThrottlingDuty

SusiCoreSetThrottlingDuty

SusiCoreGetCpuMaxSpeed

SusiCoreGetCpuVendor

Watchdog (WD) functions

The hardware watchdog timer is a common feature among all Advantech platforms.
In user applications, call SusiwDSetConfig with specific timeout values to start the
watchdog timer countdown, meanwhile create a thread or timer to periodically refresh
the timer with SusiWDTrigger before it expires. If the application ever hangs, it will fail
to refresh the timer and the watchdog reset will cause a system reboot.

B SusiWDGetRange
B SusiWDSetConfig
B SusiWDTrigger
B SusiWDDisable

GPIO (I0) functions

There are two sets of GPIO functions. It is highly recommended to use the new one.
With pin read and write, more flexibility has been added to allow easy pin direction
change as needed, as well as the capability of reading output pin status.

New programmable GPIO function set:
SusilOCountEx
SusilOQueryMask
SusilOSetDirection
SusilOSetDirectionMulti
SusilOReadEXx
SusilOReadMultiEx
SusilOWriteEx
SusilOWriteMultiEx

Previous function set:
B SusilOCount
B SusilOlnitial

25 SUSI Library User Manual

5.5

5.6

SusilORead
SusilOReadMulti;
SusilOWrite
SusilOWriteMulti

Refer to Appendix for pin allocation and their default direction.

SMBus functions

We support the SMBus 2.0 compliant protocols in SusiSMBus- APIs :

B Quick Command - SusiSMBusReadQuick/SusiSMBusWriteQuick

B Byte Receive/Send - SusiSMBusReceiveByte/SusiSMBusSendByte
B Byte Data Read/Write - SusiSMBusReadByte/SusiSMBusWriteByte

B Word Data Read/Write - SusiSMBusReadWord/SusiSMBusWriteWord

We also support an additional API for probing:

B SusiSMBusScanDevice

The slave address is expressed as a 7-bit hex number between 0x00 to 0x7F, how-
ever the actual addresses used for R/W are

8-bit write address = 7-bit address <<1 (left shift one) with LSB 0 (for write)

8-bit read address = 7-bit address <<1 (left shift one) with LSB 1 (for read)

E.g. Given a 7-bit slave address 0x20, the write address is 0x40 and the read
address is 0x41.

Here in all APIs (except for SusiSMBusScanDevice), parameter SlaveAddress is the
8-bit address and users don't need to care about giving it as a read or write address,
since the actual R/W is taken care by the API itself, i.e. you could even use a write
address, say 0x41 for APIs with write operation and get the right result, and vice
versa.

SusiSMBusScanDevice is used to probe whether an address is currently used by
certain devices on a platform. You can find out which addresses are occupied by
scanning from 0x00 to Ox7f. For example, you could scan for occupied addresses
and avoid them when connecting a new device; or by probing before and after con-
necting the new device, you could quickly know its address. The SlaveAddress 7
parameter given in this APl is a 7-bit address.

IIC functions

The APIs here cover IIC standard mode operations with a 7-bit device address:
B SusillCRead

B SusillCWrite

B SusillCWriteReadCombine

IIC versus SMBus - compatibility

On platforms that do not have IIC but do have SMBus, a call to SusillCAvailable
returns SUSI_IIC_TYPE_SMBUS (2). Users might be able to use SMBus as a substi-
tute; however, whether it's with fully or partially supported depends on the SMBus
controller type.

In AMD platforms, we have implemented the SMBus driver to be totally IIC standard
mode compatible; users could use the IIC APIs implemented by the SMBus controller

SUSI Library User Manual 26

5.7

5.8

with [ICType = SUSI_IIC_TYPE_SMBUS to communicate with all kinds of IIC
devices.

In Intel and VIA's platforms, the currently compatible protocols are
B SusillCRead with ReadLen =1
B SusillCWrite with WriteLen = 1

IIC devices with 7-bit slave addresses can also be scanned by SusiSMBusScanDe-
vice on all platforms that have SMBus support.

We are now working on more 1IC compatible APIs for Intel and VIA controllers. These
APIs will be supported soon.

For more details on platform IIC/SMBus support, please refer to Appendix A.

VGA Control (VC) functions

SusiVC- functions support VGA signal ON/OFF on all SUSI-enabled platforms and
also LCD brightness adjustment.

B SusiVCScreenOn

SusiVCScreenOff

SusiVCGetBrightRange

SusiVCGetBright

SusiVCSetBright

One application of SusiVCScreenOn and SusiVCScreenOff is to have the display
signal disabled when system idles after certain period of time to expand the panel life
span.

Hardware Monitoring (HWM) functions

SusiHWM- functions support system health supervision by retrieving the values of
voltage, temperature and fan sensors. In some platforms, it is possible to control the
CPU/System fan speed. Use these functions cautiously.

B SusiHWMAvailable

SusiHWMGetFanSpeed

SusiHWMGetTemperature

SusiHWMGetVoltage

SusiHWMSetFanSpeed

27 SUSI Library User Manual

SUSI Library User Manual

28

6

SUSI API
Programmer's
Documentation

6.1

6.2

6.3

All APIs return the BOOL data type except Susi*Available and some special cases
that are of type int. If any function call fails, i.e. a BOOL value of FALSE, or an int
value of -1, the error code can always be retrieved by an immediate call to SusiGet-
LastError.

SusiDllInit

Initialize the Susi Library.
BOOL SusiDllInit(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
An application must call SusiDlIlInit before calling any other non SusiDII- functions.

SusiDlUnInit

Uninitialize the Susi Library.
BOOL SusiDIlUnInit(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Before an application terminates, it must call SusiDIlUnInit if it has successfully
called SusiDllInit. Calls to SusiDllInit and SusiDIIUnInit can be nested but must be
paired.

SusiDllIGetVersion

Retrieve the version numbers of SUSI Library.
void SusiDIIGetVersion(WORD *major, WORD *minor);
Parameters

major
[out] Pointer to a variable containing the major version number.

SUSI Library User Manual 30

6.4

6.5

minor
[out] Pointer to a variable containing the minor version number.

Return Value
None.
Remarks

This function returns the version numbers of SUSI. It's suggested to call this func-
tion first and compare the numbers with the constants SUSI_LIB_VER_MJ and
SUSI_LIB_VER_MR in header file SUSI.H to insure the library compatibility.

SusiDllIGetLastError

This function returns the last error code value.
int SusiDIIGetLastError(void);

Parameters
None

Return Value
The code of error reason for the last function call with failure.

Remarks

You should call the SusiDIlIGetLastError immediately when a function's return value
indicates failure.

The return error code will be either
Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code

The Function Index Code distinguishes which API the error resulted from and the
library / Driver Error Code indicates the actual error type, i.e. if it is an error in a
library or driver. For a complete list of error codes, please refer to the Appendix.

SusiCoreAvailable

Check if Core driver is available.
int SusiCoreAvailable (void);

Parameters
None.

Return Value

Value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support SusiCore- APIs.

31 SUSI Library User Manual

6.6

6.7

1 The function succeeds; the platform supports Core.

Remarks
After calling SusiDllInit successfully, all Susi*Available functions are used to check
if the corresponding features are supported by the platform or not. So it is sug-
gested to call Susi*Available before using any Susi*- functions.

SusiCoreGetBIOSVersion

Get the current BIOS version.

BOOL SusiCoreGetBIOSVersion(TCHAR *BlOSVersion, DWORD *size);

Parameters
BIOSVersion
[out] Pointer to an array in which the BIOS version string is returned.
size
[in/out]

Pointer to a variable that specifies the size, in TCHAR, of the array
pointed to by the BIOSVersion parameter.

If BIOSVersion is given as NULL, when the function returns, the vari-
able will contain the array size required for the BIOS version.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call the function twice, first by giving BIOSVersion as NULL to get the array size
required for the string. Then allocate a TCHAR array with the size required and
give the array with its size as parameters to get the BIOS version. Note that the
BIOS version cannot be correctly retrieved if it's a release version.

SusiCoreGetPlatformName

Get the current platform name.

BOOL SusiCoreGetPlatformName(TCHAR *PlatformName, DWORD *size);

Parameters
PlatformName
[out] Pointer to an array in which the platform name string is returned.
size
[in/out]

Pointer to a variable that specifies the size, in TCHAR, of the array
pointed to by the PlatformName parameter.

SUSI Library User Manual 32

6.8

If PlatftormName is given as NULL, when the function returns, the vari-
able will contain the array size required for the platform name.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.
Remarks

Call the function twice, first by giving PlatformName as NULL to get the array size
required for the string. Then allocate a TCHAR array with the size required and
give the array with its size as parameters to get the platform name. Note that the
platform name cannot be correctly retrieved if the BIOS is a release version.

SusiCoreAccessBootCounter

Access the boot counter. A boot counter is used to count the number of boot times.

BOOL SusiCoreAccessBootCounter(DWORD mode, DWORD OPFlag, BOOL
*enable, DWORD *value);

Parameters
mode
[in] The value can be either
ESCORE_BOOTCOUNTER_MODE_GET (0)
- To get information from counter.
ESCORE_BOOTCOUNTER_MODE_SET (1)
- To set information to counter.
OPFlag
[in] The operation flag can be the combination of
ESCORE_BOOTCOUNTER_STATUS (1)
- The operation is on the parameter enable
ESCORE_BOOTCOUNTER_VALUE (2)
- The operation is on the parameter value
enable
[infout]

If OPFlag contains ESCORE_BOOTCOUNTER_STATUS (1):

When mode equals ESCORE_BOOTCOUNTER_MODE_GET(0),
after the function returns, enable will contain the status of the counter:
TRUE (enabled) or FALSE (disabled).

When mode equals ESCORE_BOOTCOUNTER_MODE_SET(1),
enable is a pointer to a variable that contains the status to set. Use
TRUE to start the counter or FALSE to stop.

value
[in/out]
If OPFlag contains ESCORE_BOOTCOUNTER_VALUE (2):
When mode equals ESCORE_BOOTCOUNTER_MODE_GET(0),

33 SUSI Library User Manual

after the function returns, value will contain the reboot count.

When mode equals ESCORE_BOOTCOUNTER_MODE_SET(1),
value is a pointer to a variable that contains the reboot count to set.
Give a value 0 to clear the count or any other value to start from.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

In windows XP, the boot counter information is stored in the following registry val-
ues:

HKEY_LOCAL_MACHINE \SYSTEM\SusiBootCounter\Enable
HKEY_LOCAL_MACHINE \SYSTEM\SusiBootCounter\BootTimes

6.9 SusiCoreAccessRunTimer

Access the run timer. A run timer is used to count the system running time.

BOOL SusiCoreAccessRunTimer(DWORD mode, PSSCORE_RUNTIMER
pRunTimer);

Parameters
mode
[in] The value can be either
ESCORE_BOOTCOUNTER_MODE_GET (0)
- Get the counter.
ESCORE_BOOTCOUNTER_MODE_SET (1)
- Set the counter.
pRunTimer
[in/out]

Pointer to a SSCORE_RUNTIMER structure to set or get the timer.
Please see next page for details of this structure.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
In windows XP, the information is stored in the following registry values:
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimer\Running
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimer\Autorun
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimer\ContinualOnTime
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimenTotalOnTime
The information will be lost only if the registry values have been wiped out.

For a detailed definition of the SSCORE_RUNTIMER structure, please refer to
next page.

SUSI Library User Manual 34

6.10 SSCORE_RUNTIMER

This structure represents the run timer information.

typedef struct {
DWORD dwOPFlag;
BOOL isRunning;
BOOL isAutorun;
DWORD dwTimeContinual;
DWORD dwTimeTotal;
} SSCORE_RUNTIMER, *PSSCORE_RUNTIMER,;

Members
dwOPFlag
The operation flag can be a combination of:
ESCORE_RUNTIMER_STATUS_RUNNING (1)
- The operation is on the member isRunning
ESCORE_RUNTIMER_STATUS_AUTORUN (2)
- The operation is on the member isAutorun
ESCORE_RUNTIMER_VALUE_CONTINUALON(4)
- The operation is on the member dwTimeContinual
ESCORE_RUNTIMER_VALUE_TOTALON(8)
- The operation is on the member dwTimeTotal
isRunning
TURE indicates the timer is running now, FALSE indicates not.
isAutorun

TRUE states the timer will start automatically upon startup, i.e. it will be running
each time when the system reboots.

dwTimeContinual

Specify the system continual-on time in minutes, i.e. the OS running time without a
system reboot. At reboot, it will be reset to 0.

dwTimeTotal

Specify the system total-on time in minutes, i.e. the total time accumulated while
the OS has been running.

6.11 SusiCoreSetThrottlingSpeed

Set the CPU throttling speed
BOOL SusiCoreSetThrottlingSpeed(int value)

Parameters
value
[in] CPU Throttling Speed value

35 SUSI Library User Manual

6.12

6.13

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
N/A

SusiCoreGetThrottlingSpeed

Get the CPU throttling Speed
BOOL SusiCoreGetThrottlingSpeed(int &value)

Parameters
value
[out] Get the CPU Throttling Speed value

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
N/A

SusiCoreGetThrottlingDuty

Get the CPU throttling Duty
BOOL SusiCoreGetThrottlingDuty(DWORD &dutyFlag)

Parameters
dutyFlag
[out] Get the CPU Throttling Speed value
Duty flag type define

#define TFULL 0x00
#define T875 Ox1E
#define T750 0x1C
#define T625 Ox1A
#define T500 0x18
#define T375 0x16
#define T250 0x14
#define T125 0x12

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
N/A

SUSI Library User Manual 36

6.14 SusiCoreSetThrottlingDuty

Set the CPU throttling Duty
BOOL SusiCoreSetThrottlingDuty(DWORD dutyFlag)

Parameters
dutyFlag
[in] Get the CPU Throttling Speed value
Duty flag type define

#define TFULL 0x00
#define T875 Ox1E
#define T750 0x1C
#define T625 Ox1A
#define T500 0x18
#define T375 0x16
#define T250 0x14
#define T125 0x12

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.
Remarks

N/A

6.15 SusiCoreGetMaxCpuSpeed

Get max CPU speed
BOOL SusiCoreGetCpuMaxSpeed(DWORD &Value)

Parameters
value
[out] Get the CPU Max CPU Speed value
Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
N/A

37

SUSI Library User Manual

6.16 SusiCoreGetCpuVendor

Get the CPU Vendor type

Parameters
value

[out] Get the CPU vendor type
/l Vendor

#define INTEL 1<<0
#define VIA 1<<1
#define SIS 1<<2
#define NVIDIA 1<<3
#define AMD 1<<4

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
N/A

6.17 SusiWDAvailable

Check if the watchdog driver is available.
BOOL SusiWDAvailable(void);

Parameters
None.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support SusiwD- APIs.
1 The function succeeds; the platform supports Watchdog.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are used to check
if the corresponding features are supported by the platform or not. We suggest
Susi*Available is called before using any Susi*- functions.

SUSI Library User Manual 38

6.18 SusiWDGetRange

Get the step, minimum and maximum values of the watchdog timer.

BOOL SusiWDGetRange(DWORD *minimum, DWORD *maximum,
DWORD *stepping);

Parameters
minimum
[out] Pointer to a variable containing the minimum timeout value in millisec-
onds.
maximum
[out] Pointer to a variable containing the maximum timeout value in milli-
seconds.
stepping
[out] Pointer to a variable containing the resolution of the timer in millisec-
onds.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The values may vary from platform to platform; depending on the hardware imple-
mentation of the watchdog timer. For example, if the minimum timeout is 1000, the
maximum timeout is 63000, and the step is 1000, it means the watchdog timeout
will count 1, 2, 3 ... 63 seconds.

6.19 SusiWDSetConfig

Start watchdog timer with specified timeout value.
BOOL SusiWDSetConfig(DWORD delay, DWORD timeout);

Parameters
delay

[in] Specifies a value in milliseconds which will be added to “the first” time-
out period. This allows the application to have sufficient time to do initial-
ization before the first call to SusiwDTrigger and still be protected by the
watchdog.

timeout
[in] Specifies a value in milliseconds for the watchdog timeout.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure

39 SUSI Library User Manual

Remarks

Once the watchdog has been activated, its timer begins to count down. The appli-
cation has to periodically call SusiwDTrigger to refresh the timer before it expires,
i.e. reload the watchdog timer within the specified timeout or the system will reboot
when it counts down to O.

Actually a subsequent call to SusiwDTrigger equals a call to SusiwDSetConfig
with delay 0 and the original timeout value, so if you want to change the timeout
value, call SusiwDSetConfig with new timeout value instead of SusiWDTrigger.

Use SusiWDGetRange to get the acceptable timeout values.

6.20 SusiWDTrigger

Reload the watchdog timer to the timeout value given in SusiwDSetConfig to pre-
vent the system from rebooting.

BOOL SusiWDTrigger(void);

Parameters
None

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A watchdog protected application has to call SusiwDTrigger continuously to indi-
cate that it is still working properly and prevent a system restart. The first call to
SusiWDTrigger in the middle of a delay resulting from a previous call to SusiwD-
SetConfig causes the delay timer to be canceled immediately and starts the watch-
dog timer countdown from the timeout value. It is always a good choice for users to
have a longer delay time in SusiwDSetConfig.

6.21 SusiWDDisable

Disable the watchdog and stop its timer countdown.
BOOL SusiWDDisable(void);

Parameters
None

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
If watchdog protection is no longer required by an application, it can call SusiWD-

SUSI Library User Manual 40

Disable to disable the watchdog. A call to SusiWwDDisable in the middle of a delay
resulting from a previous call to SusiwDSetConfig causes the delay timer to be
canceled immediately and stops watchdog timer countdown. Only a few hardware
implementations in which the watchdog timer cannot be stopped once it has been
activated, will return with FALSE.

6.22 SusilOAvailable

Check if GPIO driver is available.
int SusiCoreAvailable (void);

Parameters
None.

Return Value

value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support SusilO- APIs.
1 The function succeeds; the platform supports GPIO.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are used to check
if the corresponding features are supported by the platform or not. It is suggested
to call Susi*Available before using any Susi*- functions.

6.23 SusilOCountEx

Query the current number of input and output pins.

BOOL SusilOCountEx(DWORD *inCount, DWORD *outCount)

Parameters
inCount
[out] Pointer to a variable in which this function returns the count of input
pins.
outCount
[out] Pointer to a variable in which this function returns the count of output
pins.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

41 SUSI Library User Manual

Remarks

The number of GPIO pins equals the number of input pins plus the number of out-
put pins. The number of input and output pins may vary in accordance with the cur-
rent pin direction.

6.24 SusilOQueryMask

Query the GPIO mask information.
BOOL SusilOQueryMask(DWORD flag, DWORD *Mask)

Parameters
flag
[in] The value given to indicate the type of mask to retrieve can be one of
the following values:

Static masks
ESIO_SMASK_PIN_FULL (1)
ESIO_SMASK_CONFIGURABLE (2)
Dynamic masks
ESIO_DMASK_DIRECTION (0x20)

Mask

[out] Pointer to a variable in which this function returns the queried mask.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A mask is expressed as a series of binary digits. Each bit corresponds to a pin (bit
0 for pin 0, bit 1 for pin 1, bit 2 for pin 2 ...), depending on the mask type:

A bit value 1 stands for a pin with

1. Inputdirection

2. Status HIGH

3. Direction changeable.

Or a bit value 0 stands for a pin with
1. Output direction

2. Status LOW

3. Direction unchangeable

Here are the definitions for masks:
B ESIO_SMASK_PIN_FULL

— If there are total 8 GPIO pins (GPIO 0 ~ 7) in a platform, the full pin mask is
OxFF, or in binary 11111111, i.e. the number of 1s corresponds to the num-
ber of pins.

B ESIO_SMASK_CONFIGURABLE

— This is the mask to indicate which pins have changeable directions. If all the
8 pins are changeable, the mask would be OxFF.

SUSI Library User Manual 42

B ESIO_DMASK_DIRECTION
— The current direction of pins. If the mask is OXAA, or in binary 10101010, it
means the even pins are output pins and the odd pins are input pins.

6.25 SusilOSetDirection

Set direction of one GPIO pin as input or output.

BOOL SusilOSetDirection(BYTE PinNum, BYTE 10, DWORD *PinDirMask);

Parameters
PinNum

[in] Specifies the GPIO pin to be changed, ranging from 0 ~ (total number
of GPIO pins minus 1).

10
[in] Specifies the pin direction to be set.

PinDirMask

[out] Pointer to a variable in which the function returns the latest direction mask
after the pin direction is set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Use an |0 value of 1 to set a pin as an input or 0 to set a pin as an output.

The function can only set the direction of one of the pins that are direction config-
urable. If the pin number specified is an invalid pin or a pin that can only be config-
ured as an input, the function call will fail and return FALSE.

6.26 SusilOSetDirectionMulti

Set directions of multiple pins at once.

BOOL SusilOSetDirectionMulti(DWORD TargetPinMask, DWORD *PinDirMask);

Parameters
TargetPinMask
[in] Specifies the mask of GPIO output pins to be written.

PinDirMask
[in/out]
Specifies the directions of pins to be set in a bitwise-ORed manner.
After the function call returns TRUE, it contains the latest direction
mask after set.

43 SUSI Library User Manual

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For example, if you set to the directions of GPIO pin 0, 1, 6, 7. Give parameter Tar-
getPinMask with a value 11000011, or 0xC3. Bit O stand for GPIO 0, bit 1 stand for
GPIO 1, and so on.

If you want to set pin 0 as input, pin 1 as output, pin 6 as input and pin 7 as output.
Give value in parameter PinDirMask as 01XXXX01, X is for don't care, you could
simply assign a 0 for it, i.e. 0x41.

6.27 SusilOReadEXx

Read current status of one GPIO input or output pin.

BOOL SusilOReadEX(BYTE PinNum, BOOL *status)

Parameters
PinNum
[in] Specifies the GPIO pin demanded to be read, ranging from 0 ~ (total
number of GPIO pins minus 1).
status
[out] Pointer to a variable in which the pin status returns.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

If the pin is in status high, the value got in status will be 1. If the pin is in status low,
it will be zero. The function is capable of reading the status of either an input pin or
an output pin.

6.28 SusilOReadMultiEx

Read current statuses of multiple pins at once regardless of the pin directions.
BOOL SusilOReadMultiEx(DWORD TargetPinMask, DWORD *StatusMask);

Parameters
TargetPinMask

[in] Specifies the mask of GPIO pins demanded to be read.
StatusMask
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in

TargetPinMask, the related bit value is invalid.

SUSI Library User Manual 44

6.29

6.30

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For example, if you want to read the statuses of GPIO pin 0, 1, 6, 7. Give parame-
ter TargetPinMask with a value 11000011, or 0xC3. Bit O stand for GPIO 0, bit 1
stand for GPIO 1, and so on. Again, if the pin is in status high, the value got in rel-
evant bit of StatusMask will be 1. If the pin is in status low, it will be zero.

SusilOWriteEx

Set one GPIO output pin as status high or low.
BOOL SusilOWriteEX(BYTE PinNum, BOOL status);

Parameters
PinNum

[in] Specifies the GPIO pin demanded to be written, ranging from O ~ (total
number of GPIO pins minus 1).

status
[in] Specifies the GPIO status to be written.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function can only set the status of one of the output pins. If the pin number
specified is an input pin or an invalid pin, the function call will fail and return with
FALSE. A status with 1 to set the pin as output high, 0 to set the pin as output low.

SusilOWriteMultiEx

Set statuses of multiple output pins at once.
BOOL SusilOWriteMultiEx(DWORD TargetPinMask, DWORD StatusMask);

Parameters
TargetPinMask
[in] Specifies the mask of GPIO output pins demanded to be written.

StatusMask

[in] Statuses of pins to be set in Bitwise-ORed. For pins that are not spec-
ified in TargetPinMask, the related bit value is invalid.

45 SUSI Library User Manual

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For example, if you want to write the statuses of GPIO output pin 0, 1, 6, 7. Give
parameter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for GPIO 0,
bit 1 stand for GPIO 1, and so on.

If you want to set pin O as high, pin 1 as low, pin 6 as high and pin 7 as low. Give
parameter StatusMask with a value 01XXXX01, X is for don’t care pin, you could
simply assign a O for it, i.e. 0x41.

6.31 Susi64Bits|OQueryMask

Query the GPIO mask information.
BOOL Susi64BitslOQueryMask(DWORD flag, UINT64 *Mask)

Parameters
flag
[in] The value given to indicate the type of mask to retrieve can be one of
the following values:
Static masks
ESIO_SMASK_PIN_FULL (1)
ESIO_SMASK_CONFIGURABLE (2)
Dynamic masks
ESIO_DMASK_DIRECTION (0x20)
Mask
[out] Pointer to a variable in which this function returns the queried mask.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A mask is expressed as a series of binary digits. Each bit corresponds to a pin (bit
0 for pin 0, bit 1 for pin 1, bit 2 for pin 2 ...), depending on the mask type:

A bit value 1 stands for a pin with

1. Input direction

2. Status HIGH

3. Direction changeable.

Or a bit value 0 stands for a pin with
1. Output direction

2. Status LOW

3. Direction unchangeable

SUSI Library User Manual 46

Here are the definitions for masks:
B ESIO _SMASK_PIN_FULL

— If there are total 8 GPIO pins (GPIO 0 ~ 7) in a platform, the full pin mask is
OxFF, or in binary 11111111, i.e. the number of 1s corresponds to the num-
ber of pins.

B ESIO_SMASK_CONFIGURABLE

— This is the mask to indicate which pins have changeable directions. If all the
8 pins are changeable, the mask would be OxFF.

B ESIO_DMASK_DIRECTION

— The current direction of pins. If the mask is OXAA, or in binary 10101010, it
means the even pins are output pins and the odd pins are input pins.

6.32 Susi64BitsIOSetDirection

Set direction of one GPIO pin as input or output.

BOOL Susi64BitslOSetDirection(ULONG PinNum, BYTE 10, UINT64 *Pin-
DirMask);

Parameters
PinNum

[in] Specifies the GPIO pin to be changed, ranging from 0 ~ (total number
of GPIO pins minus 1).

10
[in] Specifies the pin direction to be set.

PinDirMask

[out] Pointer to a variable in which the function returns the latest direction mask
after the pin direction is set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Use an 10 value of 1 to set a pin as an input or O to set a pin as an output.

The function can only set the direction of one of the pins that are direction config-
urable. If the pin number specified is an invalid pin or a pin that can only be config-
ured as an input, the function call will fail and return FALSE.

47 SUSI Library User Manual

6.33 Susi64BitslOSetDirectionMulti

Set directions of multiple pins at once.

BOOL Susi64BitsIOSetDirectionMulti(UINT64 TargetPinMask, UINT64 *Pin-
DirMask);

Parameters
TargetPinMask
[in] Specifies the mask of GPIO output pins to be written.

PinDirMask
[infout]

Specifies the directions of pins to be set in a bitwise-ORed manner.
After the function call returns TRUE, it contains the latest direction
mask after set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For example, if you set to the directions of GPIO pin 0, 1, 6, 7. Give parameter Tar-
getPinMask with a value 11000011, or 0xC3. Bit 0 stand for GPIO 0, bit 1 stand for
GPIO 1, and so on.

If you want to set pin 0 as input, pin 1 as output, pin 6 as input and pin 7 as output.
Give value in parameter PinDirMask as 01XXXX01, X is for don't care, you could
simply assign a O for it, i.e. 0x41.

6.34 Susi64BitsIOReadMultiEx

Read current statuses of multiple pins at once regardless of the pin directions.

BOOL Susi64BitslIOReadMultiEx(DWORD TargetPinMask, DWORD *Status-
Mask);

Parameters
TargetPinMask

[in] Specifies the mask of GPIO pins demanded to be read.
StatusMask
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in

TargetPinMask, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

SUSI Library User Manual 48

Remarks

For example, if you want to read the statuses of GPIO pin 0, 1, 6, 7. Give parame-
ter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for GPIO 0, bit 1
stand for GPIO 1, and so on. Again, if the pin is in status high, the value got in rel-
evant bit of StatusMask will be 1. If the pin is in status low, it will be zero.

6.35 Susi64BitsIOWriteMultiEx

Set statuses of multiple output pins at once.
BOOL Susi64BitsIOWriteMultiEx(DWORD TargetPinMask, DWORD StatusMask);

Parameters
TargetPinMask
[in] Specifies the mask of GPIO output pins demanded to be written.

StatusMask

[in] Statuses of pins to be set in Bitwise-ORed. For pins that are not spec-
ified in TargetPinMask, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For example, if you want to write the statuses of GPIO output pin 0, 1, 6, 7. Give
parameter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for GPIO 0,
bit 1 stand for GPIO 1, and so on.

If you want to set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low. Give
parameter StatusMask with a value 01XXXX01, X is for don’t care pin, you could
simply assign a O for it, i.e. 0x41.

6.36 SusiSMBusAvailable

Check if SMBus driver is available.
int SusiSMBusAvailable(void);

Parameters
None.

Return Value

Value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support SusiSMbus- APIs.
1 The function succeeds; the platform supports SMBus.

49 SUSI Library User Manual

6.37

6.38

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are use to check if
the corresponding features are supported by the platform or not. So it is suggested
to call Susi*Available before using any Susi*- functions.

SusiSMBusScanDevice

Scan if the address is taken by one of the slave devices currently connected to the
SMBus.

int SusiSMBusScanDevice(BYTE SlaveAddress_7)
Parameters
SlaveAddress

[in] Specifies the 7-bit device address, ranging from 0x00 — Ox7F.

Return Value

Value Meaning

-1 The function fails.

0 The function succeeds; the address is not occupied.

1 The function succeeds; there is a device to this address.
Remarks

There could be as much as 128 devices connected to a single SMBus. For more
information about how to use this API, please refer to “Programming Overview”,
part “SMBus functions”.

SusiSMBusReadQuick

Turn a SMBus device function on (off) or enable (disable) a specific device mode.
BOOL SusiSMBusReadQuick(BYTE SlaveAddress);

Parameters
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OXFF.

Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For more information about how to use this API, please refer to “Programming

SUSI Library User Manual 50

Overview”, part “SMBus functions”.

6.39 SusiSMBusWriteQuick

Turn a SMBus device function off (on) or disable (enable) a specific device mode.
BOOL SusiSMBusWriteQuick(BYTE SlaveAddress);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.

Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress could
be ignored.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

6.40 SusiSMBusReceiveByte

Receive information in a byte from the target slave device in the SMBus.
BOOL SusiSMBusReceiveByte(BYTE SlaveAddress, BYTE *Result);

Parameters
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be

ignored.
Result
[out] Pointer to a variable in which the function receives the byte informa-
tion.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A simple device may have information that the host needs to be received in the
parameter Result.

For more information about how to use this API, please refer to “Programming

51 SUSI Library User Manual

Overview”, part “SMBus functions”.

6.41 SusiSMBusSendByte

Send information in a byte to the target slave device in the SMBus.

BOOL SusiSMBusSendByte(BYTE SlaveAddress, BYTE Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.

Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress could be
ignored.

Result

[in] Specifies the byte information to be sent.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A simple device may recognize its own slave address and accept up to 256 possi-
ble encoded commands in the form of a byte given in the parameter Result.

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

6.42 SusiSMBusReadByte

Read a byte of data from the target slave device in the SMBus.

BOOL SusiSMBusReadByte(BYTE SlaveAddress, BYTE RegisterOffset, BYTE
*Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.

Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be
ignored.

RegisterOffset

[in] Specifies the offset of the device register to read data from.
Result

[out] Pointer to a variable in which the function reads the byte data.

Return Value

TRUE (1) indicates success; FALSE (0) indicates failure.

SUSI Library User Manual 52

Remarks

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

6.43 SusiSMBusWriteByte

Write a byte of data to the target slave device in the SMBus.

BOOL SusiSMBusWriteByte(BYTE SlaveAddress, BYTE RegisterOffset, BYTE
Result);

Parameters
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress could be

ignored.
RegisterOffset
[in] Specifies the offset of the device register to write data to.

Result
[in] Specifies the byte data to be written .

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

6.44 SusiSMBusReadWord

Read a word (2 bytes) of data from the target slave device in the SMBus.

BOOL SusiSMBusReadWord(BYTE SlaveAddress, BYTE RegisterOffset, WORD
*Result);

Parameters
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress could be

ignored.
RegisterOffset
[in] Specifies the offset of the device register to read data from.

Result
[out] Pointer to a variable in which the function reads the word data.

53 SUSI Library User Manual

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The first byte read from slave device will be placed in the low byte of Result, and
the second byte read will be placed in the high byte.

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

6.45 SusiSMBusWriteWord

Write a word (2 bytes) of data to the target slave device in the SMBus.

BOOL SusiSMBusWriteWord(BYTE SlaveAddress, BYTE RegisterOffset, WORD
Result);

Parameters
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OXFF.
Whether to give a 1 (read) or 0 (write) to the LSB of SlaveAddress could be

ignored.
RegisterOffset
[in] Specifies the offset of the device register to write data to.
Result
[in] Specifies the word data to be written .

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The low byte of Result will be send to the slave device first and then the high byte.

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”

6.46 SusillICAvailable

Check if I°C driver is available and also get the IIC type supported.
int SusillCAvailable();

Parameters
None.

SUSI Library User Manual 54

Return Value

Value Meaning

-1 The function fails.

0 The_function succeeds; the platform does not support any
SusillC - APIs.
The function succeeds; the platform supports only primary

SUSI_IIC_TYPE_PRIMARY (1) e

The function succeeds; the platform supports only SMBus
implemented IIC.

The function succeeds; the platform supports both primary
IIC and SMBus IIC.

SUSI_IIC_TYPE_SMBUS (2)

SUSI_IIC_TYPE_BOTH (3)

Remarks
After calling SusiDlIlInit successfully, all Susi*Available functions are use to check if
the corresponding features are supported by the platform or not. So it is suggested
to call Susi*Available before using any Susi*- functions.

6.47 SusilICRead

Read bytes of data from the target slave device in the 1°C bus.

SUSI_API BOOL SusillCRead(DWORD IICType, BYTE SlaveAddress, BYTE
*ReadBuf, DWORD ReadLen);

Parameters
IICType
[in] Specifies the I°C type, the value can either be
SUSI_IIC_TYPE_PRIMARY (1)
SUSI_IIC_TYPE_SMBUS (2)
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.

Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress could be
ignored.

ReadBuf

[out] Pointer to a variable in which the function reads the bytes of data.
ReadLen

[in] Specifies the number of bytes to be read.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusillCAvailable first to make sure the support I1°C type. For more information

55 SUSI Library User Manual

about how to use this API, and the relationship between [IC and SMBus, please
refer to “Programming Overview”, parts “SMBus functions” to “lIC versus SMBus —
compatibility”.

6.48 SusilICWrite

Write bytes of data to the target slave device in the 12C bus.

BOOL SusillCWrite(DWORD IlICType, BYTE SlaveAddress, BYTE *WriteBuf,
DWORD WriteLen);

Parameters
IICType

[in] Specifies the 1°C type, the value can either be
SUSI_IIC_TYPE_PRIMARY (1)
SUSI_IIC_TYPE_SMBUS (2)
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.

Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress could
be ignored.

WriteBuf

[in] Pointer to a byte array which contains the bytes of data to be written.
WriteLen

[in] Specifies the number of bytes to be written.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call SusillCAvailable first to make sure the support 12C type. For more information
about how to use this API, and the relationship between IIC and SMBus, please
refer to “Programming Overview”, parts “SMBus functions” to “lIC versus SMBus —
compatibility”.

6.49 SusillICWriteReadCombine

A sequential operation to write bytes of data followed by bytes read from the target
slave device in the 1°C bus.

BOOL SusillICWriteReadCombine(DWORD IICType, BYTE SlaveAddress, BYTE
*WriteBuf, DWORD WriteLen, BYTE *ReadBuf, DWORD ReadLen);

Parameters
IICType

SUSI Library User Manual 56

[in] Specifies the 12C type, the value can either be
SUSI_IIC_TYPE_PRIMARY (1)
SUSI_IIC_TYPE_SMBUS (2)
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.

Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress could
be ignored.

WriteBuf

[in] Pointer to a byte array which contains the bytes of data to be written.
WriteLen

[in] Specifies the number of bytes to be written.
ReadBuf

[out] Pointer to a variable in which the function reads the bytes of data.
ReadLen

[in] Specifies the number of bytes to be read.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function is mainly for EEPROM 12C devices - the bytes written first are used to
locate to a certain address in ROM, and the following bytes read will retrieve the
data bytes starting from this address.

Call SusillCAvailable first to make sure the support 1°C type. For more information
about how to use this API, and the relationship between IIC and SMBus, please

refer to “Programming Overview”, parts “SMBus functions” to “lIC versus SMBus —
compatibility”

6.50 SusiVCAvailable

Check if VC driver is available and also get the feature support information.
BOOL SusiVCAvailable(void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does

not support any SusiVC- APIs.

SUSI_VC_BRIGHT _CONTROL_AVAILABLE (1) e function succeeds; the platform sup-
ports only brightness APlIs.

57 SUSI Library User Manual

The function succeeds; the platform sup-
ports only screen on/off APlIs.

The function succeeds; the platform sup-
ports all SusiVC- APlIs.

SUSI_VC_VGA_CONTROL_AVAILABLE (2)

SUSI_VC_BOTH_AVAILABLE (3)

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are use to check if
the corresponding features are supported by the platform or not. So it is suggested
to call Susi*Available before using any Susi*- functions.

6.51 SusiVCGetBrightRange

Get the step, minimum and maximum values in brightness adjustment.

BOOL SusiVCGetBrightRange(BYTE *minimum, BYTE *maximum, BYTE *step-
ping);

Parameters
minimum
[out] Pointer to a variable to get the minimum brightness value.
maximum
[out] Pointer to a variable to get the maximum brightness value.
stepping
[out] Pointer to a variable to get the step of brightness up and down

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvailable first to make sure if the brightness control is available.

The values may vary from platform to platform; depend on the hardware imple-
mentations of brightness control. For example, if minimum is 0, maximum is 255,
and stepping is 5, it means the brightness can be 0, 5, 10, ..., 255.

6.52 SusiVCGetBright

Get the current panel brightness.
BOOL SusiVCGetBright(BYTE *brightness);
Parameters

brightness
[out] Pointer to a variable in which this function returns the brightness.

SUSI Library User Manual 58

6.53

6.54

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvailable first to make sure if the brightness control is available.

SusiVCSetBright

Set current panel brightness.
BOOL SusiVCSetBright(BYTE brightness);

Parameters
brightness
[in] Specifies the brightness value to be set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvailable first to make sure if the brightness control is available.

In some implementations, the higher the brightness value, the higher the voltage
fed to the panel. So please make sure the voltage toleration of your panel prior to
the API use.

SusiVCScreenOn

Turn on VGA display signal.
BOOL SusiVCScreenOn(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function enables both the LCD and CRT display signals.

59 SUSI Library User Manual

6.55 SusiVCScreenOff

Turn off VGA display signal.
BOOL SusiVCScreenOff(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function disables both the LCD and CRT display signals.

6.56 SusiHWMAvailable

Check if the hardware monitor driver is available.
int SusiHWMAVvailable();

Parameters
None.

Return Value

Value Meaning

-1 The function fails.

0 The function succeeds; the platform does not support SusiHWM- APIs.
1 The function succeeds; the platform supports HWM.

Remarks

After calling SusiDllInit successfully, all Susi*Available functions are use to check if
the corresponding features are supported by the platform or not. So it is suggested
to call Susi*Available before using any Susi*- functions.

6.57 SusiHWMGetFanSpeed

Read the current value of one of the fan speed sensors, or get the types of avail-
able sensors.

BOOL SusiHWMGetFanSpeed(WORD fanType, WORD *retval, WORD *typeSup-
port = NULL);

SUSI Library User Manual 60

Parameters
fantype

[in] Specifies a fan speed sensor to get value from. It can be one of the
flags

FCPU (1) — CPU Fan
FSYS (2) — System / Chassis fan

retval
[out] Point to a variable in which this function returns the fan speed in RPM
Typesupport

[out]

If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function first with a non-NULL typesupport to know the available fan sen-
sors and a following call to get the fan speed required.

6.58 SusiHWMGetTemperature

Read the current value of one of the temperature sensors, or get the types of avail-
able sensors.

BOOL SusiHWMGetTemperature(WORD tempType, float *retval, WORD *type-
Support = NULL);

Parameters
tempType
[in] Specifies a temperature sensor to get value from. It can be one of
the flags

TCPU (1) — CPU temperature
TSYS (2) — System / ambient temperature

retval
[out] Point to a variable in which this function returns the temperature in Cel-
sSius.
Typesupport

[out]

If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

61 SUSI Library User Manual

Remarks

Call the function first with a non-NULL typesupport to know the available tempera-
ture sensors and a following call to get the temperature required.

6.59 SusiHWMGetVoltage

Read the current value of one of the voltage sensors, or get the types of available
sensors.

BOOL SusiHWMGetVoltage(DWORD voltType, float *retval, DWORD *typeSup-
port = NULL);

Parameters
voltType

[in] Specifies a voltage sensor to get value from. It can be one of the
flags

VCORE (1<<0)
V25 (1<<1)
V33 (1<<2)
V50 (1<<3)
V120 (1<<4)
VSB (1<<b)
VBAT (1<<6)
VN50 (1<<7)
VN120 (1<<8)
VTT (1<<9)
retval
[out] Point to a variable in which this function returns the voltage in Volt.
Typesupport
[out]

If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function first with a non-NULL typesupport to know the available fan sen-
sors and a following call to get the voltage required.

SUSI Library User Manual 62

6.60 SusiHWMSetFanSpeed

Control the speed of one of the fans, or get the types of available fans.

BOOL SusiHWMSetFanSpeed(WORD fanType, BYTE setval, WORD *typeSup-
port = NULL);

Parameters
fantype
[in] Specifies a fan to be controlled. It can be one of the flags
FCPU (1) - CPU Fan
FSYS (2) — System / Chassis fan

setval
[in] Specifies the value to set, ranging from 0 to 255.
Typesupport

[out]

If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available fans in flags bitwise-ORed

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The fan speed is controlled by Pulse Width Modulation (PWM):
Duty cycle (%) = (setval/ 255) * 100%
And the default duty cycle is set to 100%, i.e. the maximal fan speed.

Call the function first with a non-NULL typesupport to know the available fan sen-
sors and a following call to set the fan speed.

63 SUSI Library User Manual

SUSI Library User Manual

64

Appendix A

GPIO Information

A.1 GPIO Information

Look up the table for the GPIO pins assignment and the default pins direction for a
platform. E.g. AIMB-330(CN19) means that the platform name is AIMB-330 and its
GPIO pins are located in CN19 on the board.

AIMB-330(CN19)/ AIMB-340(CN19)/ AIMB-640(CN18)

The number of GPIO pins4 Inputs, 4 outputs

Pin Signal Pin Signal

Pin-1 INO Pin-2 +5V

Pin-3 IN1 Pin-4 OUTO (Max 1A)
Pin-5 IN2 Pin-6 GND

Pin-7 IN3 Pin-8 OUT1 (Max 1A)
Pin-9 GND Pin-10 +12V

Pin-11 Key Pin-12 Key

Pin-13 POUT3 Pin-14 GND

Pin-15 ouT2 Pin-16 +12 'V

* It should add the pull-up resistors to OUTO, OUT1 on AIMB-330, AIMB-340 and
AIMB-640.

PCM-3350(CN36,CN37)/PCM-3353(CN36,CN37)/PCM-3372(CN2,CN23)/PCM-
4153(CN36,CN37)

*PCM-XXXX(IN,OUT)

The number of GPIO pins4 Inputs, 4 outputs

IN ouT

Pin Signal Pin Signal
Pin-1 VCC Pin-1 OuTO
Pin-2 INO Pin-2 OuUT1
Pin-3 IN1 Pin-3 ouT2
Pin-4 IN2 Pin-4 OouT3
Pin-5 IN3 Pin-5 GND

SUSI Library User Manual 66

PCM-4372(CN2)/PCM-4386(CN7)/PCM-4380(CN7)/
PCM-4390(CN6)/PCM-9374(CN4)/PCM-9375(CN9)/
PCM-9377(27)/PCM-9380(CN7)/PCM-9386(CN7)/
PCM-9577(CN25)/PCM-9584(CN16)/PCM-9586(CN9)/

PCM-9679(CN7)

The number of GPIO pins4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 VCC Pin-2 ouTo
Pin-3 INO Pin-4 OouUT1
Pin-5 IN1 Pin-6 ouT2
Pin-7 IN2 Pin-8 OouT3
Pin-9 IN3 Pin-10 GND

* |t should add the pull-up resistors to the input pins on PCM-9577 for logic level.

PCM-9381(CN7)/ PCM-9387(CN7)

The number of GPIO pins4 Inputs

Pin Signal
Pin-1 VCC
Pin-2 INO
Pin-3 IN1
Pin-4 IN2
Pin-5 IN3

PCM-9578(CN5)

The number of GPIO pins4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 OuTO Pin-2 OuT1
Pin-3 OouT2 Pin-4 OouT3
Pin-5 ouT4 Pin-6 OuUT5
Pin-7 OouT6 Pin-8 ouT7
Pin-9 GND Pin-10 GND
PCM-9580(CN16)
The number of GPIO pins4 Inputs, 4 outputs
Pin Signal Pin Signal
Pin-1 INO Pin-2 OouTO
Pin-3 IN1 Pin-4 OUT1
Pin-5 IN2 Pin-6 OouT2
Pin-7 IN3 Pin-8 OouT3
Pin-9 GND Pin-10 GND
67 SUSI Library User Manual

PCM-9581(CN9)/
6681(CN16)

PCM-9582(CN19)/

PCM-9586(CN9)/

The number of GPIO pins4 Inputs, 4 outputs

PCM-9587(CN19)/PCI-

Pin Signal Pin Signal
Pin-1 INO Pin-2 OouTO0
Pin-3 GND Pin-4 GND
Pin-5 IN1 Pin-6 OuUT1
Pin-7 VCC Pin-8 NC
Pin-9 IN2 Pin-10 OouT2
Pin-11 GND Pin-12 GND
Pin-13 IN3 Pin-14 OuT3

* |t should add the pull-up resistors to In2, In3, OUTO, OUT1 on PCM-9581 and PCM-

9586.

PCI-6880 (CN2)

The number of GPIO pins4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 INO Pin-2 ouTo
Pin-3 IN1 Pin-4 OouT1
Pin-5 IN2 Pin-6 ouT2
Pin-7 IN3 Pin-8 OouT3
Pin-9 VCC Pin-10 GND
SOM-5780(U17)/SOM-5782(U14)

The number of GPIO pins4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 VCC 3.3V Pin-16 GND
Pin-4 IN2 Pin-20 OuT3
Pin-5 IN3 Pin-21 OouT2
Pin-11 INO Pin-22 OouT1
Pin-12 IN1 Pin-23 OouTo

* SOM-5780, SOM-5782 must combine with SOM-DB5700(carrier board).

SOM-DB5700(CN27)

Pin-1 INO Pin-2 VCC
Pin-3 IN1 Pin-4 OouTOo
Pin-5 IN2 Pin-6 OouT1
Pin-7 IN3 Pin-8 ouT2
Pin-9 GND Pin-10 +12V
Pin-11 NC Pin-12 NC
Pin-13 OUT3 Pin-14 NC
Pin-15 GND Pin-16 +12V

SUSI Library User Manual

68

PCM-3375(CN16)

The number of GPIO pins4 Inputs, 4 outputs

Pin Signal
Pin-1 -5V
Pin-2 GND
Pin-3 -12V
Pin-19 INO
Pin-20 IN1
Pin-21 IN2
Pin-22 IN3
Pin-23 OouTO
Pin-24 OouT1
Pin-25 OouT2
Pin-26 ouT3

* There are two high drive digital outputs, OUTO, OUT1 (24 VDC, 1 A max), two TTL
level digital outputs, OUT2, OUT3 and four digital inputs (TTL level). You can config-
ure the digital I/O to control the opening of the cash drawer and to sense the closing
of the cash drawer. The above table explains how the digital I/O is controlled via soft-
ware programming and how a 12 V solenoid or relay can be triggered. For complete-
ness, please refer to the user manual of POS-563/POS-564/POS-761.

69 SUSI Library User Manual

SUSI Library User Manual

70

Appendix B

Programming Flags
Overview

B.1 Programming Flags Overview

Hardware Monitor Flags

® Fan

Flag Value Description
FCPU lu CPU FAN
FSYS 2u System FAN
F2ND 4u 3rd FAN

B Temperature

Flag Value Description
TCPU 1lu CPU Temperature
TSYS 2u System Temperature
B \oltage

Flag Value Description
VCORE 1u Vcore

V25 2u 25V

V33 4u 3.3V

V50 8u 5V

V120 16u 12V

VSB 32u Voltage of standby
VBAT 64u VBAT

VN50 128u 5V

VN120 256u -12V

VTT 512u VTT

Boot Logger Flags

| Bootcounter

Mode Flag Value Description
ESCORE_BOOTCOUNTER_MODE_GET 1lu Read Operation
ESCORE_BOOTCOUNTER_MODE_SET 2u Write Operation
Element Flag Value Description

Current Status

ESCORE_BOOTCOUNTER_STATUS 1u (Is Enabled or Disabled?)

ESCORE_BOOTCOUNTER_VALUE 2u Number of Reboot Times

SUSI Library User Manual 72

B Runtimer

Mode Flag Value Description
ESCORE_RUNTIMER_MODE_GET 1u Read Operation
ESCORE_RUNTIMER_MODE_SET 2u Write Operation
Element Flag Value Description

Current Status
ESCORE_RUNTIMER_STATUS_RUNNING 1u (Is Enabled or Disabled?)
ESCORE_RUNTIMER_STATUS_AUTORUN 2u Is AutoRun upon Startup?

ESCORE_RUNTIMER_VALUE_CONTINUAL

OS continual run time (reset to 0

ON A after a reboot)
ESCORE_RUNTIMER_VALUE_TOTALON 8u Sum of OS total run time
GPIO Mask Flags
Flag Value Description
ESIO SMASK PIN EULL 0x01. Series of binary 1s for the number
- - = of total pins
ESIO_SMASK_ CONFIGURABLE 0x02 Direction Changeable Pins
ESIO_DMASK_DIRECTION 0x20 Current Direction of Pins
73 SUSI Library User Manual

SUSI Library User Manual

74

Appendix C

API Error Codes

C.1 API Error Codes

An error value will be either

Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code.
If you call an API and returns with fail. The Function Index Code in its error code
combination does not necessarily equal to the index code of the API. This is because
the API may make a call to another API.

Function Index Code

Index Code Function Index
DLL
00100000 ESusilnit
00200000 ESusiUnlnit
00300000 ESusiGetVersion
00400000 ESusiDllInit
00500000 ESusiDIlUnInit
00600000 ESusiDlIGetVersion
00700000 ESusiDIlIGetLastError
Core

10100000 ESusiCorelnit
10200000 ESusiCoreAvailable
10300000 ESusiCoreGetBIOSVersion
10400000 ESusiCoreGetPlatformName
10500000 ESusiCoreAccessBootCounter
10600000 ESusiCoreAccessRunTimer
10700000 ESusiCoreRebootSystem
10800000 ESusiReserved8000000

Watchdog
20100000 ESusiWDlInit
20200000 ESusiWDAvailable
20300000 ESusiWDDisable
20400000 ESusiWDGetRange
20500000 ESusiWDSetConfig
20600000 ESusiWDTrigger

GPIO

30100000 ESusilOlnit
30200000 ESusilOAvailable
30300000 ESusilOCount
30400000 ESusilOlnitial
30500000 ESusilORead
30600000 ESusilOReadMulti
30700000 ESusilOWrite
30800000 ESusilOWriteMulti
30900000 ESusilOCountEx
31000000 ESusilOQueryMask
31100000 ESusilOSetDirection
31200000 ESusilOSetDirectionMulti

SUSI Library User Manual 76

31300000 ESusilOReadEx
31400000 ESusilOReadMultiEx
31500000 ESusilOWriteEx
31600000 ESusilOWriteMultiEx

SMBus
40100000 ESusiSMBuslnit
40200000 ESusiSMBusAvailable
40300000 ESusiSMBusReadByte
40400000 ESusiSMBusReadByteMulti
40500000 ESusiSMBusReadWord
40600000 ESusiSMBusWriteByte
40700000 ESusiSMBusWriteByteMulti
40800000 ESusiSMBusWriteWord
40900000 ESusiSMBusReceiveByte
41000000 ESusiSMBusSendByte
41100000 ESusiSMBusWriteQuick
41200000 ESusiSMBusReadQuick
41300000 ESusiSMBusScanDevice
41400000 ESusiSMBusWriteBlock
41500000 ESusiSMBusReadBlock

lc
50100000 ESusillClnit
50200000 ESusillCAvailable
50300000 ESusillCReadByte
50400000 ESusillICWriteByte
50500000 ESusillICWriteReadCombine
50600000 ESusillICRead
50700000 ESusillCWrite
50800000 ESusillCScanDevice
50900000 ESusillCWriteRegister
51000000 ESusillCReadRegister
VGA Control
60100000 ESusiVClinit
60200000 ESusiVCAvailable
60300000 ESusiVCGetBright
60400000 ESusiVCGetBrightRange
60500000 ESusivVCScreenOff
60600000 ESusiVCScreenOn
60700000 ESusiVCSetBright
Hardware Monitor
70100000 ESusiHWMInit
70200000 ESusiHWMAvailable
70300000 ESusiHWMGetFanSpeed
70400000 ESusiHWMGetTemperature
70500000 ESusiHWMGetVoltage
70600000 ESusiHWMSetFanSpeed
77 SUSI Library User Manual

Library Error Code

Error Code Error Type
Driver Open Errors

00000001 ERRLIB_CORE_OPEN_FAIL
00000002 ERRLIB_WDT_OPEN_FAIL
00000004 ERRLIB_GPIO_OPEN_FAIL
00000008 ERRLIB_SMB_OPEN_FAIL
00000016 ERRLIB_VC_OPEN_FAIL
00000032 ERRLIB_HWM_OPEN_FAIL

DLL Functions
00000000 ERRLIB_SUCCESS
00000001 ERRLIB_RESERVED1
00000002 ERRLIB_RESERVED2
00000003 ERRLIB_LOGIC
00000004 ERRLIB_RESERVED4
00000005 ERRLIB_SUSIDLL _NOT_INIT
00000006 ERRLIB_PLATFORM_UNSUPPORT
00000007 ERRLIB_API_UNSUPPORT
00000008 ERRLIB_RESERVEDS
00000009 ERRLIB_API_CURRENT_UNSUPPORT
00000010 ERRLIB_LIB_INIT_FAIL
00000011 ERRLIB_DRIVER_CONTROL_FAIL
00000012 ERRLIB_INVALID_PARAMETER
00000013 ERRLIB_INVALID_ID
00000014 ERRLIB_CREATEMUTEX_FAIL
00000015 ERRLIB_OUTBUF_RETURN_SIZE _INCORRECT
00000016 ERRLIB_RESERVED16
00000017 ERRLIB_ARRAY_LENGTH_INSUFFICIENT
00000032 ERRLIB_RESERVED32
00000050 ERRLIB_BRIGHT_CONTROL_FAIL
00000051 ERRLIB_BRIGHT_OUT_OF_RANGE
00000064 ERRLIB_RESERVED64
00000128 ERRLIB_RESERVED128
00000256 ERRLIB_RESERVED256

Core Functions
00000500 ERRLIB_CORE_BIOS_STRING_NOT_FOUND
00000512 ERRLIB_RESERVED512
Watchdog Functions
00001024 ERRLIB_RESERVED1024

GPIO Functions (N/A)

SMBus Functions

00001400 ERRLIB_SMB_MAX BLOCK_SIZE _MUST_WITHIN_32
IIC Functions
00001600 ERRLIB_IIC_GETCPUFREQ_FAIL

VGA Control Functions (N/A)

Hardware Monitor Functions

00002000 ERRLIB_HWM_CHECKCPUTYPE_FAIL

00002001 ERRLIB_HWM_FUNCTION_UNSUPPORT

SUSI Library User Manual 78

00002002

ERRLIB_HWM_FUNCTION_CURRENT_UNSUPPORT

00002003 ERRLIB_HWM_FANDIVISOR_INVALID
00002048 ERRLIB_RESERVED2048

Reserved Functions
00004096 ERRLIB_RESERVED4096
00008192 ERRLIB_RESERVED8192

Driver Error Code

Error Code Error Type
00000000 ERRDRV_SUCCESS

Common to all Drivers
00010000 ERRDRV_CTRLCODE
00010001 ERRDRV_LOGIC
00010002 ERRDRV_INBUF_INSUFFICIENT
00010003 ERRDRV_OUTBUF_INSUFFICIENT
00010004 ERRDRV_STOPTIMER_FAILED
00010005 ERRDRV_STARTTIMER_FAILED
00010006 ERRDRV_CREATEREG_FAILED
00010007 ERRDRV_OPENREG_FAILED
00010008 ERRDRV_SETREGVALUE_FAILED
00010009 ERRDRV_GETREGVALUE_FAILED
00010010 ERRDRV_FLUSHREG_FAILED
00010011 ERRDRV_MEMMAP_FAILED

Core Driver (N/A)
Watchdog Driver (N/A)
GPIO Driver
00011200 ERRDRV_GPIO_PIN_DIR_CHANGED
00011201 ERRDRV_GPIO_PIN_INCONFIGURABLE
00011202 ERRDRV_GPIO_PIN_OUTPUT_UNREADABLE
00011203 ERRDRV_GPIO_PIN_INPUT_UNWRITTABLE
00011204 ERRDRV_GPIO_INITIAL_FAILED
00011205 ERRDRV_GPIO_GETINPUT_FAILED
00011206 ERRDRV_GPIO_SETOUTPUT_FAILED
00011207 ERRDRV_GPIO_GETSTATUS 10_FAILED
00011208 ERRDRV_GPIO_SETSTATUS OUT_FAILED
00011209 ERRDRV_GPIO_SETDIR_FAILED
SMBus Driver

00011400 ERRDRV_SMB_RESETDEV_FAILED
00011401 ERRDRV_SMB_TIMEOUT
00011402 ERRDRV_SMB_ BUSTRANSACTION_FAILED
00011403 ERRDRV_SMB BUSCOLLISION
00011404 ERRDRV_SMB_CLIENTDEV_NORESPONSE
00011405 ERRDRV_SMB_ REQUESTMASTERMODE_FAILED
00011406 ERRDRV_SMB_NOT_MASTERMODE
00011407 ERRDRV_SMB BUS ERROR
00011408 ERRDRV_SMB_BUS STALLED
00011409 ERRDRV_SMB NEGACK DETECTED

79 SUSI Library User Manual

00011410

ERRDRV_SMB_TRANSMITMODE_ACTIVE

00011411 ERRDRV_SMB_TRANSMITMODE_INACTIVE
00011412 ERRDRV_SMB_STATE_UNKNOWN
[IC Driver
00011600 ERRDRV_IIC_RESETDEV_FAILED
00011601 ERRDRV_IIC_TIMEOUT
00011602 ERRDRV_IIC_BUSTRANSACTION_FAILED
00011603 ERRDRV_IIC_BUSCOLLISION
00011604 ERRDRV_IIC_CLIENTDEV_NORESPONSE
00011605 ERRDRV_IIC_REQUESTMASTERMODE_FAILED
00011606 ERRDRV_IIC_NOT_MASTERMODE
00011607 ERRDRV_IIC_BUS_ERROR
00011608 ERRDRV_IIC_BUS_STALLED
00011609 ERRDRV_IIC_NEGACK_DETECTED
00011610 ERRDRV_IIC_TRANSMITMODE_ACTIVE
00011611 ERRDRV_IIC_TRANSMITMODE_INACTIVE
00011612 ERRDRV_IIC_STATE_UNKNOWN

VGA Control Driver
00011800 ERRDRV_VC_FINDVGA FAILED
00011801 ERRDRV_VC_FINDBRIGHTDEV_FAILED
00011802 ERRDRV_VC VGA UNSUPPORTED
00011803 ERRDRV_VC BRIGHTDEV_UNSUPPORTED

Hardware Monitor Driver (N/A)

SUSI Library User Manual

80

81

SUSI Library User Manual

Trusted ePlatform Services

ADVANTECH

www.advantech.com

Please verify specifications before quoting. This guide is intended for reference
purposes only.

All product specifications are subject to change without notice.

No part of this publication may be reproduced in any form or by any means,
electronic, photocopying, recording or otherwise, without prior written permis-
sion of the publisher.

All brand and product names are trademarks or registered trademarks of their
respective companies.

© Advantech Co., Ltd. 2009

	SUSI® Library
	Contents
	1 Introduction
	1.1 Introduction
	1.2 SUSI Functions
	1.3 Benefits

	2 Environments
	2.1 Environments

	3 Package Contents
	3.1 Package Contents

	4 Additional Programs
	4.1 VGA Control Hotkey Utility
	4.2 Demo Program
	4.3 SusiDemo.exe
	4.3.1 Boot Logger
	4.3.2 Watchdog
	4.3.3 GPIO
	4.3.4 Programmable GPIO
	4.3.5 SMBus
	4.3.6 Multibyte IIC
	4.3.7 VGA Control
	4.3.8 Hardware Monitor
	4.3.9 Hardware Control
	4.3.10 About

	5 Programming Overview
	5.1 Introduction
	5.2 Core functions
	5.3 Watchdog (WD) functions
	5.4 GPIO (IO) functions
	5.5 SMBus functions
	5.6 IIC functions
	5.7 VGA Control (VC) functions
	5.8 Hardware Monitoring (HWM) functions

	6 SUSI API Programmer's Documentation
	6.1 SusiDllInit
	6.2 SusiDllUnInit
	6.3 SusiDllGetVersion
	6.4 SusiDllGetLastError
	6.5 SusiCoreAvailable
	6.6 SusiCoreGetBIOSVersion
	6.7 SusiCoreGetPlatformName
	6.8 SusiCoreAccessBootCounter
	6.9 SusiCoreAccessRunTimer
	6.10 SSCORE_RUNTIMER
	6.11 SusiCoreSetThrottlingSpeed
	6.12 SusiCoreGetThrottlingSpeed
	6.13 SusiCoreGetThrottlingDuty
	6.14 SusiCoreSetThrottlingDuty
	6.15 SusiCoreGetMaxCpuSpeed
	6.16 SusiCoreGetCpuVendor
	6.17 SusiWDAvailable
	6.18 SusiWDGetRange
	6.19 SusiWDSetConfig
	6.20 SusiWDTrigger
	6.21 SusiWDDisable
	6.22 SusiIOAvailable
	6.23 SusiIOCountEx
	6.24 SusiIOQueryMask
	6.25 SusiIOSetDirection
	6.26 SusiIOSetDirectionMulti
	6.27 SusiIOReadEx
	6.28 SusiIOReadMultiEx
	6.29 SusiIOWriteEx
	6.30 SusiIOWriteMultiEx
	6.31 Susi64BitsIOQueryMask
	6.32 Susi64BitsIOSetDirection
	6.33 Susi64BitsIOSetDirectionMulti
	6.34 Susi64BitsIOReadMultiEx
	6.35 Susi64BitsIOWriteMultiEx
	6.36 SusiSMBusAvailable
	6.37 SusiSMBusScanDevice
	6.38 SusiSMBusReadQuick
	6.39 SusiSMBusWriteQuick
	6.40 SusiSMBusReceiveByte
	6.41 SusiSMBusSendByte
	6.42 SusiSMBusReadByte
	6.43 SusiSMBusWriteByte
	6.44 SusiSMBusReadWord
	6.45 SusiSMBusWriteWord
	6.46 SusiIICAvailable
	6.47 SusiIICRead
	6.48 SusiIICWrite
	6.49 SusiIICWriteReadCombine
	6.50 SusiVCAvailable
	6.51 SusiVCGetBrightRange
	6.52 SusiVCGetBright
	6.53 SusiVCSetBright
	6.54 SusiVCScreenOn
	6.55 SusiVCScreenOff
	6.56 SusiHWMAvailable
	6.57 SusiHWMGetFanSpeed
	6.58 SusiHWMGetTemperature
	6.59 SusiHWMGetVoltage
	6.60 SusiHWMSetFanSpeed

	A GPIO Information
	A.1 GPIO Information

	B Programming Flags Overview
	B.1 Programming Flags Overview

	C API Error Codes
	C.1 API Error Codes

