THE

PRINER

APPLICATION MANUAL

Manual Revision 2.0

Copyright © 1992-2003 EMAC, INC.
UNAUTHORIZED COPYING, DISTRIBUTION,
OR MODIFICATION PROHIBITED

ALL RIGHTS RESERVED

CARBONDALE, IL 62901 618-529-4525

Table of Contents

Application 1:	Count Down Timer
	This is an example of a coiuntdown timer which displays a count down from 9999 to 0 and sounds an alarm, and lights the LED. No additional hardware required.
Application 2:	Waveform Generator
	This is a program which uses the D/A output to generate sine, square, triangle, and sawtooth waveforms of varying frequency. You will need an oscilloscope to view the waveforms.
Application 3:	Interfacing a Temperature Sensor to the PRIMER13
	This application involves interfacing a temperature sensor to the A/D and gives an example of control based on temperature. This requires assembling a circuit.
Application 4:	Interfacing a Photocell19
	This is an example using a simlpe photo-resistor ciruit connected to the A/D input. The program may be modified to perform a count when the photo-resistor is in the presence of light or when it is darkened.
Application 5:	Using the PRIMER to Regulate the Speed of a DC Motor22
	This application demonstrates DC motor speed control.
Application 6:	External Multiplexed Display and Keypad Decoder40
	This demonstrates and emulates the functions of a keypad decoder and two-digit LED display decoder. This requires circuit assembly.
Application 7:	Controlling an LCD Module48
	In this application, a character LCD display is controlled via the digital output port. This requires building a simple circuit.
Application 8:	Capacitance Meter54
	The PRIMER can be used to measure capacitors ranging from 0.01 tp 220 $\mu\text{F},$ by adding a simple 3 component circuit.
Application 9:	Interfacing a Stepper Motor to the PRIMER62
	This application demonstrates microprocessor control of a stepper motor. This requires circuit assembly.
Application 10:	Interfacing an 8255A PPI to the PRIMER69
	This introduces the method of interfacing an I/O mapped device to the PRIMER by building a simple circuit using the 8255A PPI.

Application 11:	Pulse Tone Dialer7	'3
	This shows how to use the PRIMER to build a telephone autodialer. This requires circuit assembly.	
Application 12:	Pulse Tone Receiver	0
	This shows how to use the PRIMER to build a telephone receiver. This requires circuit assembly.	
Application 13:	Reaction Tester	88
	This utilizes the PRIMER to test a person's reaction time.	

Application 1: Count Down Timer

This program will count down from the packed BCD number in the HL register pair to 0 at a time increment determined by the hex number in the DE register pair. When the count = 0, the alarm will sound and the LEDs will light. The alarm can be discontinued and the program terminated by pressing any key on the keypad. After typing in the program, load the HL and DE register pairs as follows:

```
Load the HL register pair with the desired time interval.
Format = packed BCD range = 9999 to 0001
```

```
Load DE register pair with the time scaler.
Format = hex range = 0001h to FFFFh
```

The time scaler determines how many hundredths of seconds must pass before the counter is decremented. The time interval between decrements will be ((time scaler) / 100) seconds. For example, if the scaler is 0064h (100 decimal) the timer will decrement once a second. If the scaler is 1770h (6000 decimal) the timer will count decrement once every 60 seconds.

```
; -----;
             ; .....EQUATES....;
             ; -----;
FFE9
            VEC7HLF: EQU OFFE9H
                                    ; INT 7.5 VECTOR
           SCALELO: EQU 00H
                                    ; 307200HZ / 768 =
0000 =
           SCALELO: EQU 00H

SCALEHI: EQU 4CH

TIMERLO: EQU 14H

TIMERHI: EQU 15H

TIMCMD: EQU 0CDH

CMDREG: EQU 10H

INTMASK: EQU 1AH

TIMPROG: EQU 0FF01H

SERVC: EQU 0CH
                                    ; 100HZ TICK RATE
004C =
                                    ; TIMER PORTS
0014
0015
    =
00CD =
                                    ; TIMER FUNC. COMMAND
                                    ; TIMER COMMAND PORT
0010 =
                                    ; INTERRUPT MASK
001A =
FF01
                                    ; RTC PROG START ADDR
                                    ; EMOS SERVICES
000C
           SERVC: EQU UCH
SERV12: EQU 12H
SERV0B: EQU 0BH
MOS: EQU 1000H
LIGHT: EQU 0FFH
DARK: EQU 0
0012
000B
1000 =
                                    ; MOS CALL LOCATION
00FF =
                                    ; ALARM LED ON PATTERN
0000
                                     ; ALARM LED OFF PATTERN
             ; -----;
FF01
     ORG
            TIMPROG
             ; -----;
             ; -----;
             ; .....INITIALIZE.....;
             ; -----;
FF01 F3
            START:
                      DT
                                    ; DISABLE INTERRUPTS
                      SHLD TIM1
FF02 22AEFF
                                    ; LOAD H/L TO TIMER1
FF05 EB
                     XCHG
                     SHLD SCALER ; D/E CONTAINS SCALER LXI H,TIMERS ; ON 7.5 INTERRUPT
FF06 22A4FF
FF09 2157FF
```

```
FF0C 22E9FF
                           SHLD VEC7HLF ; VECTOR TO RTC MVI A,SCALELO ; SET LOW COUNT BYTE
FF0F 3E00
FF11 D314 OUT
FF13 3E4C MVI
FF15 D315 OUT
FF17 3ECD MVI
                         TIMERLO ; OF TIMER CHIP
A,SCALEHI ; SET HIGH COUN
TIMERHI ; OF TIMER CHIP
A,TIMCMD ; SET TIMER CHIP
CMDREG ; 100 HZ SQUARE
                                             ; SET HIGH COUN T BYTE
                         TIMERHI
A,TIMCMD
CMDREG
A,01H
ALRMFLAG
                                             ; SET TIMER CHIP FOR
FF19 D310 OUT
FF1B 3E01 MVI
                                             ; 100 HZ SQUARE WAVE
                                             ; SET ALARM FLAG TO ; ARM ALARM
FF1D 32B0FF STA
                                              ; INITIALIZE TIMER 0
FF20 2AA4FF LHLD
                          SCALER
                          TIMO
FF23 22ACFF SHLD
FF26 3E1A MVI
                          A, INTMASK
                                              ; UNMASK 7.5 AND 5.5
FF28 30
              SIM
                                               ; INTERRUPTS
FF29 FB
                                               ; ENABLE INTERRUPTS
                ; ......MAIN PROGAM....;
       0E12
                          MVI
                                  C,SERV12 ; USE SERVICE 12
                DOTIME:
                           LHLD TIM1
                                              ; TO DISPLAY TIMER 1
FF2C 2AAEFF
FF2F EB
                                              ; DE WILL BE DISPLAYED
                           XCHG
                           CALL MOS ; CALL MOS
LDA ALRMFLAG ; IF ALARM IS ON
FF30 CD0010
FF33
     3AB0FF
                          CPI 01H ; GO WAIT FOR KEY

JZ DOTIME ; ELSE DISPLAY TIMER

MVI C,SERV12 ; MAKE SURE WE DISPLAY
FF36 FE01
FF38 CA2AFF
FF3B 0E12
                          LHLD TIM1
                                              ; ONE LAST TIME TO
FF3D 2AAEFF
FF40 EB
                                              ; DISPLAY TERMINAL
                          XCHG
                         CALL MOS ; COUNT

MVI C,SERVOB ; STRIKE ANY KEY

CALL MOS ; TO STOP ALARM
FF41 CD0010
FF44 0E0B
FF46 CD0010
FF49 20
                          RIM
                                              ; SPEAKER OFF
FF4A F640
                          ORI
                                 40H
FF4C E67F
                          ANI
                                  7FH
FF4E 30
                           SIM
FF4F 0E0C
                           MVI C,SERVC
MVI E,DARK
                                             ; LEDS OFF
FF51 1E00
                           CALL MOS
FF53 CD0010
                           RST
FF56 FF
                                              ; RETURN TO MOS
                ; .....7.5 INTERRUPT HANDLER....;
                ; -----;
     F5
                          PUSH PSW
FF57
                TIMERS:
FF58 E5
                           PUSH H
FF59 2AACFF
                           LHLD TIMO
                                              ; GET TIMO
FF5C
                                  A,L
                                              ; IF ITS NOT ZERO
      7D
                           MOV
                           ORA H
TNZ DECTIMO
FF5D
     B4
                                             ; DECREMENT TIMO
FF5E
       C29CFF
                          LHLD SCALER
                                              ; ELSE TIM0 = 100
FF61 2AA4FF
FF64 22ACFF
                          SHLD TIM0
                                              ; RELOAD TIMO
                          LDA TIM1
ADI 99H
                                             ; GET TIM1 LOW
FF67 3AAEFF
                                             ; DECREMENT
FF6A C699
                          DAA ; DECIMAL ADJUST STA TIM1 ; STORE TIM1 LOW
FF6C 27
FF6D 32AEFF
```

```
TIM1+01H ; GET TIM1 HIGH
FF70
     3AAFFF
                     LDA
                         99H
                                   ; DECREMENT
FF73
     CE99
                     ACI
                                   ; DECIMAL ADJUST
FF75
     27
                     DAA
                    STA TIM1+01H ; STORE TIM1 HIGH
   32AFFF
FF76
                    LHLD TIM1
FF79 2AAEFF
                                  ; GET TIM1
                    MOV A,L
                                  ; IF ITS NOT ZERO
FF7C 7D
FF7D B4
                    ORA
                         Η
FF7E C2A0FF
                    JNZ
                         EXITTIME
                                  ; EXIT
   3AB0FF
                         ALRMFLAG
                                   ; IF ALARM HAS
FF81
                    LDA
                                   ; BEEN ACTIVATED
FF84
   FE00
                    CPI
                          00H
FF86 CAAOFF
                     \mathsf{J}\mathsf{Z}
                         EXITTIME
                                  ; EXIT
                    MVI A,00H
FF89 3E00
                                  ; ELSE, ZERO ALARM
FF8B 32B0FF
                     STA ALRMFLAG ; FLAG & ACTIVATE
FF8E 20
                    RIM
                                   ; SPEAKER ON
FF8F F6C0
                    ORI
                         0C0H
   30
FF91
                    SIM
                         C,SERVC ; LEDS ON E,LIGHT
FF92
     0E0C
                    MVI
FF94 1EFF
                    MVI
FF96 CD0010
                    CALL MOS
FF99 C3A0FF
                    JMP EXITTIME ; EXIT
                                   ; DECREMENT TIMO
FF9C 2B
          DECTIMO: DCX
FF9D 22ACFF
                    SHLD TIMO
    E1
                         H
          EXITTIME:
                     POP
FFA0
                                   ; RECOVER REGISTERS
    F1
                     POP
                          PSW
FFA1
FFA2 FB
                     EΤ
FFA3 C9
                     RET
                                   ; RETURN
            ; -----;
            ; ......SUBROUTINES....;
             ----;
            ; -----;
            ; .....DATA STORAGE....;
                         02H
06H
            SCALER:
                                   ; DETERMINES TIME INCR.
FFA4
                   DS
           DISPBUFF: DS 06H
TIMO: DS 02H
TIM1: DS 02H
ALRMFLAG: DS 01H
                                   ; DISPLAY BUFFER
FFA6
FFAC
FFAE
                                  ; SOFTWARE TIMER 1
                                  ; ALARM FLAG.0 = NO ALRM
FFB0
FFB1
```

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF01	F3	DI		FFOC	22	SHLD	FFE9
FF02	22	SHLD	FFAE	FF0D	E9		
FF03	AE			FFOE	FF		
FF04	FF			FFOF	3E	MVI	A,00
FF05	EB	XCHG		FF10	00		
FF06	22	SHLD	FFA4	FF11	D3	OUT	14
FF07	A4			FF12	14		
FF08	FF			FF13	3E	MVI	A,4C
FF09	21	LXI	H,FF57	FF14	4C		
FF0A	57						
FF0B	FF			Continued	l on nex	t page	

ADDDDGG	D	DEGGE	TRETON	1000000	D	DEGGE	TDETON
ADDRESS	DATA		IPTION	ADDRESS	DATA		IPTION
FF15	D3	OUT	15	FF4C	E6	ANI	7F
FF16	15		3 CD	FF4D	7F	~=	
FF17	3E	IVM	A,CD	FF4E	30	SIM	
FF18	CD			FF4F	0E	IVM	C,0C
FF19	D3	OUT	10	FF50	0 C		
FF1A	10			FF51	1E	MVI	E,00
FF1B	3E	IVM	A,01	FF52	00		
FF1C	01			FF53	CD	CALL	1000
FF1D	32	STA	FFB0	FF54	00		
FF1E	В0			FF55	10		
FF1F	FF			FF56	FF	RST	7
FF20	2A	LHLD	FFA4	FF57	F5	PUSH	PSW
FF21	A4			FF58	E5	PUSH	H
FF22	FF			FF59	2A	LHLD	FFAC
FF23	22	SHLD	FFAC	FF5A	AC		
FF24	AC			FF5B	FF		
FF25	FF			FF5C	7D	VOM	A,L
FF26	3E	MVI	A,1A	FF5D	B4	ORA	H
FF27	1A			FF5E	C2	JNZ	FF9C
FF28	30	SIM		FF5F	9C		
FF29	FB	ΕI		FF60	FF		
FF2A	0E	MVI	C,12	FF61	2A	LHLD	FFA4
FF2B	12			FF62	A4		
FF2C	2A	LHLD	FFAE	FF63	FF		
FF2D	AE			FF64	22	SHLD	FFAC
FF2E	FF			FF65	AC		
FF2F	EB	XCHG		FF66	FF		
FF30	CD	CALL	1000	FF67	3A	LDA	FFAE
FF31	00	01122	2000	FF68	AE		
FF32	10			FF69	FF		
FF33	3A	LDA	FFB0	FF6A	C6	ADI	99
FF34	В0			FF6B	99		
FF35	FF			FF6C	27	DAA	
FF36	FE	CPI	01	FF6D	32	STA	FFAE
FF37	01	011		FF6E	AE	5111	
FF38	CA	JZ	FF2A	FF6F	FF		
FF39	2A	02	11211	FF70	3A	LDA	FFAF
FF3A	FF			FF71	AF	ПОА	IIAI
FF3B	0E	MVI	C,12	FF72	FF		
FF3C	12	1117	C, 12	FF73	CE	ACI	99
FF3D	2A	LHLD	FFAE	FF74	99	ACI	<i>J J</i>
FF3E	AE	ענננננ	1.1.1217	FF75	27	DAA	
FF3F	FF			FF76	32	STA	FFAF
FF40	EB	XCHG		FF77	AF	SIA	FFAF
FF41			1000				
	CD	CALL	1000	FF78	FF	ת זוו ד	יי איםים
FF42	00			FF79	2A	LHLD	FFAE
FF43	10	N/17.7-T	C OR	FF7A	AE		
FF44	0E	MVI	C,0B	FF7B	FF	MOT	7\ T
FF45	0B	CD T T	1000	FF7C	7D	MOV	A,L
FF46	CD	CALL	1000	FF7D	B4	ORA	H
FF47	00			FF7E	C2	JNZ	FFA0
FF48	10	D.T.:		FF7F	A0		
FF49	20	RIM		FF80	FF		
FF4A	F6	ORI	40	04:		4	
FF4B	40			Continued	on nex	τ page	•

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF81	3A	LDA	FFB0	FF93	0 C		
FF82	В0			FF94	1E	MVI	E,FF
FF83	FF			FF95	FF		
FF84	FE	CPI	00	FF96	CD	CALL	1000
FF85	00			FF97	00		
FF86	CA	JZ	FFA0	FF98	10		
FF87	A0			FF99	C3	JMP	FFA0
FF88	FF			FF9A	A0		
FF89	3E	MVI	A,00	FF9B	FF		
FF8A	00			FF9C	2B	DCX	H
FF8B	32	STA	FFB0	FF9D	22	SHLD	FFAC
FF8C	В0			FF9E	AC		
FF8D	FF			FF9F	FF		
FF8E	20	RIM		FFA0	E1	POP	H
FF8F	F6	ORI	C0	FFA1	F1	POP	PSW
FF90	C0			FFA2	FB	ΕI	
FF91	30	SIM		FFA3	C9	RET	
FF92	ΟE	MVI	C,0C				

Application 2: Waveform Generator

This application allows the user to output 4 different waveforms (sine, square, triangle and sawtooth) from the digital to analog converter. The desired waveform can be selected by moving DIP switches 6 and 7 to one of 4 possible combinations. The frequency of the waveforms can be changed by moving DIP switches 0 through 5.

```
; the timer mode and MSB of count length
timerhi: equ
                  15h
timerlo: equ
                  14h
                              ; the LSB of count length
dip:
                  12h
                              ; DIP switch port
         equ
dacout:
                              ; Digital to analog output port
         equ
                  13h
cmdreq:
         equ
                  10h
                              ; 8155 control register.
         orq
                  0ff01h
getime:
         in
                  dip
                              ; get value of DIP switches
                              ; shift left padding zeros
         add
                  a
         add
                              ; shift left padding zeros
                  а
                             ; set the low count
                  timerlo
         out
         mvi
                  a,11000000b
                              ; single pulse w/auto reload
         out
                  timerhi
                  a,0cdh
         mvi
         out
                  cmdreg
                              ; enable timer
         in
                  dip
                              ; read DIP again
         ani
                  11000000b
                              ; Mask all DIP bits except 6 and 7
         cpi
         jΖ
                  sinewv
                              ; if upper bits are 0, output sine wave
         cpi
                  01000000b
         jΖ
                  sgrwav
                              ; if upper 2 bits are 01, output square wave
         cpi
                  10000000b
         jΖ
                  triang
                              ; if upper 2 bits are 10, output triangle wave
         ; If none of the above, upper 2 bits are 11, so output a ......
         ; sawtooth wave
                  c,0
                              ; invert the pattern
sawwav:
         mvi
         mvi
                  d,3fh
                              ; starting value to output
                  trian2
         jmp
         ; triangle wave
triang:
                  c,1
         mvi
                  d,0
         mvi
                              ; upward slope 0 to 3e
trian1:
                  a,d
         mov
         call
                  dactim
                              ; output the pattern to DAC and wait
         inr
                  d
         mvi
                  a,3fh
                              ; if D = 3F then slope down
         cmp
                  d
         jnz
                  trian1
                  a,d
                              ; downward slope 3f to 1
trian2:
        mov
                  dactim
                              ; output the pattern to DAC and wait
         call
         dcr
         jnz
                  trian2
                  getime
                              ; check DIP switch
         jmp
```

```
; square wave
sqrwav:
        mvi
                  c,1
                              ; non-inverted output
                              ; output 32 times for each half of period
sgrwv2:
        mvi
                  d,32
sgrwv3:
        xra
                  a
        call
                  dactim
                              ; output the pattern to DAC and wait
         dcr
                  d
         jnz
                  sqrwv3
                              ; jump if not output 32 times already
                              ; change to inverted output mode
         dcr
         İΖ
                  sarwv2
                              ; if c=0 then sqrwv2
                              ; c=FF so check DIP switch
         jmp
                  getime
         ; sine wave
sinewv:
        lxi
                 h, sintbl
                              ; point to sine table
quadst: mvi
                  c,1
                              ; C=1 = 1st 2 quadrants, C=0 2nd two quadrants
quad1:
        inx
                 h
                              ; skip the 0
qud1lp:
        inx
                 h
        mov
                  a,m
                             ; A is value from table
        ora
                              ; set Z flag if A = 0
                  a
         jΖ
                  quad2
                              ; if A = 0 then read the table backwards
                              ; output the pattern to DAC and wait
         call
                  dactim
                  qud1lp
         jmp
quad2:
        dcx
                 h
                              ; skip the 0
        dcx
qud2lp:
                 h
        mov
                  a,m
                             ; A is value from table
         ora
                             ; set Z flag if A = 0
                  quad3
                             ; if A=0 then invert the output pattern
         jΖ
         call
                 dactim
                              ; output the pattern to DAC and wait
         jmp
                  qud21p
        dcr
                              ; change invert flag
quad3:
                  C
                              ; if C=0 start over but invert data
        jΖ
                  quad1
                  getime
                              ; if C=FF then check DIP switch
        qm r
         ; DACTIM: This subroutine examines the C register and if C=0
         ; it will invert the data in the A register otherwise if C=1 it
         ; will not. The A register is then output to the D to A convertor.
         ; After this, the RST 7.5 interrupt flag will be polled until a
         ; pulse is sent from the 8155 timer. This causes the program to
         ; pause after each output from the D to A convertor according to
         ; the length of the timer count.
        inr
                              ; see what C is .... (0 or 1)
dactim:
                  C:
                             ; ...without changing it
         dcr
                            ; jump if C = 1 and don't invert data
         jnz
                  dactim1
        mov
                  b,a
                             ; invert the data
                  a,3fh
                             ; by subtracting it from this value
        mvi
         sub
dactim1: out
                  dacout
                             ; output the data
polltmr: rim
                  ; loop until rst 7.5 flag is high
                  01000000b ; mask all but rst 7.5 flag
         ani
                  polltmr
                              ; check it again if not set
         jΖ
        mvi
                  a,10h
         sim
                  ; clear the interrupt flag
        ret
```

; This is 1 quadrant of the sine wave pattern with zeros marking ; the start and the end.

sintbl: defb 0, 1Fh,21h,23h,25h, 27h,29h,2Bh,2Dh, 2Eh,30h,32h,34h, 35h defb 36h,38h,39h,3Ah, 3Bh,3Ch,3Dh,3Dh,3Eh,3Fh,3Fh,3Fh, 3Fh, 0 end

FF01	ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF03	FF01	DB	IN	12	FF31	14	INR	D
FF03	FF02	12			FF32		MVI	A,3F
FF04		87	ADD	A	FF33	3F		
FF05 D3 OUT 14 FF36 2D JNZ FF20 FF06 14 FF36 2D FF37 FF7 FF08 CO FF37 FF7 FF7 FF09 D3 OUT 15 FF38 7A MOV A, D FF00 D3 OUT 15 FF38 7C CD FF70 FF70 DC CALL FF70 FF70 DC CALL FF70 FF70 DC <	FF04	87					CMP	D
FF06 14 TF36 2D TF47 FF FF708 CO FF708 CO FF37 FF FF708 CO CALL FF706 FF709 D3 OUT 15 FF38 TA MOV A, D FF38 TC FF706 FF706 CD FF706 LD FF706 LD FF38 FF FF707 FF706 LD FF38 FF FF707 DC CD FF38 FF FF38 FF D D D D D D D D D D D D FF38 FF FF38 FF FF38 FF FF38 FF FF38 B FF38 B FF40 C3 JMP FF01 D D D D D<								FF2D
FF07 3E MVI A, CO FF37 FF FF09 CO CALL FF70 FF38 CD CALL FF7C FF09 15 FF38 CD CALL FF7C FF00 15 FF38 FF FF7C FF3B FF FF00 3E MVI A, CD FF3B FF FF7 FF7C FF3B FF FF7C FF7D DC DCR D D FF3B FF FF7B FF7B DCR D D FF3B FF FF3B FF3B FF3B FF FF3B FF3B FF FF3B FF3B FF51 FF51 FF51	FF06				FF36			
FF08 CO FF38 7A MOV A,D FF09 D3 OUT 15 FF39 CD CALL FF7C FF08 3E MVI A,CD FF3B FF C FF00 CD FF3C 15 DCR D FF00 CD FF3B FF DCR D FF00 D3 OUT 10 FF3B C2 JNZ FF38 FF00 D3 OUT 10 FF3B 38 FF38 FF01 D8 IN 12 FF3E 38 FF38 FF01 D8 IN 12 FF3E 38 FF38 FF10 D8 IN 12 FF3E 38 FF3B C2 JNZ FF38 FF11 C ANI CO FF41 01 MVI C,01 C,01 FF44 01 MVI C,01 C,01 FF45 16			MVI	A,C0				
FF09 D3 OUT 15 FF39 CD CALL FF70C FF00 15 FF3A 7C CALL FF70C FF70C CD FF70C FF3B FF FF70C D FF3B FF FF3B FF FF3B FF70C D FF3B FF FF3B FF7 FF3B FF7 FF3B FF7 FF3B FF7 FF3B FF7 FF7B FF7 FF3B FF7 FF3B FF7 FF7B				,			MOV	A.D
FF0A 15 WVI A, CD FF3B FF FF0C CD FF3B FF FF3B FF FF0D D3 OUT 10 FF3B 15 DCR D FF0E 10 FF3B 38 FF3B FF FF01B A A A A A A			OUT	15				
FF0B 3E MVI A,CD FF3B FF CC DCR DCR DF8D DCR DCR DF8D DCR DCR DF8B DCR DCR DF8B FF3B FF3B FF3B FF3B FF3B FF3B FF5B FF3B FF5B FF7B FF5B FF7B								
FFOC CD CD FF3C 15 DCR D FFOD D3 OUT 10 FF3D C2 JNZ FF38 FFOE 10 FF3B 38 FF3F FF FF3F FF FF0F DB IN 12 FF3F FF FF01 FF02 FF02 FF02 FF02 FF02 FF02 FF02 FF02 FF02 <t< td=""><td></td><td></td><td>MVI</td><td>A.CD</td><td></td><td></td><td></td><td></td></t<>			MVI	A.CD				
FFOD D3 OUT 10 FF3D C2 JNZ FF38 FF0F DB IN 12 FF3F FF FF16 FF40 C3 JMP FF01 FF11 E6 ANI C0 FF41 O1 FF01 FF02				,			DCR	D
FF0E 10 FF3E 38 FF0F DB IN 12 FF3F FF FF10 12 FF3F FF FF01 FF11 26 ANI C0 FF41 01 FF12 C0 FF42 FF FF FF13 FE CPI 0 FF43 0E MVI C,01 FF14 01 FF44 01 MVI C,01 C FF16 56 FF44 01 MVI D,20 C FF16 56 FF44 01 MVI D,20 C FF44 01 MVI D,20 C FF16 FF44 01 FF76 FF44 01 FF76 FF47 AR AR A A FF770 AR XRA A FF770 FF17 FF48 CD CALL FF70 FF47 FF47 FF47 FF47 FF47 FF47 FF47 F			OUT	1.0				
FF0F DB IN 12 FF3F FF FF10 12 FF40 C3 JMP FF01 FF11 E6 ANI C0 FF41 01 FF12 FF FF13 FE CPI 00 FF43 0E MVI C,01 FF14 00 FF44 01 FF44 01 FF16 FF45 16 MVI D,20 FF16 56 FF46 20 FF47 AF XRA A A FF11 FF46 20 CALL FF7C FF48 CD CALL FF7C FF49 7C CALL FF7C FF48 CD CALL FF7C FF47 AF XRA A A FF47 FF4 DCR C CALL FF7C FF48 CD CALL FF7C FF47 FF4 FF4 FF47 FF47 FF47 FF47 FF47 FF47 FF47 FF47 FF47			001	10			0112	1130
FF10 12 TF01 FF40 C3 JMP FF01 FF11 E6 ANI C0 FF41 O1 C0 FF12 C0 FF42 FF FF47 AF CP FF13 FE CPI 00 FF44 O1 FF16 CP FF44 O1 FF16 FF46 20 CP FF16 FF46 20 CP FF47 AF XRA A A FF17 FF FF47 AF XRA A A FF48 CD CALL FF7C FF7 FF49 7C FF48 CD CALL FF7C FF10 FF49 7C FF47 AF XRA A A FF49 7C FF40 AT FF40 AT FF47 FF47 AF FF47 FF47 <td></td> <td></td> <td>TN</td> <td>12</td> <td></td> <td></td> <td></td> <td></td>			TN	12				
FF11 E6 ANI C0 FF41 01 FF42 FF FF12 C0 FF42 FF			111	12			тмр	FF01
FF12 CO FF42 FF FF13 FE CPI 00 FF43 0E MVI C,01 FF14 00 FF44 01 FF44 01 FF16 FF45 16 MVI D,20 FF16 56 FF46 20 FF46 20 FF47 AF XRA A FF17 FF CPI 40 FF48 CD CALL FF7C FF18 CD CALL FF7C FF49 7C CALL FF7C FF49 7C FF49 7C FF49 7C FF40 AT FF47 <			ΔΝΤ	CO			OTIL	1101
FF13 FE CPI 00 FF44 01 PC 01 PF144 01 PF155 CA JZ FF56 FF45 16 MVI D, 20 FF16 56 FF46 20 FF47 AF XRA A FF17 FF C FF47 AF XRA A FF18 FE CPI 40 FF48 CD CALL FF7C FF19 40 FF48 CD CALL FF7C FF49 7C PF49 7C PF49 7C PF49 7C PF49 7C PF47 PF49 7C PF47 PF49 PF47 P			71111					
FF14 00 FF56 FF44 01 FF15 CA JZ FF56 FF45 16 MVI D,20 FF16 56 FF46 20 FF47 AF XRA A FF117 FF FF FF47 AF XRA A FF18 FE CPI 40 FF48 CD CALL FF7C FF19 40 FF49 7C FF48 CD CALL FF7C FF11 CA JZ FF43 FF4A FF FF47 FF47 FF47 FF47 FF47 FF47 FF47 FF47 FF47 FF76 FF48 FF48 FF48 FF48 FF48 FF47			CDT	0.0			M17T	C 01
FF115 CA JZ FF56 FF45 16 MVI D,20 FF116 56 FF FF46 20 FF48 CD CALL FF76 FF118 FE CPI 40 FF48 CD CALL FF7C FF119 40 FF49 7C FF47 FF FF7 FF119 40 FF44 FF FF7 FF7 FF7 FF18 43 FF43 FF44 FF FF7 FF47 FF7 FF47 FF47 FF7 FF47 FF45 FF45 <td></td> <td></td> <td>CFI</td> <td>00</td> <td></td> <td></td> <td>1.1 A T</td> <td>C, 01</td>			CFI	00			1.1 A T	C, 01
FF16 56 FF46 20 FF17 FF FF47 AF XRA A FF18 FE CPI 40 FF48 CD CALL FF7C FF19 40 FF49 7C FF47 FF48 FF48 CD CALL FF7C FF16 FF48 CD CALL FF7C FF48 FF49 FF48 FF47 FF48 FF48 FF48			.T <i>'</i> 7	TTE C			M17.T	D 20
FF17 FF CPI 40 FF48 CD CALL FF7C FF19 40 FF49 7C FF14 CA JZ FF43 FF4A FF FF1 FF1 FF4B 15 DCR D D FF4F FF4F <td></td> <td></td> <td>UΔ</td> <td>773</td> <td></td> <td></td> <td>141 V T</td> <td>D,20</td>			UΔ	773			141 V T	D,20
FF18 FE CPI 40 FF48 CD CALL FF7C FF19 40 FF49 7C FF46 FF47 FF48 FF45 FF54 FF56 FF56 FF56 FF57							VD 7	7\
FF119 40 FF43 FF4A FF FF11A CA JZ FF43 FF4A FF FF1B 43 FF4B 15 DCR D FF1C FF FF4C C2 JNZ FF47 FF1D FE CPI 80 FF4D 47 FF4F FF1E 80 FF4E FF FF4F DCR C C FF1E CA JZ FF29 FF4F OD DCR C C FF45 C3 JZ FF45 FF45 CA JZ FF45 FF45 FF45 FF56 CA JZ FF45 FF55 FF FF51 45 FF56 FF56 FF56 FF57			CDT	4.0				
FF1A CA JZ FF43 FF4A FF FF1B 43			CPI	40			САЦЦ	FF/C
FF11B 43 FF4B 15 DCR D FF11C FF FF4C C2 JNZ FF47 FF1D FE CPI 80 FF4D 47 FF50 CA JZ FF45 FF1F CA JZ FF29 FF4F OD DCR C C FF20 29 FF50 CA JZ FF45 FF50 CA JZ FF45 FF55 FF51 45 FF52 FF55 FF55 FF55 FF51 45 FF51 FF51 <td></td> <td></td> <td>T.77</td> <td>EE42</td> <td></td> <td></td> <td></td> <td></td>			T.77	EE42				
FF1C FF CPI 80 FF4C C2 JNZ FF47 FF1D FE CPI 80 FF4D 47 FF1E FF4E FF FF4F FF5D FF4F FF5D FF4F <			UΔ	FF43			Dan	D
FF1D FE CPI 80 FF4D 47 FF1E FF1E FF1E FF4E FF FF1F FF1F CA JZ FF29 FF4F OD DCR C C FF20 FF50 CA JZ FF45 FF51 45 FF51 45 FF51 FF51 45 FF51 FF52								
FF1E 80 FF29 FF4E FF C C FF1F CA JZ FF45 CD DCR C C FF20 FF50 CA JZ FF45 FF50 CA JZ FF45 FF50 CA JZ FF45 FF51 45 FF51 FF51 FF51 FF52 FF51 FF52 FF53 FF54 FF54 FF54 FF54 FF54 FF54 FF54 FF54 FF54 FF55 FF55 FF55			CDT	0.0			JNZ	F F 4 /
FF1F CA JZ FF29 FF4F OD DCR C FF20 29 FF50 CA JZ FF45 FF21 FF FF51 45 FF45 FF22 OE MVI C,00 FF52 FF FF23 OO FF53 C3 JMP FF01 FF24 16 MVI D,3F FF54 O1 FF01 FF25 3F FF55 FF FF FF01 FF55 FF FF01 FF26 C3 JMP FF38 FF56 21 LXI H,FF91 FF52 FF57 91 FF58 FF FF58 FF FF59 OE MVI C,01 FF58 OE MVI C,01 FF58 23 INX H FF2C 00 FF50 7E MOV A,M FF5D 7E MOV A,M FF5E FF5E B7 ORA A FF5F			CPI	80				
FF20 29 FF50 CA JZ FF45 FF21 FF FF51 45 45 FF45 FF22 OE MVI C,00 FF52 FF FF FF23 OO FF53 C3 JMP FF01 FF53 C3 JMP FF01 FF55 FF FF01 FF55 FF FF55 FF FF55 FF FF56 C1 LXI H,FF91 FF57 FF57 FF57 FF57 FF58 FF FF58 FF FF58 FF FF58 FF FF58 FF FF58 FF FF59 OE MVI C,01 FF58 OI C,01 FF58 OI C,01 FF58 OI FF58 INX H FF52 OI FF50 C3 INX H FF50 TE MOV A,M FF50 TE MOV A,M FF52 FF50 TE MOV A,M FF52 FF50 TE MOV A,D FF50 FF50 FF50 FF50 FF50 FF5			T.D	BB0.0			DCD	G
FF21 FF FF51 45 FF22 OE MVI C,00 FF52 FF FF23 OO FF53 C3 JMP FF01 FF24 16 MVI D,3F FF54 O1 FF55 FF FF25 3F FF55 FF LXI H,FF91 FF26 C3 JMP FF38 FF56 21 LXI H,FF91 FF27 38 FF FF57 91 FF58 FF FF28 FF FF58 FF FF59 OE MVI C,01 FF2A O1 FF5A O1 FF5A O1 C,01 FF2B 16 MVI D,00 FF5B 23 INX H FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2F 7C FF5E B7 ORA A			JΖ	FF29				
FF22 0E MVI C,00 FF52 FF FF23 00 FF53 C3 JMP FF01 FF24 16 MVI D,3F FF54 01 FF25 FF FF25 3F FF55 FF FF FF26 C1 LXI H,FF91 FF27 38 FF56 21 LXI H,FF91 FF28 FF FF57 91 FF58 FF FF29 0E MVI C,01 FF59 0E MVI C,01 FF2A 01 FF5A 01 C,01 FF5B 23 INX H FF2B 16 MVI D,00 FF5B 23 INX H FF2C 00 FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C FF5E B7 ORA A							JΖ	FF45
FF23 00 FF01 FF24 16 MVI D,3F FF54 01 FF25 3F FF55 FF FF26 C3 JMP FF38 FF56 21 LXI H,FF91 FF27 38 FF57 91 FF58 FF FF28 FF FF58 FF FF29 0E MVI C,01 FF59 0E MVI C,01 FF2A 01 FF5A 01 C,01 FF5B 23 INX H FF2B 16 MVI D,00 FF5B 23 INX H FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C FF5E B7 ORA A			N 47 7 T	G 00				
FF24 16 MVI D,3F FF54 01 FF25 3F FF55 FF FF26 C3 JMP FF38 FF56 21 LXI H,FF91 FF27 38 FF57 91 FF58 FF FF28 FF FF58 FF FF58 FF FF29 0E MVI C,01 FF59 0E MVI C,01 FF2A 01 FF5A 01 TF5A 01 TF52B 23 INX H FF2B 16 MVI D,00 FF5B 23 INX H FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2F 7C FF5E B7 ORA A			MVT	C,00				
FF25 3F FF55 FF FF26 C3 JMP FF38 FF56 21 LXI H,FF91 FF27 38 FF57 91 FF58 FF FF28 FF FF58 FF FF59 OE MVI C,01 FF2A 01 FF5A 01 FF5A 01 FF2B 16 MVI D,00 FF5B 23 INX H FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C FF5E B7 ORA A			N 47 7 T	D 20			JMP	F.F.O.T
FF26 C3 JMP FF38 FF56 21 LXI H,FF91 FF27 38 FF57 91 FF58 FF FF28 FF FF58 FF FF29 0E MVI C,01 FF59 0E MVI C,01 FF2A 01 FF5A 01 TF5B 23 INX H FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C FF5E B7 ORA A			MVI	D, 3F				
FF27 38 FF57 91 FF28 FF FF58 FF FF29 0E MVI C,01 FF59 0E MVI C,01 FF2A 01 FF5A 01								
FF28 FF FF58 FF FF29 0E MVI C,01 FF2A 01 FF5A 01 FF2B 16 MVI D,00 FF5B 23 INX H FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C FF5E B7 ORA A			JMP	FF38			LXI	H,FF91
FF29 0E MVI C,01 FF59 0E MVI C,01 FF2A 01 FF5A 01 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 03 02 03								
FF2A 01 FF5A 01 FF2B 16 MVI D,00 FF5B 23 INX H FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C 7C FF5E B7 ORA A								
FF2B 16 MVI D,00 FF5B 23 INX H FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C			MVI	C,01			MVI	C,01
FF2C 00 FF5C 23 INX H FF2D 7A MOV A,D FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C								
FF2D 7A MOV A,D FF5D 7E MOV A,M FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C			IVM	D,00				
FF2E CD CALL FF7C FF5E B7 ORA A FF2F 7C								
FF2F 7C					FF5D			
			CALL	FF7C	FF5E	В7	ORA	A
FF30 FF Continued on next page	FF2F	7C						
	FF30	FF			Continued	l on nex	t page	

ADDRESS	DATA	חפפפ	IPTION	ADDRESS	DATA	חפפפ	IPTION
FF5F	CA	JZ	FF68	FF88	E6	ANI	40
FF60	68	UΔ	1100	FF89	40	AINI	40
FF61	FF			FF8A	CA	JZ	FF87
FF62	CD	CALL	FF7C	FF8B	87	UД	rro/
FF63	7C	САПП	FF/C	FF8C	FF		
FF64	FF			FF8D	3E	MVI	A,10
FF65	C3	JMP	FF5C	FF8E	10	1•1 V I	A, 10
FF66	5C	UMP	FFSC	FF8F	30	SIM	
FF67	FF			FF90	C9	RET	
FF68	2B	DCX	Н	FF 90	CJ	KEI	
FF69	2B	DCX	Н	From hor	o doum	ia ai	ne wave data.
FF6A	26 7E	MOV	A,M	FIOM HEL	e down	TP PT	ne wave data.
FF6B	7Е В7	ORA	A, M A	FF91	00		
FF6C	CA	JZ	FF75	FF92	1F		
FF6D	75	UΔ	FF/5	FF93	21		
FF6E	FF			FF94	23		
FF6F	CD	CALL	FF7C	FF95	25 25		
FF70	7C	САПП	FF/C	FF96	25 27		
FF71	FF			FF97	29		
FF72	C3	JMP	FF69	FF98	29 2B		
FF73	69	UMP	FF69	FF99	2D		
FF74	FF			FF9A	2E		
FF75	0D	DCR	С	FF9B	30		
FF76	CA	JZ	FF5B	FF9C	32		
FF77	5B	UΔ	FFJB	FF9D	34		
FF78	FF			FF9E	35		
FF79	C3	JMP	FF01	FF9F	36		
FF7A	01	OM	1101	FFA0	38		
FF7B	FF			FFA1	39		
FF7C	0C	INR	С	FFA2	3A		
FF7D	0D	DCR	C	FFA3	3B		
FF7E	C2	JNZ	FF85	FFA4	3C		
FF7F	85	UNZ	1105	FFA5	3D		
FF80	FF			FFA6	3D		
FF81	47	MOV	B,A	FFA7	3E		
FF82	3E	MVI	A,3F	FFA8	3E		
FF83	3F	1.1 A T	,	FFA9	3F		
FF84	90	SUB	В	FFAA	3F		
FF85	D3	OUT	13	FFAB	3F		
FF86	13	501	10	FFAC	00		
FF87	20	RIM		11110			
1.1.0 /	20	T/ T 141					

Application 3: Interfacing a Temperature Sensor to the PRIMER

Purpose

To expose the student to rudimentary analog interface techniques.

Goals

- 1. Build and test a simple temperature sensing circuit.
- 2. Load a program that will make use of the temperature sensor's output.
- 3. Calibrate the sensor and software to provide a temperature reading in approximate engineering units.
- 4. Control a simple process with temperature.

Materials

Qty.	Description	DIGI-KEY part number
1	PRIMER trainer	
1	Fahrenheit thermometer	
1	hair dryer	
1	LM358 Dual Op-Amp.	LM358N
1	LM35 Prec. Celsius Temp Sensor	LM35DZ-ND
1	100 Ω 1% metal film resistor	100.0XBK-ND
2	1 K Ω 1% metal film resistor	1.00KXBK-ND
4	100 K Ω 5% carbon film resistor	100KQBK-ND
1	100 K Ω Potentiometer	3292W-104-ND
1	8-pin soldertail dip socket	A9308
1"x2"	piece of perfboard	
(A dig	gital voltmeter may also prove helpful	if available)

The electronic components listed above may be ordered from DIGI-KEY®, by telephone by dialing 1-800-344-4539. They may also be found at electronic supply stores and other mail order houses.

Circuit Description

The temperature sensing circuit used, in our application, is centered around the National Semiconductor LM35 series temperature sensors. The LM35N, with a range of (0 - 100 degrees Celsius), will be used in our application and produce an output voltage that is linearly proportional to the Celsius temperature. The LM35 senses temperature by amplifying the voltage differential at the base-emitter junctions of two identical transistors, that are operating at different currents, with the same temperature applied to them. As the junction temperature changes, the curve of base-emitter voltage vs. temperature will differ between the two transistors, because they are operating at different currents. This differential would normally be a problem in conventional circuitry, but is taken advantage of here. The differential voltage is amplified by the LM35, and presented to the output. The LM35, unlike other sensors, is calibrated in Celsius and provides 10 millivolts per degree Celsius. The advantage of this calibration is that we need not subtract a large constant voltage from the output to scale down Kelvin calibration. Each degree Kelvin is the same as one degree centigrade, but the scales start at different absolute temperatures. Zero degrees Kelvin is -273 degrees centigrade, therefore, 0 degrees centigrade is +273 degrees Kelvin. Additional Information may be obtained from National Semiconductors website at (http://www.national.com/pf/LM/LM35.html)

Although Kelvin and Celsius are equivalent (for this application) Fahrenheit degrees are entirely different. Both the scale shift, and the scale "gain" are different. Standard conversion formulas are used to convert centigrade to Fahrenheit and vice-versa. As nine Fahrenheit degrees pass for 5 Celsius degrees (5/9 plus

the 32 Fahrenheit scale shift), each degree Fahrenheit will produce an eighteen (18) millivolt change per degree Fahrenheit. The program description describes how the analog reading is converted to Fahrenheit.

Referring to the schematic, the LM35 temperature sensor chip, U1, is powered by the 5 volt VCC supply of the PRIMER, which comes from the header connector plugged onto the analog port pins. As temperature rises, the LM35 output voltage (pin 2), rises. In our application, the PRIMER requires an inverse proportionality to the temperature rise. To achieve this inverse proportion to temperature rise, one half of U2, (LM358 Dual Op-Amp) is configured as a DC Summing Amplifier. The output of the LM35 is fed into the inverting pin (2), of the LM358. Pin 3 of the (LM358 Dual Op-Amp) has a voltage reference applied via VR1,R5,R6,R7. The output of the LM35 is subtracted from the voltage reference obtaining the inverse proportionality with temperature rise.

The PRIMER's A/D converter has 6 bits of resolution. This works out to 2^6 or 64 unique readings (or counts, as it is often termed in reference to A/D's) from 0 to 5V or 5V/64 = 0.078V per count which is 78mV per count. The circuit was designed to cause a change of slightly more than one count per millivolt change. To achieve this the second half of the LM358 is configured as a non-inverting DC amplifier. The output of the DC Summing Amplifier, via pin 1, is applied to the non-inverting pin, 5 . The gain is set via the feedback resistor, R1, and R2 and applied to the inverting pin 6. The resistor values for R1 and R2 have been chosen to provide a gain of 11 to the output via pin 7 and therefore will output 110 milivolts per degree Celsius.

Procedure

The temperature circuit should be built on perfboard, and connected to the PRIMER's analog port connector header. The circuit may be connected by wire-wrapping, soldering or by using a female connector. The circuit will draw power from the PRIMER, and feed its analog output to the PRIMER. Carefully check the wiring of the circuit, and be sure it is properly connected to the PRIMER.

HINT: Allow the circuit to thoroughly cool after soldering and handling. Residual heat that remains in the LM35 package, will deter attempts to adjust the setpoint correctly. If you set VR1, and the reading slowly drifts down, (lower temperature) it is probably due to this effect.

```
; This program shows the Fahrenheit temperature in the
        ; left four displays
leds
                11h
                      ; output port for digital output LEDs
        equ
                         ; ADCIN service number
adcin
                9
        equ
                13h
                         ; LEDDEC service number
leddec
        equ
mult
                         ; MULT service number
        equ
                          ; DIV service number
div
        equ
                8
                         ; address of MOS services
mos
        equ
                1000h
adjst
        equ
                123
                         ; #of Fahrenheit degrees * 100 per
                          ; change in value returned from ADCIN
                0ff01h
        orq
                c,adcin
loop:
        mvi
                          ; get the digital value of analog input voltage
        call
                mos
                h,0
        mvi
        lda
                mxanlq
                          ; maximum analog value (this may be different on
                          ; other PRIMERs, or with different temp sensors)
                         ; invert the analog conversion
                1
        sub
               l,a
                         ; HL = analog value
        mov
                         ; load D with the adjustment factor
        lxi
                d,adjst
                c, mult
        mvi
```

```
call
               mos
                        ; DE = HL * DE
        xchq
                         ; HL = DE
               d,100
        lxi
        mvi
               c,div
        call
                        ; divide HL by 100
               mos
        lda
               basetmp ; get the base temperature
                        ; now A is the actual temperature
        add
        mov
               e,a
                        ; E = temperature
               a,e
                        ; A = temperature
        mov
        lhld
               lotemp
                        ; L = low temp limit, H=high temp limit
        cmp
                        ; see if analog value is below L
        jnc
               chkhi
                        ; check the high value if not
        mvi
               a,0
        out
               leds
                        ; turn on LEDs
chkhi:
        mov
               a,e
                         ; A = temperature
        cmp
               h
        jс
               noled
                        ; if A<H then don't turn off LEDs
        mvi
               a,0FFh
        out
               leds
                        ; H > = A so turn off LEDs
               d,0
                         ; clear D register
noled:
        mvi
               c,leddec
        mvi
        call
               mos
                         ; display the temp in DE
                         ; read it again
               loop
        jmp
mxanlg: ds
               1
                        ; max analog value given by temp sensor
                        ; base temperature
basetmp: ds
               1
                        ; lower limit temperature
lotemp: ds
               1
hitemp:
        ds
               1
                         ; upper limit temperature
        end
```

ADDRESS	DATA	INSTR	UCTION	ADDRESS	DATA	INSTR	UCTION
FF01	ΟE	MVI	C,09	FF19	ΟE	MVI	C,08
FF02	09			FF1A	08		
FF03	CD	CALL	1000	FF1B	CD	CALL	1000
FF04	00			FF1C	00		
FF05	10			FF1D	10		
FF06	26	MVI	Н,00	FF1E	3A	LDA	FF43
FF07	00			FF1F	43		
FF08	3A	LDA	FF42	FF20	FF		
FF09	42			FF21	85	ADD	L
FFOA	FF			FF22	5F	VOM	E,A
FF0B	95	SUB	L	FF23	7B	VOM	A,E
FF0C	6F	MOV	L,A	FF24	2A	LHLD	FF44
FFOD	11	LXI	D,007B	FF25	44		
FF0E	7B			FF26	FF		
FFOF	00			FF27	BD	CMP	L
FF10	ΟE	MVI	C,07	FF28	D2	JNC	FF2F
FF11	07			FF29	2F		
FF12	CD	CALL	1000	FF2A	FF		
FF13	00			FF2B	3E	MVI	A,0
FF14	10			FF2C	00		
FF15	EB	XCHG		FF2D	D3	OUT	11
FF16	11	LXI	D,0064	FF2E	11		
FF17	64						
FF18	00			Continued	d on nex	t page	
						. •	

ADDRESS	DATA	INSTR	UCTION	ADDRESS	DATA	INSTR	UCTION
FF2F	7B	MOV	A,E	FF3B	13		
FF30	BC	CMP	H	FF3C	CD	CALL	1000
FF31	DA	JC	FF38	FF3D	00		
FF32	38			FF3E	10		
FF33	FF			FF3F	C3	JMP	FF01
FF34	3E	MVI	A,FF	FF40	01		
FF35	FF			FF41	FF		
FF36	D3	OUT	11	FF42	3F	(max	analog val)
FF37	11			FF43	00	(base	temp data)
FF38	16	MVI	D,00	FF44	5A	(lo t	emp limit)
FF39	00			FF45	64	(hi t	emp limit)
FF3A	0E	MVI	C,13				

After loading in the program, you must calibrate the temperature sensor circuit and the program. Start the program running at FF01 and observe the left four numeric output LEDs. A decimal number should be displayed there. With a small screwdriver, turn the potentiometer (VR1) clockwise. If after 20 turns the output hasn't changed, turn VR1 counterclockwise for 20 turns (VR1 has mechanical stops that don't care if you turn them too many times). Adjust VR1 until the value on the display is as low as it can go. As soon as the value on the display stops decreasing, stop turning VR1. Subtract the value that is on the displays from 64 (decimal), stop the program then convert that value to hexadecimal and store it at FF42. Since the value returned by the A/D convertor decreases as the temperature increases, it is subtracted from the maximum value the A/D convertor can produce (normally 63 decimal) thereby inverting the value. The temperature sensor, though, does not produce the 5 volts required to give the maximum value, and for this reason the value at FF42 must be changed.

Now check the temperature of the sensor using a thermometer and convert this value to hex and store it at FF43. This is the base temperature. If you start the program at FF01 again, the base temperature (or within 1 or 2 degrees of it) will be shown on the displays. Heat up the sensor with the hair dryer and you will see that when the displayed temperature reaches 100 degrees the digital output LEDs turn off. Let the sensor cool down to below 90 degrees and they will turn on again. It is possible for the digital output connector (connected to the digital output LEDs) to control external devices such as fans or heaters, if you know how to build relay drivers that will turn such devices on and off (do not attempt this if you are not proficient in electronics). If a fan is connected to the output connector, the program can turn on the fan when the temperature reaches 100 degrees and turn it off when the temperature drops below 90 and turn it off when the temperature reaches 100 degrees.

You may be wondering by now why the program is written in such a way as to turn the LEDs on at one temperature and turn them off at another. This is done to keep the output device from rapidly oscillating on and off. Rapid oscillation is fine when dealing with LEDs but it can be destructive to relays. This technique of using different turn on and turn off temperatures is commonly used in environment control systems. To see what would happen if there was one turn on and turn off temperature, store 5A at address FF45 and run the program. Heat up the sensor to 89 degrees and while watching the digital output LEDs, slowly heat the sensor to 90 degrees. You should see that as the temperature approaches 90 degrees the LEDs will start to oscillate rapidly for a moment (the LEDs may appear to dim) until the temperature is stable at 90 degrees.

Program Description

The program reads the analog to digital converter and then inverts the value that was returned from it so that as the temperature increases, the value will increase. This value is then scaled to provide an accurate Fahrenheit temperature. It was found through experimentation, that a change of 69 degrees from the base temperature causes the A/D converter value to change by 56 decimal. This means that for each change in A/D converter value there is a 69/56 or 1.23 degree change in the temperature. Since MOS only does integer math, a trick had to be used to perform floating point math. The inverted A/D

converter value was multiplied by 123 and then the product was divided by 100 which effectively scaled the value by 1.23 and removed the tenths and hundredths digits. After the A/D converter value is converted to Fahrenheit, the base temperature is added to it to give the actual value. After this, it is compared to the low and high temperature values. If the temperature is below the low temperature value, zero is sent to the port for the digital output LEDs (which causes them to turn on), and if the temperature is at the high temperature limit, FF hex is sent the to the port (which turns the LEDs off). Finally the temperature is displayed on the left 4 displays and the program starts all over again.

Application 4: Interfacing a Photocell

This application shows how to interface a photocell to the PRIMER Trainer and gives an example program which demonstrates its capabilities.

Start out by getting the needed parts. These parts can be obtained from Radio Shack if desired. The circuit is so simple (see diagram) that you may build it without a perfboard.

Qty. Description 1 Cadmium Sulfide Photocell 1 2.2 KΩ 1/4 or 1/8 watt resistor

DIGI-KEY part number 276-118

The circuit is so simple (see diagram) that you may build it without a perfboard. You may connect it to CN 3 by wire-wrapping, soldering, or using a female connector (be sure to disconnect power from the PRIMER first). After building the circuit and connecting it to CN3, reconnect the power and see if the board powers up correctly. If it does not, disconnect power again and check the circuit. Once the board is powered up correctly, you will want to enter the self test mode by pressing "FUNC." then "1". After the RAM diagnostics are complete, the analog to digital conversion value will be displayed on the right two

displays while a proportional tone is emitted from the speaker. In normal room lighting, the number displayed should be around 20 hex, and with the photocell darkened, the number should be close to 00.

If the circuit appears to be working correctly, press reset and proceed to the next page.

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
8F01	AF	XRA	A	8F14	OF		
8F02	32	STA	8FB2	8F15	C6	ADI	30
8F03	B2			8F16	30		
8F04	8F			8F15	C6	ADI	30
8F05	26	MVI	Н,00	8F16	30		
8F06	00			8F15	C6	ADI	30
8F07	11	LXI	D,8FA1	8F16	30		
8F08	A1			8F17	5F	VOM	E,A
8F09	8F			8F18	ΟE	MVI	C,11
8F0A	CD	CALL	8F8B	8F19	11		
8F0B	8B			8F1A	CD	CALL	1000
8F0C	8F			8F1B	00		
8F0D	3A	LDA	8FB2	8F1C	10		
8F0E	B2			8F1D	78	VOM	A,B
8F0F	8F			8F1E	0F	RRC	
8F10	16	MVI	D,07	8F1F	0F	RRC	
8F11	07			8F20	OF	RRC	
8F12	47	MOV	B,A				
8F13	E6	ANI	OF	Continued	l on nex	t page	-

ADDRESS	DATA		IPTION	ADDRESS	DATA	DESCR	IPTION
8F21	0F	RRC		8F59	2D		
8F22	E6	ANI	0F	8F5A	8F		
8F23	0F			8F5B	0A	LDAX	В
8F24	C6	ADI	30	8F5C	C6	ADI	F6
8F25	30			8F5D	F6		
8F26	15	DCR	D	8F5E	BD	CMP	L
8F27	5F	MOV	E,A	8F5F	DA	JC	8F64
8F28	0E	MVI	C,11	8F60	64		
8F29	11			8F61	8F		
8F2A	CD	CALL	1000	8F62	26	MVI	H,01
8F2B	00			8F63	01		,
8F2C	10			8F64	0A	LDAX	В
8F2D	0E	MVI	C,09	8F65	BD	CMP	L
8F2E	09		2,03	8F66	D2	JNC	8F78
8F2F	1E	MVI	E,00	8F67	78	OIVC	01 70
8F30	00	1.1 A T	1,00	8F68	8F		
8F31	CD	CALL	1000	8F69	24	INR	Н
8F32	00	САПП	1000		25	DCR	Н
				8F6A			
8F33	10 7D	MOTA	7. T	8F6B	CA	JZ	8F78
8F34	7D	MOV	A,L	8F6C	78		
8F35	07	RLC		8F6D	8F		
8F36	07	RLC		8F6E	21	LXI	H,8FB2
8F37	07	RLC		8F6F	B2		
8F38	E6	ANI	07	8F70	8F		
8F39	07			8F71	7E	MOV	A,M
8F3A	3C	INR	A	8F72	3 C	INR	A
8F3B	4 F	MOV	C,A	8F73	В7	ORA	A
8F3C	3E	MVI	A,FF	8F74	27	DAA	
8F3D	FF			8F75	77	VOM	M,A
8F3E	В7	ORA	A	8F76	26	IVM	H,00
8F3F	1F	RAR		8F77	00		
8F40	0D	DCR	C	8F78	11	LXI	D,0000
8F41	C2	JNZ	8F3E	8F79	00		
8F42	3E			8F7A	00		
8F43	8F			8F7B	24	INR	H
8F44	D3	OUT	40	8F7C	25	DCR	H
8F45	40			8F7D	C2	JNZ	8F83
8F46	01	LXI	B,8FB1	8F7E	83		
8F47	В1			8F7F	8F		
8F48	8F			8F80	11	LXI	D,0320
8F49	DB	IN	41	8F81	20		
8F4A	41			8F82	03		
8F4B	E6	ANI	01	8F83	0E	MVI	C,10
8F4C	01			8F84	10		•
8F4D	C2	JNZ	8F5B	8F85	CD	CALL	1000
8F4E	5B			8F86	00		
8F4F	8F			8F87	10		
8F50	7D	MOV	A,L	8F88	C3	JMP	8F07
8F51	02	STAX	В	8F89	07	OTIL	0107
8F52	11	LXI	D,8FA8	8F8A	8F		
8F53	A8	T147 T	D, UIAU	8F8B	E5	PUSH	Н
8F54	A8 8F			8F8C		PUSH	В
		CATT	0F0B		C5		D
8F55	CD	CALL	8F8B	8F8D	EB	XCHG	D M
8F56	8B			8F8E	46	MOV	B,M
8F57	8F	TMP	OESD	Continue	l an	4	
8F58	C3	JMP	8F2D	Continued	on nex	τ page	•

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCRIPTION
8F8F	23	INX	H	8FA1	06	DATA FOR "CELL->"
8F90	16	MVI	D,00	8FA2	43	
8F91	00			8FA3	45	
8F92	5E	VOM	E,M	8FA4	4C	
8F93	ΟE	MVI	C,11	8FA5	4C	
8F94	11			8FA6	2D	
8F95	CD	CALL	1000	8FA7	3E	
8F96	00			8FA8	08	DATA FOR "LOAD"
8F97	10			8FA9	2D	
8F98	14	INR	D	8FAA	2D	
8F99	23	INX	H	8FAB	4C	
8F9A	05	DCR	В	8FAC	4 F	
8F9B	C2	JNZ	8F92	8FAD	41	
8F9C	92			8FAE	44	
8F9C	8F			8FAF	2D	
8F9E	C1	POP	В	8FB0	2D	
8F9F	E1	POP	H	8FB1	64	SETPOINT
8FA0	C9	RET		8FB2	00	COUNT

Application 5: Using the PRIMER to Regulate the Speed of a DC Motor

Purpose

To introduce the student to one method of regulating the speed of a small DC motor.

Goals

- 1. Study formulas, data, and waveforms relating to a DC motor.
- 2. Build an interface circuit that will allow the PRIMER to regulate the speed of a particular DC motor.
- 3. Build a motor holding fixture that will allow one motor to be mechanically coupled to another.
- 4. Load, run, and test a program that will allow the PRIMER via the interface circuit to:
 - A. Regulate the speed of a particular DC motor.
 - B. Accept desired speed input via the on-board DIP switches.
 - C. Display motor speed and pulse width via the on-board 7-segment displays and LEDs respectively.

Equipment, Components, and Materials

Equipment (required):

Qty.	Description	Source	Part Number
1	PRIMER	EMAC	E600-00
1	Solderless Breadboard	Radio Shack	276-175
1	PRIMER Interface Cable	EMAC	E600-15

Components and Materials:

Interface Circuit

Qty.	Description	Source	Part Number
1	Transistor, 2N2222	Digi-Key	PN2222A-ND
1	Transistor, 2N2907	Digi-Key	PN2907A-ND
1	Resistor, 8.2 KΩ, ¼W, 5%, Carbon Film	Digi-Key	8.2KQ
1	Resistor, 1.8 KΩ, ¼W, 5%, Carbon Film	Digi-Key	1.8KQ
1	Resistor, 1 K Ω , ¼W, 5%, Carbon Film	Digi-Key	1.0KQ
1	Resistor, 390 Ω, ¼W, 5%, Carbon Film	Digi-Key	390Q
1	Diode, 1N4005	Digi-Key	1N4005GI
1	Capacitor, 2200 µF, 16V	Digi-Key	P1216

Motor Load Resistors

Qty.	Description	Source	Part Number
1	Resistor, 1.0 Ω , $\frac{1}{2}$ W, 5%, Carbon Film	Digi-Key	1.0H
1	Resistor, 3.3 Ω, ½W, 5%, Carbon Film	Digi-Key	3.3H
1	Resistor, 8.2 Ω, ½W, 5%, Carbon Film	Digi-Key	8.2H
1	Resistor, 33 Ω, ½W, 5%, Carbon Film	Digi-Key	33H

Motor Holding Fixture (optional)

Qty.	Description	Source	Part Number
1	Aluminum or Plexiglas Flat,	_	-
	3.9" x 2.9" x 1/16-1/8"		

2	Aluminum or Plexiglas Flat, 1.8" x 0.5" x 1/16-1/8"	-	-
8	Aluminum Spacers, Round Threaded,	Digi-Key	J240
	4-40 x 0.75"		
2	Perfboard, Glass epoxy, Pad per hole,	-	_
	0.4" x 2.2"		
2	Terminal Block, 2 position	Digi-Key	ED1631-ND
AR	Tennis Racquet Grip Wrap (Motor Mounting Pads)	SOFTGRIP	STG-X
	(or equivalent)		
12	Pan Head Screws, 4-40 x 1/4"	Digi-Key	H142
4	Pan Head Screws, 4-40 x 1/2"	Digi-Key	H146
16	Lock Washers, #4	Digi-Key	H236
2	Motor with Gear (1.5 to 4.5VDC, 65mA @ 4.5VDC,	Radio Shack	273-237
	3 pole, permanent anisotropic magnet,		
	1.5 oz. in. stall torque)		

General

20" ea.	Wire, Stranded, 22 Ga., Red and Black	Radio Shack	278-1218
20"	Wire, Wire Wrap, 30 Ga.	Radio Shack	278-503

Introduction

In this lab, we would like to program the PRIMER to regulate the speed of a DC motor. The PRIMER will adjust motor speed by varying the armature voltage applied to the motor. This will be accomplished by varying the amount of time a fixed voltage is applied to the armature within a fixed time frame. This technique is called pulse width modulation (PWM). The time when voltage is applied to the motor will be referred to as "motor on time" or pulse width (PW). The time remaining in the fixed time frame would be "motor off time." The PRIMER will read the speed of the motor by using the on-board analog to digital (A/D) converter to measure the voltage (back EMF) generated by the motor during motor off time. This voltage is directly proportional to motor speed. By comparing motor speed to the desired speed, input via the on-board DIP switches, the PRIMER can correctly adjust motor on time to keep motor speed constant. Before we get to the interface circuit and PRIMER program needed to regulate motor speed, it might be helpful to look at some basic information relative to DC motors in general and to the motor we will be regulating in particular.

Motor Formulas

$$T = 7.04K\Phi I_a$$

$$V_g = K\Phi N$$

$$I_a = V - \frac{V_g}{R_a}$$

$$N = \frac{V - I_a R_a}{K\Phi}$$
Where $K = A$ constant for a particular motor.
$$I_a = Field Flux$$

$$I_a = Armature Current$$

$$R_a = Armature Resistance$$

$$V_g = Armature Voltage$$

$$N = Motor Speed$$

$$T = Motor Torque$$

These formulas show that there is a linear relationship between applied armature voltage V and motor speed N for a given load. Since back EMF, V_g , is directly related to motor speed there is also a linear relationship between V and V_g . The formulas also show that:

1. V_q will always be less than V.

- 2. I_a , and therefore torque are greatest at low motor speed and both decrease as motor speed is increased.
- 3. When an increased load is applied to a motor it must supply more torque. This in turn means that I_a must increase. If I_a increases motor speed will decrease. The only way to return the motor to its original speed is to increase the armature voltage V.

The motor we will use in this lab is a permanent magnet type. Permanent magnets provide the field flux F. Magnetic fields setup by current flowing in the armature windings cause the armature to rotate inside the magnetic fields set up by the permanent magnets. To maintain armature rotation, the direction of the armature magnetic fields must constantly change relative to the fixed direction of the magnetic fields of the permanent magnets. This function is provided by brushes riding on a commutator attached to the motor shaft that constantly changes the direction of current flow in the armature windings as the shaft rotates. In this mode of operation, we supply electrical energy to the motor in the form of armature current and the motor supplies mechanical energy in the form of shaft rotation. If we supply mechanical energy to the motor by rotating the shaft, the motor will supply electrical energy in the form of armature current. This armature current results from the armature windings cutting across the magnetic lines of force set up by the magnetic fields of the permanent magnets. This current as seen by an electrical load across the motor terminals would be alternating (AC) if not for the rectifying action of the commutator converting it to DC. In this mode of operation, the motor is acting as a generator and the resulting DC voltage measured across the motor terminals is called counter or back EMF. The amplitude of this voltage will depend on the electrical load attached to the motor terminals but for a given load, changes in this back EMF will be directly proportional to changes in the speed of the rotating armature.

Motor Waveforms

If we use a pulse generator to apply pulse width modulation to the circuit of Figure 1 and observe the resulting A/D signal on an oscilloscope, we would see the waveforms of Figure 2.

The three regions of interest in the waveforms are marked as A, B, and C. The period of the PWM signal is A + B + C. The motor on time is A and the motor off time is B + C. Region B in waveform B is a negative voltage generated by the collapsing magnetic field in the armature windings when armature current is cut off at the beginning of motor off time. If this voltage were not clamped by diode D1 to about -0.7V, it would be a very large negative voltage that could potentially damage the PRIMER A/D circuitry. Region C in Waveform B is the back EMF generated by the armature rotating in the magnetic field of the permanent magnets during motor off time. If the pulse width of the PWM signal is now increased we would see the waveforms of Figure 3. The motor speed will noticeably increase and the amplitude of the back EMF of Region C will be greater. Two things are of interest in observing the motor waveforms that will have a bearing on our motor controller program.

- 1. The back EMF voltage is not "straight line smooth" as we would like it to be, but rather is a varying signal riding on a DC level. The amplitude of the varying signal seems to increase with increasing motor speed (increased pulse width). We could filter this with our circuitry but it would be difficult since we would not want to filter the motor on time voltage. This would introduce an unwanted error in the back EMF. A better solution would be to digitally filter (average) the back EMF by totaling 16 back EMF samples and then dividing the total by 16.
- 2. The point in the PWM period where we will begin to sample the back EMF must be carefully chosen to avoid sampling the motor on time voltage or the negative voltage transition. A sample window must be set up that will start late enough to assure back EMF will be present during maximum PW, but not so late that the program can't finish executing the required amount of code before the start of the next PWM period.

Motor Speed vs. Pulse Width and the Motor as an Integrator

If we applied increasing pulse widths to the circuit of Figure 1, allowed the motor to accelerate up to speed and recorded the back EMF for each pulse width for various motor loads and plotted the results we would get a graph similar to the one in Figure 4.

You might be surprised to see that the relationship between applied pulse width and back EMF is not linear for many of the curves. The curves appear to go from logarithmic for an unloaded motor toward linear as motor load is increased. This seems to contradict the results we would predict if we use the motor formulas we looked at earlier.

The reason for this is that we are asking the motor to integrate the PWM signal into an armature voltage. We would expect that:

$$V = \frac{\text{PW}}{\text{PERIOD}} \times V_{Q2} \text{ collector during PW}$$

This is a linear relationship but this relationship only holds up if the acceleration (charge) and deceleration (discharge) times in the motor (integrator) are close to equal. The acceleration time (charge time) will be much shorter than deceleration time at no motor load because we are driving the armature up to speed and then allowing the armature to decelerate at its own pace. Deceleration is strictly <u>load dependent</u>. If there is no load on the motor the deceleration time is long, (relative to acceleration time), the integrator discharge time is long, and the curve is logarithmic. As the motor load increases (decreasing RL), the acceleration (charge) and deceleration (discharge) times become more nearly equal, the motor begins to act more like a true integrator, the armature voltage to PW relationship becomes linear, and the graph becomes linear.

To state the previous discussion another way, if the linear changes in PW were producing linear changes in armature voltage, the motor would be responding linearly. Look at the graph in Figure 5.

Notice the motor speed response vs. pulse width increase is linear, independent of motor load. These plots were produced by integrating the PWM signal externally and applying the resulting voltage via a power op-amp to the motor. Now the motor is behaving as the formulas predict because it is not required to integrate the PWM signal. Since our program will allow the PRIMER to measure motor speed with the A/D converter and then adjust the pulse width to the value necessary to obtain the desired speed, you might imagine that nonlinearity in the motor speed curves is unimportant.

Nonlinearity can make it more difficult for our program to control motor speed. Consider the curve for an unloaded motor (motors uncoupled) in Figure 4. Notice that a pulse width change of only 1 count, say from 6 to 7, can cause a speed change of more than 10. This means it will be difficult if not impossible for our program to make fine adjustments in motor speed since it can only make incremental (not fractional) changes to pulse width. Now look at the curve in Figure 4 for a motor load of 8.1 ohms. Now incremental changes in pulse width result in incremental changes in motor speed and as a result much finer adjustment of motor speed will be possible. So even though our program will do a fair job controlling motor speed when the motor is operating on one of the non linear curves, it will do a much better job controlling speed when the motor is operating on a more linear curve.

Motor Interface Circuit Description and Assembly

Capacitor C1 in Figure 6 provides energy during times of high armature current to prevent fluctuations of the 5V supply. Resistor R1 sets the base current of transistor Q1 when PWM is high. Transistor Q1 provides base current for transistor Q2 when PWM is high. Q2 base current is set by resistors R2 and R3. Resistor R2 prevents Q2 conduction as a result of Q1 leakage or low level transients. Q2 provides armature current for motor M1 when PWM is high. Diode D1 clamps the negative voltage spike generated by the collapsing magnetic field of the armature at Q2 turn off. Resistor R4 limits the current into the A/D converter during the negative voltage spike.

Two advantages of using pulse width modulation applied directly to the motor to control motor voltage are:

- 1. Relatively simple interface circuitry.
- 2. There is much less power dissipation because the controlling devices are switches (on or off).

The circuit in Figure 6 consists of easily available, inexpensive components. The circuit can be constructed on a solderless breadboard and wired to the PRIMER and motor using the PRIMER Interface Cable. The PWM and A/D connections can be wire-wrapped from the PRIMER CN3 connector to wire-wrap posts or stiff wires pushed into the breadboard. The motor leads should be short lengths (10 in. max.) of 22 ga. wire soldered to the motor tabs (no polarity) and then tinned on the other end so they will push into the breadboard holes.

Motor Holding Fixture

A convenient way of loading one motor is to have it drive another motor which can in turn feed generated current through various load resistors to increase the load on the driving motor. If the motor you are using has a gear attached to the shaft, two motors can be coupled as illustrated in the motor fixture drawing. If your motor does not have a gear on the shaft, you can try coupling two motors with a short length of plastic tubing that will slip onto and hold tightly to the motor shafts. With this scheme the motors will be mounted in-line instead of offset in the motor fixture. Other motor loading schemes can be used such as using the motor to drive a propeller or placing a friction load against the motor shaft (holding your finger against the shaft at different degrees of pressure will do). You can choose your own method for mounting, coupling, and loading the motors but remember to construct fixtures from non-ferrous material because of the permanent magnets in the motors.

Program Description

Refer to flowcharts 1 and 2 for a discussion of the motor controller program.

The program divides the PWM period into 64 time slices or t_slices. Each t_slice is 160µs long. The t_slices are numbered from 0-63. A variable called t_slice is incremented in an interrupt handler on every 7.5 interrupt. Continuous pulses 160µs apart from the timer chip initiate each 7.5 interrupt. This interrupt handler also manages the PWM output. If pulse width is less than time slice, PWM output (output port bit 0) is high, otherwise it's low. The scheduling of events is illustrated below:

The time between time slice 0 and sample mark is used to display speed and pulse width. These are displayed on the 7-segment LED display and LEDs 7-1 respectively. Notice there are upper and lower limits for pulse width. The time between maximum PW and sample mark is reserved to allow the negative voltage spike to pass when PW is maximum. The time between sample mark and end of period is used to sample the back EMF, average 16 samples, and calculate a new pulse width based on the current speed and the desired speed (set with the PRIMER DIP switches).

The program consists of two programs, a background program and a foreground program. The background program executes every time the microprocessor receives an interrupt pulse on the 7.5 interrupt pin. The timer chip is set by the initialization part of our program to provide a pulse to the 7.5 interrupt pin every 160µs. The background program has two functions.

- 1. To increment the time slice each time it executes. The only exception to this is when time slice reaches a maximum count of 63 at which time it is set back to zero.
- 2. To set the PWM signal (output port bit 0) high or low. If time slice is less than pulse width the output is high, otherwise it is low.

The foreground program monitors time slice and waits till it's 0. Then it displays motor speed on the leftmost four 7-segment LED digits and it displays pulse width in a bar graph fashion on LEDs 7-1 as follows:

Pulse Width	LEDs On	
0-7	(0% - 11%)	1
8-15	(12% - 23%)	1, 2
16-23	(24% - 36%)	1, 2, 3
24-31	(37% - 48%)	1, 2, 3, 4
32-39	(49% - 61%)	1, 2, 3, 4, 5
40-47	(62% - 73%)	1, 2, 3, 4, 5, 6
48-50	(74% - 78%)	1, 2, 3, 4, 5, 6, 7

The foreground program then waits for time slice to equal sample mark. Sample mark is set to accommodate the longest possible pulse width plus time for the negative voltage transition (after motor current cutoff) to expire. At sample mark the back EMF is sampled and added to a total of 16 such samples. If 16 samples have not yet been totaled the program repeats by going back and waiting for time slice to equal 0.

When 16 samples have been totaled, the total is divided by 16 to produce an average speed (it is this average speed that will later be displayed on the 7-segment display after time slice 0). The average speed is then subtracted from the speed set on the PRIMER DIP switches to produce an error term.

If the error is < -1, the pulse width is decremented.

If the error is > 1, the pulse width is incremented.

If the error is -1, 0, or 1, the *pulse width is unchanged.

The pulse width is then range checked. If the pulse width is less than minimum (3), it is set to minimum. If the pulse width is greater than maximum (50), it is set to maximum. Otherwise the pulse width is unchanged.

The entire process then repeats by going back and again waiting for time slice 0.

To test the motor speed program wire the circuit of Figure 6 and connect the PRIMER and drive motor M1 to the circuit as previously described. Couple the second motor M2 if available to the drive motor M1. Motor M2 if used should be unloaded (no RL across its terminals).

Set the PRIMER DIP switches for a speed of 20. Load the motor control program into the PRIMER and run the program. The motor will accelerate to speed and the PW and average speed will be displayed as previously described.

Load the drive motor by placing an 8.2Ω , ½W resistor across the terminals of motor M2 or by hand friction. The motor speed will decrease at first, as indicated by the 7-segment LED display. Then the PW will increase, as indicated by the 7 LEDs, to bring the motor speed back to 20.

Now remove the 8.2Ω load resistor from motor M2 or the friction source. The speed of the drive motor will increase suddenly and the PW will begin to decrease to bring the motor speed back to 20.

Use the curves of Figure 4 and load resistors for various speeds set in on the DIP switches to exercise the motor speed control program. Notice from the curves of Figure 4 that there are limits on the maximum speed attainable for various motor loads. If you try to request a motor speed greater than the motor can

provide for a given load, the program will simply increase the pulse width to maximum to get the maximum speed possible.

```
; ------
; This program regulates the speed of a DC motor by...
; [1] Averaging 16 samples of back EMF during motor off time.
; [2] Generating an error term (DIP switch - average EMF).
; [3] Using the error term to adjust the pulse width.
; [4] Using the resulting pulse width to pulse width modulate
              (PWM) the motor.
; WARNING: Use a 9V supply with a current limit of 1000 mA or
              more with this lab. The standard 500mA supply will
             be damaged if it is used with this lab.
;
                                     ; MOS SERVICES ADDRESS.
MOS:
             EOU
                      1000H
PWM_PORT: EQU DIP_SW: EQU
                     11H
                                     ; DIGITAL OUTPUT PORT.
                                     ; DIP SWITCH PORT.
DIP SW:
                     12H
                                   ; MOS SERVICE.ADCIN => L.
; MOS SERVICE.DE => 7-SEG DISPLAY.
; MINIMUM PW. T=160uS X PW_MIN
; MAXIMUM PW. T=160uS X PW_MAX
             EOU 09H
SERV09:
SERV13: EQU 13H
PW_MIN: EQU 03H
PW_MAX: EQU 32H
MAX_SLICE: EQU 3FH
                                     ; MAXIMUM NUMBER OF TIME SLICES.
                                      ; SETS PWM PERIOD.
                                      ; T=160uS X MAX SLICE.
                                      ; TIME SLICE WHERE BACK EMF
         EQU 34H
SMARK:
                                     ; SAMPLE WILL BE TAKEN.
VEC7HLF: EQU 0FFE9H ; 7.5 INTERRUPT VECTOR.

SCALELO: EQU 35H ; MODE/SCALER FOR TIMER,

SCALEHI: EQU 11000000B ; CONTINUOUS PULSES EVERY 160uS.
             EQU 14H
                                     ; TIMER PORT.
TIMERLO:
                                     ; TIMER PORT.
TIMERHI:
             EQU 15H
                                    ; TIMER CONTROL COMMAND.
; TIMER CONTROL PORT.
             EQU 0CDH
EQU 10H
EQU 1AH
TIMCMD:
CMDREG:
INTMASK:
                                     ; INTERRUPT MASK.
              ORG
                     OFF01H
              DI
                     H, SLICER ; POINT 7.5 INTERRUPT VECTOR TO SLICEP
              LXI
                                     ; VECTOR TO SLICER.
              SHLD
                      VEC7HLF
                                     ; SET UP TIMER FOR
              MVI
                      A, SCALELO
              OUT
                      TIMERLO
                                     ; CONTINUOUS PULSES
              MVI
                     A, SCALEHI
                                     ; AT DESIRED INTERRUPT
                                      ; RATE.
              OUT
                      TIMERHI
              MVI
                     A, TIMCMD
                      CMDREG
              OUT
              MVI
                      A, INTMASK
              SIM
              ΕI
PWM MOTOR:
                                    ; REG H = TOTAL
; REG B = SAMPLE COUNT.
              LXI
                     H,0000H
              MVT
                     B,10H
```

```
CHKZERO:
                   T_SLICE ; TIME SLICE = 0 ?
            LDA
            CPI
                   00H
                                 ; NO.GO CHECK SMARK.
            JNZ
                   CHKZERO
            MVI
                                 ; DISPLAY SPEED.
                   D,00H
            VOM
                   E,C
                                 ; C = SPEED.
            PUSH B
                   C,SERV13
            MVI
            CALL
                   MOS
            POP
            LDA
                   PULSE WIDTH
            VOM
                   D,A
                                 ; DISPLAY PW.
            MVI
                   E,OFFH
                                 ; E = MASK.
            ORA
                                  ; CLEAR CARRY.
ROT MASK:
            RAL
                                 ; ROTATE 0 TO MASK.
                                 ; SAVE MASK.
            VOM
                  E,A
                                 ; GET PW.
            MOV
                  A,D
                                 ; PW = PW - 8.
            SUI
                   08H
                                 ; SAVE RESULT TO D.
            MOV
                   D,A
                                 ; GET MASK.
            MOV
                   A,E
                                  ; PW STILL POS. ?
            JNC
                   ROT MASK
                                  ; DISABLE INTERRUPT.
            DI
                                 ; GET IMAGE.
            LDA
                 IMAGE
                                 ; SAVE BIT 0.
            RAR
            MOV
                                 ; GET MASK.
                  A,E
            RAL
                                 ; 7 BITS MASK + BIT 0.
                                 ; TO IMAGE.
            STA
                   IMAGE
            ΕI
                                  ; ENABLE INTERRUPT.
CHK SMARK:
            LDA
                   T SLICE
            CPI
                   SMARK
                                 ; TIME SLICE = SMARK ?
                   CHK SMARK
                                 ; NO.WAIT TILL IT IS.
            JNZ
                                 ; DE = TOTAL.
            XCHG
                                  ; SAMPLE BACK EMF.
            PUSH
                   C,SERV09
            MVI
            CALL
                   MOS
            POP
            MVI
                   H,00H
                                 ; HL = SAMPLE.
                  D
            DAD
                                 ; HL = TOTAL + SAMPLE.
                                 ; DEC. SAMPLE COUNT.
            DCR
            JNZ CHKZERO
                               ; IF NOT 0, CHK 0 T SLICE.
            DAD H
DAD H
                               ; HL*16/256=HL/16, SO...
DIV MORE:
                   Н
                                 ; ...4 DAD H's MAKES HL*16...
                                 ; ..AFTER THIS H=HL/256 (THINK ABOUT IT)
            DAD
                   H
            DAD
                   H
                                 ; SPEED=TOTAL / MAX SAMP (16).
                   C,H ; STORE SPEED.

DIP_SW ; GET DESIRED SPEED.

00111111B ; DES.SPEED 6 BITS MAX.

H . SWITTOU CORREST
            MOV
            IN
            ANI
                                 ; SWITCH-SPEED=ERROR.
            SUB
                   H, PULSE WIDTH
            LXI
                   DECPW CHK ; ERROR = -. DEC PW ?
            JM
            CPI
                                 ; ERROR < 2 ?
                                 ; YES. NO PW CHANGE.
            JC
                   PW RANGE
                                  ; NO. INC PW.
            INR
                   M
                    PW RANGE ; RANGE CHECK PW.
             JMP
```

```
DECPW CHK:
           CPI OFFH ; ERROR = -1.

JZ PW_RANGE ; YES. RANGE CHECK PW.

DCR M : NO DEC PW
                             ; NO. DEC PW.
PW RANGE:
                A, PW MIN ; PW < MIN ?
           MVI
           JС
                 MAX CHK
                            ; NO. CHECK MAX.
                              ; YES. PW = MIN.
           VOM
                 M,A
MAX_CHK:
           MVI
                A,PW MAX
                             ; PW > MAX ?
           CMP
                            ; NO. PW OK.
           JNC
                PWM MOTOR
                             ; YES. PW = MAX.
           VOM
                M,A
                 PWM MOTOR ; START AGAIN.
           JMP
; ------
; ......SLICER.....
; SLICER IS AN INTERRUPT HANDLER FOR THE 7.5 INTERRUPT.
; SLICER CONTROLS A TIME MARKER (T SLICE) BY ADJUSTING IT FROM
; 0 TO MAX SLICE IN EQUAL TIME INCREMENTS ON EACH 7.5 INTERRRUPT.
; SLICER ALSO CONTROLS THE WIDTH OF THE PULSE USED TO DRIVE THE
; MOTOR BY COMPARING THE VALUE OF PULSE WIDTH TO THAT OF T SLICE
; TO DETERMINE IF THE PULSE SHOULD BE HIGH OR LOW.
; PULSE HIGH => T SLICE < PULSE WIDTH.
; PULSE LOW => T SLICE >= PULSE WIDTH.
; ------
SLICER:
                 PSW
                       ; SAVE REGISTERS.
           PUSH
           PUSH
                 Η
                 H,T_SLICE ; H POINTS TO T_SLICE.
           LXI
           INR
                             ; INCREMENT T SLICE
                A, MAX SLICE
           CMP M ; T_SLICE = MAX_SLICE ?
                         ; NO. T_SLICE OK.
                PWM
           JNZ
                             ; YES. \overline{T} SLICE = 0.
           MVI
                M,00H
PWM:
           MOV A,M
LXI H,PULS
                             ; A = T SLICE.
                H, PULSE WIDTH; M = PULSE WIDTH.
                M ; T_SLICE < PULSE WIDTH ?
H, IMAGE ; M = IMAGE.
           CMP
           LXI
                             ; GET IMAGE.
                A,M
           MOV
                             ; CY => BIT 7.
           RAR
                             ; BIT 7 => BIT 0.
           RLC
                 M,A
                             ; STORE IMAGE.
           MOV
                PWM_PORT
                           ; OUTPUT IMAGE.
           OUT
                H
                             ; RECOVER REGISTERS.
           POP
                 PSW
           POP
           EI
           RET
                             ; RETURN
L_SLICE: DB 00H
PULSE_WIDTH: DB PW_MIN
IMAGE: DC
          END
; ------
```

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF01	F3	DI		FF35	В3	ORA	E
FF02	21	LXI	H,FF92	FF36	17	RAL	
FF03	92			FF37	5F	MOV	E,A
FF04	FF			FF38	7A	MOV	A,D
FF05	22	SHLD	FFE9	FF39	D6	SUI	08
FF06	E9			FF3A	08		
FF07	FF			FF3B	57	MOV	D,A
FF08	3E	MVI	A,35	FF3C	7B	MOV	A,E
FF09	35			FF3D	D2	JNC	FF36
FFOA	D3	OUT	14	FF3E	36		
FF0B	14			FF3F	FF		
FF0C	3E	MVI	A,C0	FF40	F3	DI	
FF0D	C0		,	FF41	3A	LDA	FFB4
FFOE	D3	OUT	15	FF42	B4		
FFOF	15			FF43	FF		
FF10	3E	MVI	A,CD	FF44	1F	RAR	
FF11	CD		,	FF45	7B	MOV	A,E
FF12	D3	OUT	10	FF46	17	RAL	,
FF13	10			FF47	32	STA	FFB4
FF14	3E	MVI	A,1A	FF48	B4		
FF15	1A		·	FF49	FF		
FF16	30	SIM		FF4A	FB	ΕI	
FF17	FB	EI		FF4B	3A	LDA	FFB2
FF18	21	LXI	Н,0000	FF4C	B2		
FF19	00		·	FF4D	FF		
FF1A	00			FF4E	FE	CPI	34
FF1B	06	MVI	B,10	FF4F	34		
FF1C	10		,	FF50	C2	JNZ	FF4B
FF1D	3A	LDA	FFB2	FF51	4B		
FF1E	B2			FF52	FF		
FF1F	FF			FF53	EB	XCHG	
FF20	FE	CPI	00	FF54	C5	PUSH	В
FF21	00			FF55	0E	MVI	C,09
FF22	C2	JNZ	FF1D	FF56	09		
FF23	1D			FF57	CD	CALL	1000
FF24	FF			FF58	00		
FF25	16	MVI	D,00	FF59	10		
FF26	00			FF5A	C1	POP	В
FF27	59	MOV	E,C	FF5B	26	MVI	H,00
FF28	C5	PUSH	В	FF5C	00		,
FF29	0E	MVI	C,13	FF5D	19	DAD	D
FF2A	13		·	FF5E	05	DCR	В
FF2B	CD	CALL	1000	FF5F	C2	JNZ	FF1D
FF2C	00			FF60	1D		
FF2D	10			FF61	FF		
FF2E	C1	POP	В	FF62	29	DAD	Н
FF2F	3A	LDA	FFB3	FF63	29	DAD	H
FF30	В3			FF64	29	DAD	H
FF31	FF			FF65	29	DAD	H
FF32	57	MOV	D,A	FF66	4 C	MOV	C,H
FF33	1E	MVI	E,FF	-			•
FF34	FF		-	Continued	l on nex	t page	

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF67	DB	IN	12	FF8F	C3	JMP	FF18
FF68	12			FF90	18		
FF69	E6	ANI	3F	FF91	FF		
FF6A	3F			FF92	F5	PUSH	PSW
FF6B	94	SUB	Н	FF93	E5	PUSH	H
FF6C	21	LXI	H,FFB3	FF94	21	LXI	H,FFB2
FF6D	В3			FF95	B2		
FF6E	FF			FF96	FF		
FF6F	FA	JM	FF7B	FF97	34	INR	M
FF70	7B			FF98	3E	MVI	A,3F
FF71	FF			FF99	3F		
FF72	FE	CPI	02	FF9A	BE	CMP	M
FF73	02			FF9B	C2	JNZ	FFA0
FF74	DA	JC	FF81	FF9C	A0		
FF75	81			FF9D	FF		
FF76	FF			FF9E	36	MVI	M,00
FF77	34	INR	M	FF9F	00		
FF78	C3	JMP	FF81	FFA0	7E	MOV	A,M
FF79	81			FFA1	21	LXI	H,FFB3
FF7A	FF			FFA2	В3		
FF7B	FE	CPI	FF	FFA3	FF		
FF7C	FF			FFA4	BE	CMP	M
FF7D	CA	JZ	FF81	FFA5	21	LXI	H,FFB4
FF7E	81			FFA6	B4		
FF7F	FF			FFA7	FF		
FF80	35	DCR	M	FFA8	7E	MOV	A,M
FF81	3E	MVI	A,03	FFA9	1F	RAR	
FF82	03			FFAA	07	RLC	
FF83	BE	CMP	M	FFAB	77	MOV	M,A
FF84	DA	JC	FF88	FFAC	D3	OUT	11
FF85	88			FFAD	11		
FF86	FF			FFAE	E1	POP	H
FF87	77	MOV	M,A	FFAF	F1	POP	PSW
FF88	3E	MVI	A,32	FFB0	FB	ΕI	
FF89	32			FFB1	C9	RET	
FF8A	BE	CMP	M	FFB2	00		slice)
FF8B	D2	JNC	FF18	FFB3	03	-	e width)
FF8C	18			FFB4	xx	_	ut port,
FF8D	FF			undefine	d leav	e blan	.k)
FF8E	77	MOV	M,A				

Schematic 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Flowchart 1
Foreground Motor Speed Control Program

Flowchart 1
Foreground Motor Speed Control Program (Continued)

Flowchart 2
Background Motor Speed Control Program

Application 6: External Multiplexed Display and Keypad Decoder

Purpose

To demonstrate and emulate the functions of a keypad and two digit LED display controller.

Goals

- 1. Build and test a keypad and numeric LED display interface.
- 2. Load a program that will demonstrate the numeric LED display interface.
- 3. Modify the program and load additional code which will demonstrate the keypad decoder.

Materials

Qty.	Description	Digi-Key Part Number
2	2N3904 or 2N2222	2N3904-ND or 2N2222-ND
1	741s240	DM74LS240N-ND
1	4x4 matrix keypad	GH5004-ND
1	2-digit LED display	P355-ND
9	150 Ω 5% 1/4 watt resistor	
1	1 K Ω 5% 1/4 watt resistor	

This application will be demonstrated in two phases: with the display only, and then with the keypad and display.

Display Controller Circuit Description

To drive an external 7 segment display using the trainer, the 8 output lines (numbered 0 to 7) would be the obvious choice. This would provide control for each of the 7 elements leaving one output line free. What if we want to drive two digits? We need 7 more outputs which we don't have. The answer to this problem is to use a multiplexed scheme of driving the digits.

We can drive the anodes of each of the elements of the pair of 7 segment

displays with the same outputs (one output per matching pair of segments) and use the 8th (bit 7) to select which display will turn on by driving the cathode of the desired digit to ground. This will allow us to display data on the left digit and turn the right one off, and vice-versa. If this is done rapidly enough it will appear as if both digits are showing simultaneously, due to "persistence of vision" in the human eye.

To lessen the load on the output port, the outputs drive a 74LS240 tri-state inverting buffer and the outputs of this go to the anodes of both digits of the display. The buffer's two enable lines are tied to the Primer's digital to analog (D/A) output and they tri-state the outputs when the D/A is output is 5V. This turns off the display which will be necessary when including the keypad in the circuit. When the D/A output is 0V the buffer is enabled and the outputs go to the opposite logic level as their respective inputs.

If the buffer is enabled, bit 7 selects which display to turn on. If bit 7 is high, the voltage applied to the base of Q1 will bring the cathode for the left display to ground, causing it to turn on. When this happens, the base of Q2 is pulled to ground causing it to turn off, which turns off the display on the right. When bit 7 is low, this turns off Q1 which allows the base voltage of Q2 to rise and turn on the display on the right.

```
; External Multiplexed Display and Keypad Decoder program.
OPORT
            EQU
                     11H
                                 ; OUTPUT PORT
IPORT
            EQU
                     12H
                                 ; INPUT PORT
MOS
            EQU
                     1000H
                                 ; MOS CALL ADDRESS
DACSRV
            EQU
                     0EH
                                 ; D/A SERVICE
            ORG
                     OFF01H
                                 ; READ DIP SWITCHES
LOOP:
            IN
                     IPORT
                     B,A
            VOM
            CALL
                     HEXOUT
                                 : DISPLAY B
            JMP
                     LOOP
; Display the hex value of B on the LEDs. This routine must be
; called repeatedly in order for the data to be shown continuously,
; since it works on the principle of persistence of vision. The right
; digit is turned on and off first, then the left digit is turned on and off.
HEXOUT:
            MOV
                     A,B
                                 ; GET VALUE
            ANI
                     0FH
                                 ; MASK OFF UPPER NIBBLE
            CALL
                     BIN7SG
                                 ; CHANGE TO 7 SEG VALUE
            OUT
                     OPORT
                                 ; SEND TO PORT
                     FLSHDG
            CALL
                                 ; TURN ON DISPLAY MOMENTARILY
            VOM
                     A,B
                                 ; GET ORIGINAL VALUE
                                 ; NOW MASK OFF LOWER NIBBLE
            ANI
                     OFOH
            RRC
            RRC
            RRC
            RRC
            CALL
                     BIN7SG
                                 : CHANGE TO 7 SEG VALUE
            ORT
                     80H
                                 ; SET BIT 7 SO LEFT DIGIT IS DISPLAYED
                     OPORT
            OUT
                                 ; SEND TO PORT
            CALL
                     FLSHDG
                                 ; TURN ON DISPLAY MOMENTARILY
            RET
; Change the binary number in A to its 7 seq. output pattern.
BIN7SG:
            PUSH
                     Η
            PUSH
                     D
            LXI
                     D,TAB7SG
                                 ; POINT TO START OF TABLE
            MVI
                     H.0
            MOV
                     L,A
                                 ; HL = OFFSET INTO TABLE
            DAD
                     D
                                 ; ADD TABLE ADDR TO OFFSET
            VOM
                     A,M
                                 ; GET OUTPUT PATTERN
            POP
                     D
                     Η
            POP
            RET
```

```
; TRANSLATE TABLE FOR LED OUTPUT
                      40H, 79H, 24H, 30H
TAB7SG:
            DB
            DB
                      19H, 12H, 02H, 78H
            DB
                      00H, 18H, 08H, 03H
            DB
                      46H,21H,06H,0EH
 This flashes on and off the digit selected by bit 7 sent to OPORT.
FLSHDG:
            PUSH
                      D
            PUSH
                      PSW
            CALL
                     LEDON
                                  ; ENABLE LEDS
            LXI
                     D, OFFH
DELAY1:
            DCX
                     D
            MOV
                     A,D
            ORA
                      Ε
            JNZ
                     DELAY1
            CALL
                     LEDOFF
                                  ; DISABLE LEDS
            POP
                     PSW
            POP
            RET
; LEDON, LEDOFF, TURN ON/OFF THE LEDS THROUGH THE D/A OUTPUT
; 5V OUT TRI-STATES THE OUTPUTS OF THE 74LS240
; OV OUT ENABLES THE OUTPUTS OF THE 74LS240
LEDON:
            MVI
                     E,0
                                  : SEND OUT OV
            JMP
                     LEDCTL
LEDOFF:
            MVI
                     E,OFFH
                                  ; SEND OUT 5V
                     C, DACSRV
                                  ; D/A SERVICE
LEDCTL:
            MVI
                     MOS
            CALL
            RET
```

Display Controller Software Description

The program will be described from the lowest level subroutine to the main routine.

LEDON, LEDOFF

The subroutine LEDON turns on the selected display by sending 0V from the D/A into the 74LS240 enables and LEDOFF turns them off by sending 5V.

FLSHDG

This CALLs LEDON, goes into a delay loop and then CALLs LEDOFF. This causes the display selected by bit 7 to display for the period of time of the delay.

BIN7SG

This converts the number in the accumulator (A), which is in the range of 0 to F hex, to its corresponding binary pattern which will be used by another routine to illuminate the desired display segments. Since each element of a digit is controlled by bits 0 to 6 the bit pattern sent to the output port will form specific patterns. The table TAB7SG used by this routine has these bit patterns for digits 0 to F.

HEXOUT

This displays the hex value of the B register on the displays. This routine must be called repeatedly in order for the data to appear to be shown continuously, since it works on the principle of persistence of vision. The upper 4 bits of B are masked off leaving only the lower 4 bits which are converted to the

appropriate binary pattern using BIN7SG and this pattern is sent to the output port. Since the patterns received from BIN7SG always have bit 7 cleared, this will turn on the digit on the right when FLSHDG is called. To display the left digit, the lower 4 bits are masked off of B and the upper 4 are moved to the lower 4 bit positions. This value is converted using BIN7SG, bit 7 of the result is set to 1, and it is sent to the output port. This time when FLSHDG is called, the left digit will be displayed since bit 7 is set. The main loop of this first example gets its input from the DIP switches, copies the value to B, CALLS HEXOUT and loops back to read the DIP switches again.

Using the Program

Build the circuit and then check your work. Now load the following program into memory and run it. With all the DIP switches in the ON position the port will input 00 and this should be shown on the displays. The binary value input to the DIP switches will be shown in hex on the displays (refer to the section at the beginning of this manual which discusses binary to hex conversion). Set the DIP switches so one digit is different than the other.

It appears that both digits are showing at the same time. To show what is really happening, we can increase the delay in FLSHDG so we can see what is really happening. Change the byte at FF4B from 00 to FF and run the program again. The displays can now be seen alternating left to right with each change in bit 7. Note that the PRIMER's digital output LEDs reflect the data sent to the output port (output bits of 0 turn on these LEDs). Watch the binary pattern on bits 6 to 0 as the digits change.

Move the DIP switches to the off position so that "FF" is displayed (this guarantees that none of the inputs are being pulled low), stop the program and change the byte at FF4B back to 00 again.

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCRIPTION		
FF01	D3	IN	12	FF1D	27			
FF02	12			FF1E	FF			
FF03	47	MOV	B,A	FF1F	F6	ORI	80	
FF04	CD	CALL	FFOA	FF20	80			
FF05	0A			FF21	D3	OUT	11	
FF06	FF			FF22	11			
FF07	C3	JMP	FF01	FF23	CD	CALL	FF44	
FF08	01			FF24	44			
FF09	FF			FF25	FF			
FF0A	78	MOV	A,B	FF26	C9	RET		
FF0B	E6	ANI	OF	FF27	E5	PUSH	H	
FF0C	OF			FF28	D5	PUSH	D	
FFOD	CD	CALL	FF27	FF29	11	LXI	D,FF34	
FFOE	27			FF2A	34			
FFOF	FF			FF2B	FF			
FF10	D3	OUT	11	FF2C	26	MVI	H,00	
FF11	11			FF2D	00			
FF12	CD	CALL	FF44	FF2E	6F	MOV	L,A	
FF13	44			FF2F	19	DAD	D	
FF14	FF			FF30	7E	MOV	A,M	
FF15	78	MOV	A,B	FF31	D1	POP	D	
FF16	E6	ANI	F0	FF32	E1	POP	H	
FF17	F0			FF33	C9	RET		
FF18	OF	RRC		FF35	79	(PATT	ERN FOR "1")	
FF19	OF	RRC		FF36	24	(PATT	ERN FOR "2")	
FF1A	OF	RRC		FF37	30	(PATT	ERN FOR "3")	
FF1B	OF	RRC						
FF1C	CD	CALL	FF27	Continued	on nex	t page	•	

ADDRESS	DATA	DESCRIPTION		ADDRESS	DATA	DESCR	IPTION
FF38	19	(PATTERN FOR "4	4")	FF4F	C2	JNZ	FF4C
FF39	12	(PATTERN FOR "5	5 ")	FF50	4C		
FF3A	02	(PATTERN FOR "6	6")	FF51	FF		
FF3B	78	(PATTERN FOR "7	7")	FF52	CD	CALL	FF5D
FF3D	18	(PATTERN FOR "S	9")	FF53	5D		
FF3E	08	(PATTERN FOR "A	A")	FF54	FF		
FF3F	03	(PATTERN FOR "E	B")	FF55	F1	POP	PSW
FF40	46	(PATTERN FOR "C	C")	FF56	D1	POP	D
FF41	21	(PATTERN FOR "I	D")	FF57	C9	RET	
FF42	06	(PATTERN FOR "E	Ε")	FF58	1E	MVI	E,00
FF43	ΟE	(PATTERN FOR "F	F")	FF59	00		
FF44	D5	PUSH D		FF5A	C3	JMP	FF5F
FF45	F5	PUSH PSW		FF5B	5F		
FF46	CD	CALL FF58		FF5C	FF		
FF47	58			FF5D	1E	MVI	E,FF
FF48	FF			FF5E	FF		
FF49	11	LXI D,00FF		FF5F	ΟE	MVI	C,0E
FF4A	FF			FF60	ΟE		
FF4B	00			FF61	CD	CALL	1000
FF4C	1B	DCX D		FF62	00		
FF4D	7A	MOV A,D		FF63	10		
FF4E	В3	ORA E		FF64	C9	RET	

Scanning the Keypad

To read a 4 by 4 matrix keypad we need 4 inputs and 4 outputs. The 4 inputs will check for a key pressed in one of the 4 columns in the current row selected by the 4 outputs. Since all of the outputs are currently being used, where do we get 4 more? We will use the same ones used for the displays but we will only use them while the displays are off (this is why we needed the circuitry to turn off both displays).

The subroutine KEYSCN (shown below), which will be added to the previous program, will be CALLed while the digits are off so that the changes in the output port will not be visible. When a key is pressed, the routine will modify the B register by shifting it left 4 bits and putting the binary value of the key into the lower 4 bits.

When KEYSCN is CALLed, output bits 0 to 3 are set to 0 to select all 4 rows at once. When the input port is read and all of the lower 4 bits are 1, this indicates no key is pressed and the routine is exited without changing B. If any of the lower 4 bits are 0 this indicates a key has been pressed. The routine then selects 1 row at a time (by setting 1 of the output bits to 0 and the others to 1) until the input port reads a 0 on any of the lower 4 bits. When this happens, the row is found, and the column is found by finding which input port bit was 0. When the row and column is found it is translated to a value from 0 to F hex. The B register is shifted 4 bits to the left and this new value is put in the lower 4 bits and the routine exits.

There is another feature in KEYSCN which keeps a key that is being held closed from modifying the B register more than 1 time. When a key is pressed, the H register is loaded with a value which defines the minimum number of times KEYSCN must be CALLed while no key is pressed before it will recognize another key press. For example, when a key is pressed, B is modified by the new key value and H is loaded with 20 hex before exiting KEYSCN. On the next entry to KEYSCN the keypad will be examined to see if a key has been pressed and if one is pressed, H is not decremented and the routine is exited without changing B. If no keys are being pressed, H is decremented and the routine is exited without changing B. If no keys are pressed for 32 (20 hex) CALLs of KEYSCN then H will be 0 and any key pressed after this time will affect the B register, and again, H will be loaded with 20 hex.

```
; This routine checks for a key pressed and if there is one, register B
; is shifted left one nibble and the key value is put in the low nibble.
; The subsequent CALLs after a CALL that affected B, will not affect B
; again until no key has been pressed for 20 CALLs and then a key is
; pressed again. This prevents a single key press from being
; interpreted as more than one.
; On entry and exit: H=debounce counter
DBOUNCE
           EQU
                    20
                               ; NUMBER OF CALLS FOLLOWING A KEY PRESS
KEYSCN:
           XRA
                    A
                                ; A=0
           OUT
                    OPORT
                                ; SELECT ALL 4 ROWS
           IN
                    IPORT
                                ; READ ALL 4 ROWS OF KEYPAD
           ANI
                                ; MASK OFF UPPER 4 BITS
                    OFH
           CPI
                    OFH
                               ; IF OFH THEN NO KEYS PRESSED
           JNZ
                    KEYSC1
                               ; SKIP IF KEY READY
            ; NO KEY PRESSED, SO DEC. THE DEBOUNCE (IF>0) AND EXIT
           INR
           DCR
                    Η
                                ; IS DEBOUNCE 0?
           RZ
                                : RETURN IF YES
           DCR
                    H
                                ; DEC ONCE MORE
           RET
           INR
KEYSC1:
                    Η
           DCR
                    Η
           RNZ
                                ; IF DEBOUNCE <> 0 EXIT
           ; SCAN FOR SPECIFIC ROW
           PUSH
                    D
                    E,01111111B ; ROW SCAN VALUE (WILL BE ROTATED)
           MVI
                    D,-4
                                ; ROW ADDER (+4=0)
           MVI
KEYSC2:
           MOV
                    A,E
                                ; GET ROW SCAN VALUE
           RLC
                                ; ROTATE IT
           OUT
                    OPORT
                                ; SEND ROW SCAN TO OUTPUT PORT
           MOV
                    E,A
                                ; SAVE BACK NEW ROW SCAN
                               ; GET ROW ADDER
           VOM
                    A,D
                                ; INC ROW ADDER BY 4
           ADI
                    4
                                ; SAVE IT
           MOV
                    D,A
           IN
                    IPORT
                                ; SEE IF THIS ROW HAS CHAR READY
           ANI
                    OFH
                                ; MASK OFF UPPER
           CPI
                    OFH
                    KEYSC2
           JΖ
                                ; LOOP TILL <> OFH
           ; FIND WHAT COL. IT'S IN
           MVI
                    L,OFFH
                            ; SET SO INR WILL MAKE 0
KEYPD1:
           INR
                    L
           RRC
                    KEYPD1
                               ; LOOP TILL NO CY
           ; NOW ADD COL. TO ROW ADDER
                    A,D
                          ; GET ROW ADDER
           MOV
           ADD
                    L
```

```
VOM
                    ; L IS THE KEY PRESSED (0 TO F HEX)
        L,A
; SHIFT B LEFT 1 NIBBLE AND PUT L IN LOWER NIBBLE
VOM
        A,B
                    ; SHIFT B
ADD
        Α
ADD
        Α
ADD
        Α
ADD
        A
                     : THIS SHIFTS LEFT PADDING 0's
                     ; PUT L IN LOWER NIBBLE
ADD
        T.
        B,A
VOM
                    ; NEW B REG
        H, DBOUNCE
MVI
                   ; DEBOUNCE VAL. (NO KEYS ACCEPTED TILL 0)
POP
RET
```

Using the Program

The previous program will be modified slightly (assuming it is still in memory) by putting CALL KEYSCN in the program in place of IN IPORT, MOV B,A and a new subroutine will be added at the end. (Pay close attention to the addresses when entering the following program, since there is a skip in sequence of the addresses after the first three.) When you run the program you should see the key you press on the right display and the digit that was there before, moved to the left display. As you have just seen demonstrated in this application, multiplexing allows you to greatly extend the capabilities of an output port.

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	DESCRIPTION	
FF01	CD	CALL	FF65	FF7F	07	RLC		
FF02	65			FF80	D3	OUT	11	
FF03	FF			FF81	11			
:	:			FF82	5F	MOV	E,A	
:	:			FF83	7A	MOV	A,D	
FF65	AF	XRA	A	FF84	C6	ADI	04	
FF66	D3	OUT	11	FF85	04			
FF67	11			FF86	57	MOV	D,A	
FF68	DB	IN	12	FF87	DB	IN	12	
FF69	12			FF88	12			
FF6A	E6	ANI	OF	FF89	E6	ANI	OF	
FF6B	OF			FF8A	OF			
FF6C	FE	CPI	OF	FF8B	FE	CPI	OF	
FF6D	OF			FF8C	OF			
FF6E	C2	JNZ	FF76	FF8D	CA	JZ	FF7E	
FF6F	76			FF8E	7E			
FF70	FF			FF8F	FF			
FF71	24	INR	H	FF90	2E	MVI	L,FF	
FF72	25	DCR	H	FF91	FF			
FF73	C8	RZ		FF92	2C	INR	L	
FF74	25	DCR	H	FF93	OF	RRC		
FF75	C9	RET		FF94	DA	JC	FF92	
FF76	24	INR	H	FF95	92			
FF77	25	DCR	H	FF96	FF			
FF78	C0	RNZ		FF97	7A	MOV	A,D	
FF79	D5	PUSH	D	FF98	85	ADD	L	
FF7A	1E	MVI	E,7F	FF99	6F	MOV	L,A	
FF7B	7F			FF9A	78	MOV	A,B	
FF7C	16	MVI	D,FC	FF9B	87	ADD	A	
FF7D	FC							
FF7E	7B	MOV	A,E	Continued	l on nex	t page		

ADDRESS DA	TA DESCR	IPTION	ADDRESS	DATA	DESCRI	[PTION
FF9C 87	ADD	A	FFA1	26	MVI	H,14
FF9D 87	ADD	A	FFA2	14		
FF9E 87	ADD	A	FFA3	D1	POP	D
FF9F 85	ADD	L	FFA4	C9	RET	
₽₽ \	MOTA	D 7\				

Application 7: Controlling an LCD Module

Purpose

To demonstrate writing characters and cursor positioning on an LCD Module display.

Discussion

There are many LCD Module display manufacturers and most use the same 14 pin dual row header interface and the same controller chip, the HD44780. These modules display characters only, not graphics (with the exception that you can simulate graphics by dynamically defining your own characters). You may find these displays in surplus catalogs, or parts catalogs such as DIGI-KEY. Some example parts are:

DIGI-KEY Part. OP116-ND OPTREX 16x1 standard LCD dot matrix module VT216-ND Varitronix Ltd 16x2 standard LCD dot matrix module

The HD44780 controller has two registers: one for data and one for commands. The data register allows you to write characters to the display, define your own characters and read display memory. The command register allows writing of several commands relating to display control and initialization and also reading the controller's status and address counter. In the interest of simplicity we will write to the controller registers in this application.

The controller can transfer data in 8 or 4 bit mode, so we will use it in 4 bit mode since we have only 8 output ports and we need at least 4 to transfer data (DB4 to DB7) and 2 for the control lines (RS and E).

```
PRIMER CN3
                                LCD CONNECTOR
       OUTPUT 1
        OUTPUT 2
                                  Ver
                                          GND
                                  RS
        OUTPUT 3
                                                    1.2K OHM
       OUTPUT 4
        OUTPUT 5
                                 DB1
                                          DB0
        OUTPUT 6
                                 DB3
                                          DB2
       OUTPUT 7
                                 DB5
                                          DB4
        OUTPUT 8
       GROUND
                                        13
        A/D INPUT
       +VIN
```

```
; LCD DRIVER CODE
OPORT
         EQU
                  11H
                                  ; OUTPUT PORT
IPORT
         EOU
                  12H
                                  ; INPUT PORT
                                  ; SERVICE FOR READING KEYPAD
KEYIN
         EOU
                  0BH
MOS
                  1000H
         EQU
                                  ; MOS CALL ADDRESS
; OPORT BITS ARE DEFINED AS FOLLOWS:
; 7 6 5 4 3 2 1 0
 DB7 DB6 DB5 DB4 E RS (not used)
         ORG
                  OFF01H
         MVI
                  A,11110011B
                                 ; RS, E, = 0.
         CUT
                  OPORT
         ; RESET CODE
                  DELAY
         CALL
```

```
CALL
                  DELAY
         MVI
                  A,30H
         CALL
                  DLNOUT
         CALL
                  DLNOUT
         CALL
                  DLNOUT
         ; INIT CODE
                                ; SET 4 BIT MODE
         MVT
                  A,00100000B
         CALL
                  DLNOUT
         MVI
                  A,00101000B
                                ; SET 4 BIT, 2 LINE, 5 BY 7 DOTS
         CALL
                  OUTCMD
         MVI
                  A,00001000B
                                ; DISPLAY OFF
         CALL
                  OUTCMD
         MVI
                  A,0000001B
                                ; DISPLAY ON
         CALL
                  OUTCMD
         MVI
                  A,00001110B
                                ; TURN ON DISPLAY, CURSOR, AND BLINK.
         CALL
                  OUTCMD
         MVI
                  A,00000110B
                                ; ENTRY MODE SET. INC. W/CURSOR MOVEMENT
                  OUTCMD
         CALL
         LXI
                  H, TSTSTR
         CALL
                  SHWSTR
         NOP
LOOP:
         NOP
         NOP
         NOP
         NOP
                                 ; THESE ARE PLACE HOLDERS
         MVI
                  C, KEYIN
         CALL
                  MOS
                                 ; GET A KEY
                  A,'0'
         MVI
         ADD
                                 ; CONVERT 0 TO 9 IN L TO ASCII
         CALL
                  OUTDTA
                                 ; DISPLAY THE CHAR
         JMP
                  LOOP
TSTSTR: DB
                  'The Primer.',0
; Show the string pointed to by HL. When 0 is encountered the program exits
; returning {\tt HL} pointing to the byte after the 0.
SHWSTR: MOV
                  A,M
                                 ; READ STRING
         INX
                  Η
                                 ; CHANGE POINTER
         ORA
                  Α
                                 ; SEE IF A=0
                                 ; EXIT IF END OF STRING
         RZ
         CALL
                  OUTDTA
                                 ; DISPLAY CHARACTER
         JMP
                  SHWSTR
; Send A to the LCD with RS=1, high nibble first and low second.
OUTDTA: MVI
                  E,0100B
                                 ; SET RS
         JMP
                  OBYT1
; Send A to the LCD with RS=0, high nibble first and low second.
```

```
OUTCMD:
                  E,0
        MVI
                                ; RS=0
OBYT1:
        VOM
                  B,A
                                 ; SAVE IN B
        ANI
                  OFOH
                                 ; MASK OFF LOW NIBBLE
        ORA
                  Ε
                                 ; MAYBE MODIFY RS
                 DLNOUT
        CALL
                                 ; SEND IT
        MOV
                 A,B
        ADD
                  Α
        ADD
                 Α
         ADD
                  Α
        ADD
                 Α
                                 ; LOWER IS MOVED TO UPPER, PADDING 0'S
        ORA
                  Ε
                                 ; MAYBE MODIFY RS
         CALL
                  DLNOUT
         RET
; This delays and falls through to OUTNIB
DLNOUT: CALL
                  DELAY
; Send data in A to the LCD. Assumes bits 0 to 3 have been properly set.
OUTNIB:
        PUSH
                  PSW
        ANI
                  11110111B
                                ; CLEAR E
        CUT
                  OPORT
                                ; SEND NIBBLE
        ORI
                  1000B
                                 ; SET E BIT
        OUT
                  OPORT
                  11110111B
                                ; CLEAR E BIT
        ANI
        OUT
                  OPORT
                  PSW
         POP
         RET
; 5 ms time delay for 8085 is 24 t states
DELAY:
        PUSH
                  PSW
                                 ; approx 5 ms for 3.072 MHZ clock
        PUSH
                 Н
        LXI
                 H,641
                 H
DLAY2:
        DCX
                                ; 6 T STATES
        MOV
                 A,H
                                ; 4 T STATES
                                ; 4 T STATES
        ORA
        JNZ
                 DLAY2
                                 ; 10 T STATES
         POP
                 H
                  PSW
         POP
         RET
```

Program Description

According to the schematic, the output port controls the LCD and the port bits are connected as follows:

```
output port bits: 7 6 5 4 3 2 1 0 LCD header pins: DB7 DB6 DB5 DB4 E RS (not used)
```

The routine OUTNIB assumes the upper nibble of A has the value you want to output and bit 2 (RS) is set to 0 for a command or 1 for data. This value is output first with bit 3 (E) low, then high, then low again. The E input when brought high momentarily causes the data input to RS and DB4 through DB7 to be

accepted by the LCD controller. DLNOUT works the same except a 5 ms delay (provided by DELAY) occurs before executing OUTNIB.

DELAY is called because the method we used to interface to the LCD Module prevents us from reading the LCD module. This in turn prevents us from reading the busy flag which tells us the LCD controller is busy executing a command and cannot receive another yet. DELAY gets us around this problem because it takes longer to execute than any of the LCD controller's instructions insuring that the LCD will not be busy by the time it is finished. In the initialization section some longer delays are needed, so DELAY is called repeatedly.

OUTCMD and OUTDTA use the same core routine but they select RS of 0 and 1 respectively. This core routine takes the byte in A and breaks it into two nibbles and sends them to DLNOUT (high nibble first).

The main routine does the hardware reset for the HD44780, followed by the display mode setup. Then SHWSTR sends the ASCII string pointed to by HL to the display via OUTDTA, and then the MOS subroutine KEYIN is called to get a key from the keypad and the key is translated to ASCII and sent to the display (via OUTDTA) and then it loops back to get another key.

Connect Primer connector CN3 to the LCD according to the schematic and then enter the following program. When you run the program "The Primer._" should be shown on the display and when you press one of keys "0" to "9" they will be shown on the display, with each new character displayed to the right of the previous.

Eventually if you press the keys enough times you will eventually run out of display area. The characters are now being stored in an area that is not being displayed. If you have a 2 line display and you send enough characters, they will start showing up on the second line and after more are sent they will eventually show up on the first line.

Load the following machine language program into memory:

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCRIPTION	
FF01	3E	MVI	A,F3	FF1A	FF		
FF02	F3			FF1B	3E	MVI	A,28
FF03	D3	OUT	11	FF1C	28		
FF04	11			FF1D	CD	CALL	FF68
FF05	CD	CALL	FF8D	FF1E	68		
FF06	8D			FF1F	FF		
FF07	FF			FF20	3E	MVI	A,08
FF08	CD	CALL	FF8D	FF21	8 0		
FF09	8D			FF22	CD	CALL	FF68
FF0A	FF			FF23	68		
FF0B	3E	MVI	A,30	FF24	FF		
FF0C	30			FF25	3E	MVI	A,01
FF0D	CD	CALL	FF7B	FF26	01		
FFOE	7B			FF27	CD	CALL	FF68
FFOF	FF			FF28	68		
FF10	CD	CALL	FF7B	FF29	FF		
FF11	7B			FF2A	3E	MVI	A,OE
FF12	FF			FF2B	ΟE		
FF13	CD	CALL	FF7B	FF2C	CD	CALL	FF68
FF14	7B			FF2D	68		
FF15	FF			FF2E	FF		
FF16	3E	MVI	A,20	FF2F	3E	MVI	A,06
FF17	20			FF30	06		
FF18	CD	CALL	FF7B				
FF19	7B			Continued	l on nex	t page	

ADDRESS	DATA	DESCE	IPTION	ADDRESS	DATA	DESCE	IPTION
FF31	CD	CALL	FF68	FF66	6A	DEBCK	1111011
FF32	68	CALL	1100	FF67	FF		
FF33	FF			FF68	1E	MVI	E,00
FF34	21	LXI	H,FF4D	FF69	00	1111	1,00
FF35	4D	112X 1	11,1140	FF6A	47	MOV	B,A
FF36	FF			FF6B	E6	ANI	F0
FF37	CD	CALL	FF59	FF6C	F0	71111	10
FF38	59	CILLL	1133	FF6D	B3	ORA	E
FF39	FF			FF6E	CD	CALL	FF7B
FF3A	00	NOP		FF6F	7B	CILLL	11 / 5
FF3B	00	NOP		FF70	FF		
FF3C	00	NOP		FF71	78	MOV	A,B
FF3D	00	NOP		FF72	87	ADD	Α
FF3E	00	NOP		FF73	87	ADD	A
FF3F	0E	MVI	С,0В	FF74	87	ADD	A
FF40	0B		0,02	FF75	87	ADD	A
FF41	CD	CALL	1000	FF76	B3	ORA	E
FF42	00	01122	2000	FF77	CD	CALL	FF7B
FF43	10			FF78	7B	01122	
FF44	3E	MVI	A,30	FF79	FF		
FF45	30		11,00	FF7A	C9	RET	
FF46	85	ADD	L	FF7B	CD	CALL	FF8D
FF47	CD	CALL	FF63	FF7C	8D	01122	1102
FF48	63	01122	1100	FF7D	FF		
FF49	FF			FF7E	F5	PUSH	PSW
FF4A	C3	JMP	FF3A	FF7F	E6	ANI	F7
FF4B	3A			FF80	F7		
FF4C	FF			FF81	D3	OUT	11
FF4D	54	"T"		FF82	11		
FF4E	68	"h"		FF83	F6	ORI	08
FF4F	65	"e"		FF84	0.8		
FF50	20	11 11		FF85	D3	OUT	11
FF51	50	"P"		FF86	11		
FF52	72	"r"		FF87	E6	ANI	F7
FF53	69	"i"		FF88	F7		
FF54	6D	"m"		FF89	D3	OUT	11
FF55	65	"e"		FF8A	11		
FF56	72	"r"		FF8B	F1	POP	PSW
FF57	2E	"."		FF8C	C9	RET	
FF58	00	(end	marker)	FF8D	F5	PUSH	PSW
FF59	7E	VOM	A,M	FF8E	E5	PUSH	H
FF5A	23	INX	H	FF8F	21	LXI	H,0281
FF5B	В7	ORA	A	FF90	81		
FF5C	C8	RZ		FF91	02		
FF5D	CD	CALL	FF63	FF92	2B	DCX	H
FF5E	63			FF93	7C	MOV	A,H
FF5F	FF			FF94	B5	ORA	L
FF60	C3	JMP	FF59	FF95	C2	JNZ	FF92
FF61	59			FF96	92		
FF62	FF			FF97	FF		
FF63	1E	MVI	E,04	FF98	E1	POP	H
FF64	04			FF99	F1	POP	PSW
FF65	C3	JMP	FF6A	FF9A	C9	RET	

In the next example we will modify the program to use the Set DD RAM Address command which will in effect allow us to control the cursor position. Modify the following addresses and run the program. You will see that each key typed will show up on the screen in the same place even though it is still automatically incrementing the cursor position. This is because the address is set for that cursor position after the cursor has been incremented.

You may want to experiment with different cursor positions. If you have a 2 line display, you can move the cursor to line 2 by sending 10000000b + 40h (C0h) to OUTCMD, where 10000000b is the command for Set DD RAM Address and 40h is the offset for line 2.

ADDRESS	DATA	DESCRIPTIO			
FF3A	3E	MVI	A,8B		
FF3B	8B				
FF3C	CD	CALL	FF68		
FF3D	68				
FF3E	FF				

Application 8: Capacitance Meter

Purpose

This application shows how to use the PRIMER as a capacitance meter.

Discussion

This application is an example of how the PRIMER can be used as a useful piece of electronic test equipment. The Capacitance Meter application can be used to accurately measure capacitors ranging from $0.01~\mu F$ to $220~\mu F$.

The parts required are minimal. Items needed are:

Qty. Description $\begin{array}{lllll} & & & & \\ 1 & & & \\ 10 & & \\ K\Omega & & \\ multi-turn & potentiometer \\ 1 & & \\ 10 & & \\ K\Omega & 1/4 & \\ watt & resistor \\ 1 & & \\ one & \\ capacitor & of a known value in the range of 1 to 100 μF \\ & & \\ (calibration & cap) \\ Many & Several & capacitors, for testing, in the range of 0.01 μF to 300 μF \\ 1 & & \\ Breadboard & & \\ \end{array}$

The circuit is very simple. Follow the schematic below to assemble the circuit.

Circuit Description:

The PRIMER uses its on-board D/A converter, analog input comparator, OUTPUT1 (digital output line 1), and the timer within the 8155 to measure capacitance. The capacitor is connected in series with R1. The open end of the capacitor is then tied to the OUTPUT1 pin of CN3 and the open end of R1 is tied to ground. The D/A output of the PRIMER is already internally tied to the non-inverting side of the op-amp comparator while the capacitor-R1 connection is tied to the inverting side via the A/D IN pin on CN3. When the program first starts, the D/A is set slightly above ground potential and OUTPUT1 is set LOW. The capacitor now discharges through R1 and the potentiometer. The program waits for the user to press a key at the keypad and when it is pressed, the program then starts the timer and sets OUTPUT1 HI which starts the capacitor charging. The timer is driven by a 307.2 KHz input Clock. The timer works by

loading a "count" value into a register within the timer. The timer then decrements this value after each complete input clock cycle. When the value reaches 0, the timer generates an output pulse that is detected by the 8085's RST 7.5 interrupt then the timer automatically reloads the register with the "count" value and the process starts all over again. By increasing the value in the "count" register the pulse rate can be slowed down and vise-versa. The Capacitor Meter program uses the timer as the time-base by counting how many pulses are generated by the timer while the capacitor is charging (using the 8085's DE register pair). The larger the capacitor, the longer the charge time, therefore the more pulses will be generated. The voltage across the resistor is near VCC when OUTPUT1 first goes high, then ramps down as the capacitor charges. When the voltage falls below the D/A voltage threshold, the comparator output goes high, and the timer is stopped. The current pulse count in DE is then converted to decimal and displayed on the LED display and then the decimal point is placed in the proper place in the number.

Theory of Operation

The Capacitor Meter program works by measuring the time required to charge the capacitor through a resistor. The time-base is generated by the timer within the 8155. The Capacitor Meter program has 2 capacitance ranges from which to choose The low range can measure capacitor values up to 9.999 μ F in 0.001 μ F increments while the high range can measure values up to 999.9 μ F in 0.1 μ F increments. Two scales were chosen to provide good resolution while reading small capacitors but also have the ability to measure large caps. The scale is determined by the "count" value loaded into the 8155 timer. A value of 10 is loaded in the "count" register for low range and a value of 1000 for the high range . Once the capacitor is charged, the pulse count is displayed on the LED display in decimal. A decimal point is then placed on the LED display in the "10's" place for high range or in the "1000's" place for low range. So the actual value written to the display for a 1 μ F capacitor measured in low scale would be "1000". Once the decimal point is added it looks like "1.000".

The equation for capacitor charge time in an RC (resister, capacitor) circuit is:

 $T = R \cdot C$

Where:

T = Time in Seconds
R = Resistance in Ohms
C = Capacitance in Farads

Note that this simple formula is not sufficient to predict the value for R since in this application the capacitor is not fully charged (because of limits in the D/A's resolution) and because of the parallel resistance of the circuitry on the PRIMER board, and due to the factor of ESR (Equivalent Series Resistance) of the capacitor. However, when R is known, T can be predicted based upon the known value of C. After the calibration procedure (discussed later) is performed, the value for R will be fixed, which will give a charge time directly proportional to the capacitance.

The 8155 timer is decremented every 1/307200 seconds (or $3.26 \,\mu s$). Since the time-base in low range is ($10^*3.26 \,\mu s$) or $32.6 \,\mu s$) and each time interval in this range represents $0.001 \,\mu F$, the resistance needs to be adjusted so that, for example, a $1 \,\mu F$ capacitor charges up to the threshold in $1000^*32.6 \,\mu s$. When the resistance is precisely adjusted for the low range, it is also suitable for the high range. Since The time-base in the high range is ($1000^*3.26 \,\mu s$) or $3.26 \,\mu s$) and each time interval in this range represents $0.1 \,\mu F$, A $100 \,\mu F$ capacitor will take $1000^*3.26 \,\mu s$ or $3.26 \,seconds$ to charge to the threshold in a properly calibrated circuit.

Using the Program

```
CAPACITANCE METER
             .8085
                                    ; ADDRESS OF PORT A (DIPSWITCH)
DIPSW
            EOU 12H
DIPSW EQU 12H
P_OUT EQU 11H
P_8155 EQU 10H
P_CNTLO EQU 14H
P_CNTHI EQU 15H
TMRSTRT EQU 0CDH
TMRSTOP EQU 8DH
ADCVAL EQU 01H
TMRMODE EQU 0COH
DSPORT EQU 40H
DSPCMD EQU 41H
                                     ; ADDRESS OF PORT B (OUTPUT PORT)
                                    ; ADDRESS OF 8155 CONTROL REGISTER
                                    ; ADDRESS OF LO BYTE OF COUNTER
                                  ; ADDRESS OF LO BYTE OF COUNTER
; ADDRESS OF HI BYTE OF COUNTER
; START TIMER COMMAND
; STOP TIMER COMMAND
; VALUE OF 1 TO D/A
; SINGLE PULSE AND RELOAD
; ADDRESS OF LED DISPLAY DATA
                                   ; ADDRESS OF LED DISPLAY COMMAND REGISTER ; MOS SERVICE ACCESS
            EQU 1000H
MOS
           EQU 0EH
                                     ; DACOUT SERVICE
DACOUT
                                     ; LEDDEC SERVICE
LEDDEC
           EQU 13H
            EQU 16H
KEYSTAT
                                     ; KEYSTAT SERVICE
              ORG
                    OFF01H
                                     ; ORIGIN OF MEM IN 8155
                    E,ADCVAL
             MVI
                                    ; SET D/A TO LOW V
START:
              MVI
                    C, DACOUT
                                     ; MOS SERVICE #
              CALL MOS
              MVI
                     A, TMRSTOP ; STOP TIMER
              OUT
                    P_8155
                    D,0000H
              LXI
                                     ; CLR D,E (PUT 0'S IN LED DISPLAY)
              MVI
                    C, LEDDEC
                                     ; MOS SERVICE #
              CALL MOS
              MVI
                    A,80H
                                     ; "WRITE COMMAND" FOR DIGIT 0
              OUT
                    DSPCMD
              MVI A,00010111B ; WRITE "F" TO DIGIT 0
              OUT
                    DSPORT
              MVI
                    A,81H
                                     ; "WRITE COMMAND" FOR DIGIT 1
              OUT
                    DSPCMD
              MVI
                    A,11000001B ; WRITE PATTERN FOR "u" TO DIGIT 1
              OUT DSPORT
              ; begin discharging cap
                         ; CLEAR ACC
              XRA
                   A
                   P_OUT
              OUT
                                     ; SET PORT A LO
              ; Wait for keypad key press and update decimal point setting
              IN DIPSW ; GET SWO SETTING
WAIT:
              ANI
                     01
                                     : MASK OFF OTHER SWITCHES
              MVI C,5
                               ; DECIMAL DIG 5
              MOV
                    B,A
```

```
CALL DECPNT
XRI 0000001B
                                ; PLACES THE DECIMAL POINT
                               ; COMPLIMENT SW SETTING
           MOV
                 B,A
           MVI
                 C, 3
            CALL DECPNT
           MOV
                 B,A
                                ; SAVE SWITCH VAL
           MVT
                 C, KEYSTAT
                                ; MOS SERVICE #
                                ; GET KEYPAD STATUS
           CALL MOS
           MOV
                 A,H
            RAR
                                ; IF KEY NOT PRESSED
            JNC
                 WAIT
                                ; THEN WAIT
            ; Key pressed. Now charge the cap
           MVI
                 A,OFFH
                                ; SET OUTPUT1 HIGH
                                P OUT
           OUT
            ; Load timer with timebase value based on DIP switch setting
           VOM
                                ; IF DIPSWITCH1 IS ON
           RAR
           JNC
                                ; THEN GOTO HI
                 ΗI
LO:
           MVI
                 A,0E8H
                                ; LOAD TIMER W/ 1000 DECIMAL
                 P CNTLO
           OUT
           MVI
                 A,0C3H
            OUT
                 P CNTHI
            JMP
                 GO
                 A, OAH
HI:
           MVI
                               ; LOAD TIMER W/ 10 DECIMAL
            OUT
                 P CNTLO
           MVI
                 A,0C0H
                 P CNTHI
           OUT
                 A,TMRSTRT
                                ; START TIMER
GO:
           MVI
                 P 8155
           OUT
CAPCNT:
           MVI
                 A,1FH
                                ; CLEAR 7.5 INT (TIMER INTERRUPT)
           SIM
                                 ; SET INTERUPT MASK
            ; Poll the SID line till it goes high
            ; (when the comparator outputs a high)
           RIM
POLL2:
                                ; LOAD ACC WITH INT FLG STATUS
           RAL
                                ; CHECK IF SID HAS GONE HIGH
            JC
                 SHWCAP
                                ; IF SO THEN EXIT AND SHOW CAP VALUE
           RAL
                                ; CHECK IF 7.5 INT IS SET
            JNC
                 POLL2
                                ; IF NOT THEN POLL TILL SET
           INX
                                ; INCREMENT DE REGISTER PAIR WITH EACH 7.5
                 D
INTERRUPT
                 CAPCNT
           JMP
SHWCAP:
           MVI
                 C, LEDDEC
                               ; SHOW DECIMAL VALUE OF DE REGISTER PAIR
           CALL MOS
           MOV
                 A,B
           MVI
                 C,3
```

```
CALL DECPNT ; PLACE THE DECIMAL POINT XRI 00000001B ; COMPLIMENT SW SETTING
          MOV
               B,A
          MVI C,5
          CALL DECPNT
          ; the display shows the cap reading, now wait till
          ; a keypad key is pressed before going on.
          MVI C, KEYSTAT
                          ; MOS SERVICE #
WAITKY:
          CALL MOS
          MOV
               A,H
          RAR
                            ; IF A BUTTON WAS NOT PRESSED,
          JNC
               WAITKY
                            ; THEN POLL
          JMP
               START
                            ; ELSE TEST ANOTHER CAP
; **************
          IN: LOAD C W/ DIGIT #, LOAD B WITH A 1 OR 0
          B=1 DEC PNT ON, B=0 DEC PNT OFF
         OUT: NOTHING
; -----
          PUSH PSW
DECPNT:
          VOM
               A,B
          RAL
                            ; MOVE BIT 0 TO BIT 3 LOCATION
          RAT
          RAL
          ANI 00001000B
          MOV B, A
          MVI A,60H
          ADD
                            ; COMMAND TO READ DIGIT
               С
          OUT
               DSPCMD
               DSPORT
                            ; GET SEGMENT VALUES
          IN
          STA
               TEMP
                            ; SAVE A REG
          MVI
               A,80H
                            ; COMMAND TO WRITE DIGIT
          ADD
               ; RECALL A VALUE
11110111B ; TURN OFF DECT
          OUT
          LDA
                            ; TURN OFF DECIMAL POINT
          ANI
                            ; TURN ON IF SUPPOSED TO BE ON
          ORA
          OUT
              DSPORT
                            ; WRITE A TO DIGIT
          POP
               PSW
          RET
TEMP
          DS
               1
          END
```

ADDRESS	DATA	DESCRIPTION	ADDRESS	DATA	DESC	RIPTION
FF01	1E	MVI E,01	FF37	94		
FF02	01		FF38	FF		
FF03	0E	MVI C,0E	FF39	47	MOV	B,A
FF04	0E		FF3A	0E	MVI	C,16
FF05	CD	CALL 1000	FF3B	16		
FF06	00		FF3C	CD	CALL	1000
FF07	10		FF3D	00		
FF08	3E	MVI A,8D	FF3E	10		
FF09	8D		FF3F	7C	MOV	A,H
FF0A	D3	OUT 10	FF40	1F	RAR	
FF0B	10		FF41	D2	JNC	FF27
FF0C	11	LXI D,0000	FF42	27		
FF0D	00		FF43	FF		
FFOE	00		FF44	3E	MVI	A,FF
FFOF	ΟE	MVI C,13	FF45	FF		
FF10	13		FF46	D3	OUT	11
FF11	CD	CALL 1000	FF47	11		
FF12	00		FF48	78	MOV	A,B
FF13	10		FF49	1F	RAR	
FF14	3E	MVI A,80	FF4A	D2	JNC	FF58
FF15	80		FF4B	58		
FF16	D3	OUT 41	FF4C	FF		
FF17	41		FF4D	3E	MVI	A,E8
FF18	3E	MVI A,17	FF4E	E8		
FF19	17		FF4F	D3	OUT	14
FF1A	D3	OUT 40	FF50	14		
FF1B	40		FF51	3E	MVI	A,C3
FF1C	3E	MVI A,81	FF52	C3		•
FF1D	81	,	FF53	D3	OUT	15
FF1E	D3	OUT 41	FF54	15		
FF1F	41		FF55	C3	JMP	FF60
FF20	3E	MVI A,C1	FF56	60		
FF21	C1		FF57	FF		
FF22	D3	OUT 40	FF58	3E	MVI	A,OA
FF23	40		FF59	0A		
FF24	AF	XRA A	FF5A	D3	OUT	14
FF25	D3	OUT 11	FF5B	14		
FF26	11		FF5C	3E	MVI	A,C0
FF27	DB	IN 12	FF5D	C0		
FF28	12		FF5E	D3	OUT	15
FF29	E6	ANI 01	FF5F	15		
FF2A	01		FF60	3E	MVI	A,CD
FF2B	ΟE	MVI C,05	FF61	CD		
FF2C	05		FF62	D3	OUT	10
FF2D	47	MOV B,A	FF63	10		
FF2E	CD	CALL FF94	FF64	3E	MVI	A,1F
FF2F	94		FF65	1F		•
FF30	FF		FF66	30	SIM	
FF31	EE	XRI 01	FF67	20	RIM	
FF32	01		FF68	17	RAL	
FF33	47	MOV B,A	FF69	DA	JC	FF74
FF34	0E	MVI C,03	FF6A	74		. =
FF35	03	-,	-			
FF36	CD	CALL FF94	Continued	on next	page	

ADDRESS	DATA	חפפפו	RIPTION	ADDRESS	DATA	חפפט	RIPTION
FF6B	FF	DESC	RIPIION	FF90	FF	וספפת	RIPIION
FF6C	17	RAL		FF91	C3	JMP	FF01
FF6D	D2	JNC	FF67	FF92	01	UMP	FFUI
FF6E	67	DINC	FF67	FF93	FF		
FF6F	67 FF			FF93 FF94	rr F5	PUSH	PSW
		T NTS/	D				
FF70	13	INX	D DDC4	FF95	78	MOV	A,B
FF71	C3	JMP	FF64	FF96	17	RAL	
FF72	64			FF97	17	RAL	
FF73	FF	N 47 7 T	G 13	FF98	17	RAL	0.0
FF74	0E	MVI	C,13	FF99	E6	ANI	8 0
FF75	13	~~~		FF9A	08		
FF76	CD	CALL	1000	FF9B	47	MOV	B,A
FF77	00			FF9C	3E	MVI	A,60
FF78	10			FF9D	60		
FF79	78	MOV	A,B	FF9E	81	ADD	C
FF7A	0E	MVI	C,03	FF9F	D3	OUT	41
FF7B	03			FFA0	41		
FF7C	CD	CALL	FF94	FFA1	DB	IN	40
FF7D	94			FFA2	40		
FF7E	FF			FFA3	32	STA	FFB5
FF7F	EE	XRI	01	FFA4	B5		
FF80	01			FFA5	FF		
FF81	47	VOM	B,A	FFA6	3E	MVI	A,80
FF82	0E	MVI	C,05	FFA7	80		
FF83	05			FFA8	81	ADD	C
FF84	CD	CALL	FF94	FFA9	D3	OUT	41
FF85	94			FFAA	41		
FF86	FF			FFAB	3A	LDA	FFB5
FF87	ΟE	MVI	C,16	FFAC	B5		
FF88	16			FFAD	FF		
FF89	CD	CALL	1000	FFAE	E6	ANI	F7
FF8A	00			FFAF	F7		
FF8B	10			FFB0	В0	ORA	В
FF8C	7C	MOV	A,H	FFB1	D3	OUT	40
FF8D	1F	RAR		FFB2	40		
FF8E	D2	JNC	FF87	FFB3	F1	POP	PSW
FF8F	87			FFB4	C9	RET	

Calibration and Use

After loading the program, set the potentiometer for midscale and install the calibration capacitor. Press FUNC. then RUN (to enter run mode). The display should read "0000 μ F" with a decimal point in the "10's" place or in the "1000's" place. Change DIPSWITCH 0 to change the decimal point position. With the decimal point in the "10's" place, the Capacitor Meter program can measure capacitor values up to 999.9 μ F. With the decimal point in the "1000's" place, values up to 9.999 μ F can be measured. Once the scale is chosen, press any key on the keypad and the perceived value will be shown on the display. Press another key to start the program over again. This zero's out the numeric display and starts discharging the capacitor (indicated by LD0-LD7 being lit). For larger capacitors, such as 300 μ F, you need to wait up to 10 seconds for the capacitor to fully discharge after a reading, therefore it is recommended that smaller capacitors such as 1 μ F be used for calibration in the low range. Adjust the potentiometer and continue to test the calibration capacitor until an accurate reading is realized. Test several caps and record the results. Accuracies greater than 99% are possible.

NOTE: The most accurate results will be obtained when the PRIMER is powered up and the temperature allowed to stabilize over a period of 15 to 30 minutes.

Application 9: Interfacing a Stepper Motor to the PRIMER

Purpose

To show how a computer can be used to perform motion control using a stepper motor.

Goals

- 1. Build a stepper motor driver circuit.
- 2. Load a program that will demonstrate stepper motor control.

Materials

```
Qty. Description

PRIMER trainer

breadboard

SM4200 4 Phase stepper motor (Jameco part #105890. Call 1-800-831-4242)

7404 Hex Inverter

2N3904 NPN Transistors

N4001 Diodes

1 K\Omega, 1/4 Watt Resistor

220 \Omega, 1/4 Watt Resistor
```

Discussion

This lab shows how the PRIMER can be used to drive a stepper motor. The diagram below shows the electrical equivalent of a 4-phase stepper motor connected to the output port of the PRIMER. When the program first starts, OUTPUT2 and OUTPUT3 are energized. The stepper is now held in position because of the magnetic force pulling the rotor between the energized poles. A step can be made by turning on OUTPUT4 while turning off OUTPUT2. This moves the rotor one increment. To move one more increment, OUTPUT1 is turned on while OUTPUT3 is turned off. To go back to the original position, the sequence would be as follows: Turn on OUTPUT3 while turning off OUTPUT1, turn on OUTPUT2 while turning off OUTPUT4.

Circuit Description and Construction

The stepper motor cannot connect directly to the output port of the PRIMER because it uses 5 volt logic levels while the stepper motor operates on 12 volts. The current demand of the stepper motor is also a problem, since computer logic supplies very low current compared to the stepper motor's needs. The solution to these problems is an interface circuit. The circuit shown in the schematic provides the necessary interface from 5 volt logic to a 12 volt source required by the stepper. Transistors Q1-Q4 provide the current and voltage amplification while diodes D1-D4 and resistor R5 provide a feedback path for the back EMF generated when the poles are de-energized. The inverters are used to convert the negative logic on the PRIMER to positive logic and to prevent the stepper from being energized when the PRIMER is reset. The interface is connected to the low nibble (4 bits) of the PRIMER output port. The driver circuit should be built on a breadboard following the schematic. Once built, a small piece of solid wire should be tightly wrapped around the shaft of the stepper motor to serve as a pointing device.

Note: The stepper motor and driver circuit are powered from a power supply separate from the PRIMER itself. This is necessary because of the large current draw and noise produce by the stepper motor.

Using the Program

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF01	1E	MVI	E,37	FF0A	1E	MVI	E,FB
FF02	37			FF0B	FB		
FF03	16	MVI	D,01	FF0C	15	DCR	D
FF04	01			FF0D	CD	CALL	1000
FF05	ΟE	MVI	C,11	FFOE	00		
FF06	11			FFOF	10		
FF07	CD	CALL	1000	FF10	3E	MVI	A,33
FF08	00						
FF09	10			Continued	l on nex	t page	

ADDRESS FF11	DATA 33	DESCR	IPTION	ADDRESS FF49	DATA 29	DESCR	IPTION
FF12	32	STA	FFAC	FF4A	FF		
FF13	AC	SIA	FFAC	FF4B	06	MVI	B,02
						MVT	D, UZ
FF14	FF	VD 7	7)	FF4C	02	MTTT	C OD
FF15	AF	XRA	A	FF4D	0E	MVI	С,0В
FF16	32	STA	FFAD	FF4E	0B	CATT.	1000
FF17	AD			FF4F	CD	CALL	1000
FF18	FF	MOTA	T 7	FF50	00		
FF19	6F	MOV	L,A	FF51	10	14017	3 T
FF1A	47	MOV	B,A	FF52	7D	MOV	A,L
FF1B	C3	JMP	FF43	FF53	FE	CPI	0A
FF1C	43			FF54	0A	TMG	
FF1D	FF	14017	7 D	FF55	D2	JNC	FF4D
FF1E	78	MOV	A,B	FF56	4D		
FF1F	32	STA	FFAD	FF57	FF		_
FF20	AD			FF58	05	DCR	В
FF21	FF	~~~		FF59	CA	JZ	FF62
FF22	CD	CALL	FF4B	FF5A	62		
FF23	4B			FF5B	FF		
FF24	FF			FF5C	32	STA	FFAA
FF25	3A	LDA	FFAD	FF5D	AA		
FF26	AD			FF5E	FF		
FF27	FF			FF5F	C3	JMP	FF4D
FF28	47	MOV	В,А	FF60	4D		
FF29	16	MVI	D,00	FF61	FF		
FF2A	00			FF62	32	STA	FFAB
FF2B	58	MOV	E,B	FF63	AB		
FF2C	ΟE	MVI	C,13	FF64	FF		
FF2D	13			FF65	3 A	LDA	FFAA
FF2E	CD	CALL	1000	FF66	AA		
FF2F	00			FF67	FF		
FF30	10			FF68	47	MOV	B,A
FF31	7D	VOM	A,L	FF69	CD	CALL	FFA1
FF32	90	SUB	В	FF6A	A1		
FF33	CA	JZ	FF1E	FF6B	FF		
FF34	1E			FF6C	3A	LDA	FFAB
FF35	FF			FF6D	AB		
FF36	DA	JC	FF3F	FF6E	FF		
FF37	3F			FF6F	80	ADD	В
FF38	FF			FF70	6F	VOM	L,A
FF39	04	INR	В	FF71	C9	RET	
FF3A	AF	XRA	A	FF72	F5	PUSH	PSW
FF3B	5F	VOM	E,A	FF73	C5	PUSH	В
FF3C	C3	JMP	FF43	FF74	7B	VOM	A,E
FF3D	43			FF75	1F	RAR	
FF3E	FF			FF76	3A	LDA	FFAC
FF3F	05	DCR	В	FF77	AC		
FF40	AF	XRA	A	FF78	FF		
FF41	3 C	INR	A	FF79	DA	JC	FF80
FF42	5F	VOM	E,A	FF7A	80		
FF43	16	MVI	D,64	FF7B	FF		
FF44	64			FF7C	OF	RRC	
FF45	CD	CALL	FF72	FF7D	C3	JMP	FF81
FF46	72			FF7E	81		
FF47	FF						
FF48	C3	JMP	FF29	Continued	on nex	t page	

ADDRESS	DATA	DESCRIPTION		ADDRESS	DATA	DESCRIPTION	
FF7F	FF			FF95	C2	JNZ	FF94
FF80	07	RLC		FF96	94		
FF81	32	STA	FFAC	FF97	FF		
FF82	AC			FF98	00	NOP	
FF83	FF			FF99	15	DCR	D
FF84	DB	IN	11	FF9A	C2	JNZ	FF92
FF85	11			FF9B	92		
FF86	E6	ANI	F0	FF9C	FF		
FF87	F0			FF9D	D1	POP	D
FF88	47	VOM	B,A	FF9E	C1	POP	В
FF89	3A	LDA	FFAC	FF9F	F1	POP	PSW
FF8A	AC			FFA0	C9	RET	
FF8B	FF			FFA1	F5	PUSH	PSW
FF8C	E6	ANI	OF	FFA2	78	VOM	A,B
FF8D	OF			FFA3	07	RLC	
FF8E	B0	ORA	В	FFA4	07	RLC	
FF8F	D3	OUT	11	FFA5	80	ADD	В
FF90	11			FFA6	07	RLC	
FF91	D5	PUSH	D	FFA7	47	VOM	B,A
FF92	06	MVI	B,FF	FFA8	F1	POP	PSW
FF93	FF			FFA9	C9	RET	
FF94	05	DCR	В				

Once the program is started the LED display should read "0000 P0.". The "P0." Stands for "position" and "0000" indicates the relative position of the stepper referenced from its original position when the program was started (thus 0000 means it is in the same position as it was on start up). Press a two digit decimal number on the keypad and the stepper motor should move to that position with the display incrementing as the stepper moves. Once the stepper stops, enter 00 and the stepper should rotate the opposite direction with the display decrementing and finally stopping at 00. The stepper motor should now be in the exact position it was in when the program was first started.

Program Description

The subroutines are described as follows:

DBLDECIN - Waits for two decimal keys to be pressed then returns the decimal equivalent in the L register. The routine contains error trapping that will not allow a key greater than 9 or a control key to be accepted.

MULTX10 - Used by DBLDECIN to multiply the first key press by a factor of ten. This routine may come in handy in other programs.

STEPR - Moves the stepper motor one step forward or backward. The speed can be controlled by changing the label SPEED, and the direction is controlled by the value in the E register.

```
STEPPER MOTOR PROG
;
                            ; ADRES OF PORT A
P IN
          EOU
                12H
                            ; ADRES OF PORT B
P OUT
          EQU
                11H
                1000H
MOS
          EOU
                            ; MOS SERVICE
                           ; VECTOR FOR KEYIN SERVICE
KEYIN
          EOU
                OBH
LEDDEC
           EQU
                13H
                            ; VECTOR FOR LEDDEC SERVICE
```

```
SPEED
           EQU
                20
                             ; STEPR MOTOR SPEED
           EQU
LEDOUT
                11H
           ORG
                OFF01H
                             ; ORIGIN OF MEM IN 8155
START:
           MVI
                E,00110111B ; THE VALUE FOR "P"
           MVI
                D.1
                C, LEDOUT
           TVM
           CALL MOS
                E,11111011B ; THE VALUE FOR "O."
           MVI
           DCR
           CALL MOS
           MVI
                A,00110011B ; INITIALIZE STEPPER MOTOR ;
                             ; STORE IN STEP
           STA
                STEP
           XRA
                A
                             ; CLR A REG
           STA
                            ; CLR FINLPOS VARIABLE
                FINLPOS
           MOV
                L,A
                             ; CLR L REG
           VOM
                B,A
                             ; CLR B REG
                SKPCW
                             ; JUMP TO OUTPUT START POS TO STEPPER
           JMP
MAIN:
           MOV
                A,B
                             ; NEW POSITION BECOMES OLD POSITION
           STA
                FINLPOS
           CALL DBLDECIN
                             ; GET KEY BOARD VALUE
           LDA
                FINLPOS
           MOV
                B,A
STEPLUP:
           MVI
                D,0
                             ; CLR D REG
           MOV
                E,B
                             ; PLACE CURRENT POSITION ON LED DISPLAY
                C, LEDDEC
           MVI
           CALL MOS
           MOV
                A,L
                             ; WHERE SUPPOSED TO BE
           SUB
                             ; - WHERE AT
                В
                MAIN
                            ; IF 0 EXIT LUP AND START OVER
           JΖ
           JC
                             ; IF NEG GOTO CW ELSE CCW
                CW
CCW:
           INR
                            ; INC CURENT POSITION
                Α
           XRA
                             ; CLR A REG
           MOV
                E,A
                             ; E = 0
           JMP
                SKPCW
CW:
           DCR
                В
                             ; DEC CURRENT POS
           XRA
                             ; CLR A REG
                A
           INR
                             ; A = 1
                A
                E,A
                             ; E = 1
           MOV
SKPCW:
           MVI
                D, SPEED
                            ; SET SPEED OF STEPR
           CALL STEPR
           JMP
                STEPLUP
                            ; REPEAT
```

```
; DOUBLE DECIMAL IN
; INPUT: NOTHING.
; OUTPUT: L = BINARY VALUE OF A TWO DECIMAL DIGIT INPUT FROM KEYPAD
; ------
DBLDECIN:
        MVI B,2 ; USED AS COUNTER TO CALL KEYIN TWICE
GETPOS:
         MVI
             C, KEYIN
         CALL MOS
                      ; CALL KEYIN
         MOV A,L
                      ; A = KEY VALUE
         CPI 10
                       ; IF VALUE IS > 10 ENTER AGAIN
         JNC GETPOS
                      ; DEC LOOP COUNTER
         DCR B
                      ; IF ZERO THEN EXIT
         JZ LOLBLE
         __ HIDIG
JMP GETPOS
                      ; IF NOT THEN STORE FIRST KEYPRESS AS
                      ; HIGH DIGIT
LOLBLE:
                      ; STORE SECOND DIGIT AS LOW DIGIT
         STA LODIG
                       ; LOAD HIGH DIG
         LDA HIDIG
                      ; MOV TO B
         MOV
             B,A
                      ; MULTIPLY IT BY TEN
         CALL MULTX10
         LDA LODIG
                      ; LOAD LOW DIG
                      ; ADD IT TO HI DIGIT
         ADD B
         MOV
                       ; STORE FINAL DEC VAL IN L
            L,A
         RET
; IN: D = SPEED. E = DIRECTION, 1 = CW 0 = CCW
; OUT: NOTHING
; ------
STEPR:
                     ; SAVE A STATUS
         PUSH PSW
         PUSH B
                       ; SAVE B STATUS
         MOV A, E
         RAR
                      ; LOAD STEP
         LDA
            STEP
         JC
             LEFT
                       ; IF E = 1 THEN GOTO LEFT
         RRC
                       ; ELSE ROTATE STEP RIGHT
         JMP
             SKIP
                       ; SKIP NEXT INSTRUCTION
LEFT:
                       ; ROTATE STEP LEFT
         RLC
SKIP:
         STA
             STEP
                       ; STORE BACK AS STEP
         IN
             P OUT
                       ; MASK OFF 4 LSB OF OUTPUT PORT
             OFOH
         ANI
         MOV
             B,A
         LDA
             STEP
                       ; LOAD STEP
             OFH
                       ; MASK OFF 4 MSB OF STEP
         ANI
                      ; OR WITH 4 LSB OF OUTPUT PORT
         ORA
             В
         OUT
             P OUT
                       ; OUT STEP AS 4 LSB'S AND CURRENT STATUS OF 4
                       ; MSB'S OF OUTPUT PORT REMAIN UNCHANGED.
         PUSH D
DELAY:
         MVI B, OFFH ; DELAY TO CONTROL SPEED OF STEPPER
```

```
DEL:
         DCR
              В
              DEL
         JNZ
         NOP
         DCR
              D
         JNZ
              DELAY
         POP
              D
         POP
              В
              PSW
         POP
         RET
; *******************
; INPUT: B = VALUE TO MULT BY 10, MUST BE LESS THAN 25 DECIMAL
MULTX10:
         PUSH PSW
         VOM
              A,B
         RLC
         RLC
         ADD
              В
         RLC
         VOM
              B,A
         POP
              PSW
         RET
HIDIG
     DS 1
DS 1
         DS
              1
LODIG
STEP
         DS
              1
FINLPOS
        DS
              1
         END
```

Application 10: Interfacing an 8255A PPI to the PRIMER

Purpose

To introduce the method of interfacing an I/O mapped device to the PRIMER by building a simple circuit using the 8255A PPI.

Materials

Qty.	Description
1	PRIMER trainer
1	8255A PPI Chip
1	Breadboard
2	50 pin ribbon cable female header connector
1	6 inch portion of 50 wire ribbon cable
1	7 inches of wire-wrap wire and a wire-wrapping tool
40	18 gauge jumper wires 4 to 6 inches long
1	1 K Ω 5% 1/4 W resistor
24	LED's

Introduction to the 8255A PPI

The 8255A PPI (programmable peripheral interface) is a general purpose programmable I/O device designed to use with microprocessors. Its function is to interface peripheral equipment to the microcomputer system bus. The data I/O bus of the 8255A are the lines marked D0-D7. Input and output instructions from the microprocessor change the states of the RD*, WR* and CS* lines (read, write and chip select respectively) which in turn control the 8255A data I/O bus and determine whether it will be used for input, output or whether it will be disabled (in a high-impedance state).

The CS* pin is the Chip Select for the 8255A. A CS* pin can be thought of as a master select pin because unless it is in its active state (low) the 8255A is inactive and its data I/O bus is in a high-impedance state and all of its control pins are ignored (except RESET). A CS* pin is common among microprocessor peripherals and memories because it allows many devices to use a common data bus by allowing the microprocessor and its support circuitry to control which device will use the data bus.

If the 8255A's CS* pin is low, it is selected and the RD* and WR* pins determine whether data will be read from or written to it, and the A0 and A1 pins (address bus pins) determine which of the 3 read registers and 4 write registers will be used. This is shown in the chart below.

PORT SELECT CHARACTERISTICS								
(READ FROM 8255A)								
A 1	A0	RD*	WR*	CS*				
0	0	0	1	0	Port A			
0	1	0	1	0	Port B			
1	0	0	1	0	Port C			
1	1	0	1	0	(Illegal condition)			
(WRITE	(WRITE TO 8255A)							
A1	A0	RD*	WR*	CS*				
0	0	1	0	0	Port A			
0	1	1	0	0	Port B			
1	0	1	0	0	Port C			
1	1	1	0	0	Control register			

(DISABLE 8255A)						
A1	A0	RD*	WR*	CS*		
Х	Х	Х	Х	1	3-state	
1	1	0	1	0	Illegal	
Х	Х	1	1	0	3-state	

There are three modes of operation that can be selected by the system software.

Mode 0 - Basic input/output

Mode 1 - Strobed Input/output

Mode 2 - Bi-Directional Bus

For this experiment we used mode 0. In this mode, the 8255A has three 8 bit I/O ports (ports A, B and C) which can be individually configured as inputs or outputs. Port C is unique in that it can be treated as two 4 bit ports which are programmed individually as inputs or outputs. When a "high" is seen at the 8255A's RESET pin, this clears all the internal registers, including the control register, and all ports are set to the input mode. In the circuit described below, the RESET pin is connected to the PRIMER reset circuit so the 8255A can be reset when the PRIMER reset button is pressed or when the PRIMER is powered up.

Circuit Description

Refer to the schematic. The 8255A adapts easily to the 8085 architecture since it was originally designed to be an 8080/8085 peripheral. The necessary control lines and busses are on the expansion connector CN1 and have the same labels as the 8255A pins, except for EXTIOCS*. The EXTIOCS* is a I/O chip select output that is decoded on-board which is connected to CS* of the 8255A. The I/O address range where EXTIOCS* is active is from 0C0H to 0FFH. Since we are only using address lines A0 and A1 addresses 0C0H to 0C3H can be used to select the 8255A registers and ports.

The pins of ports A, B and C will be connected to LED's which are in turn connected to a common current limiting resistor. Note that it is allowable to use a common resistor if only one LED is active at a time. If a program is written which turns on more than one at a time, the LED's will become dim and you could possibly burn out the resistor if its power rating is too low.

The Vcc and ground pins are not shown on the schematic. Ground will come from pin 27 of CN1 and go to pin 7 of the 8255A (note that all references to pin numbers in this application are based on a 40 pin DIP package pinout). The section of wire-wrap wire can be used to connect the Vcc (+5v) supply available on CN3 pin 21 or 22, to pin 26 of the 8255A. If it is desired to have more than one LED on at a time, you should power the circuit with a separate 5v supply and install (24) 1k ohm resistors between ground and each LED. You will also need to determine the maximum power dissipation of your particular 8255A to make sure the load applied doesn't damage it.

All connections to the PRIMER will be made by connecting one end of a 50 pin ribbon cable to the expansion connector and using jumper wires to connect the other end to the breadboard. To make the 50 pin ribbon cable, we need to orient the ribbon and the 50 pin connectors so that when the cable is assembled and plugged into the PRIMER, the female connector on the other end is pointing up. Most 50 pin female connectors have an arrow or mark indicating pin 1. Orient the connector so it will connect to pin 1 of the header when the ribbon is pointed away from the board. Similarly, some 50 wire ribbon cables have one edge wire that is marked in some way. If your cable is like this, the convention is to orient the cable so the marked wire is on the same side as pin 1 of the header. On the other end of the cable, the female connector should point up, with the female header mark for pin 1 on the same edge of the cable as the mark on the other female header. When the headers are properly oriented on the ribbon cable, they should be pressed into the cable wire with a vise. (Only apply enough pressure to close the protective back onto the header connector or it could be damaged). When the cable is made this way, pin 1 is easily found on the cable and it can be used as a reference to find the other pins needed for this application.

Program Execution

The program lights up 24 LED's in sequential order, one LED at a time. The sequence is: port A, port C, port B, repeat. The current port in the sequence starts with bit 0 high, and moves bit by bit to bit 7 then all its bits are cleared and the bit pattern is followed in the next port in sequence.

Refer to the assembly language listing below. The 8255A is put in mode 0, and Ports A, B, and C are programmed as outputs to drive the LED's. The carry flag is set and the accumulator is cleared, then the main loop is entered. The main loop has three loops nested within it: one for port A, C and B and they are executed in that order. Each of the nested loops perform the same function but for different ports. They rotate the carry bit through the accumulator and before each display there is a CALL to a delay routine to allow the previous output LED to be shown long enough to tell us where the bit is within the 24 port pins. When the carry bit has rotated out of the accumulator the loop falls through to the next nested loop. When all three nested loops are finished the program jumps back to the first nested loop.

```
; 8255 PORT A
PORTA
         EOU
                  0C0H
                               ; 8255 PORT B
PORTB
         EOU
                  OC1H
                               ; 8255 PORT C
PORTC
         EQU
                  0C2H
                               ; CONTROL REG
CONTRL
         EQU
                  0C3H
DELAY
                               ; SERVICE FOR READING KEYPAD
         EQU
                  14H
MOS
         EQU
                  1000H
                               ; MOS CALL ADDRESS
         ORG
                  OFF01H
                               ; CONFIGURE MODE 0 WITH ALL PORTS OUTPUT
         MVI
                  A,80H
                  CONTRL
                               ; WRITE TO CONTROL REG.
         OUT
                               ; START WITH ACC=0
         MVI
                  A, 0
                               ; SET CY
         STC
                  SHFTDLY
         CALL
                               ; SHIFT ACC WITH CY
SHPRTA:
         OUT
                  PORTA
         JNC
                  SHPRTA
                               ; LOOP TILL CY SET
```

```
SHPRTC: CALL
                  SHFTDLY
                             ; SHIFT ACC WITH CY
         OUT
                  PORTC
         JNC
                  SHPRTC
                              ; LOOP TILL CY SET
SHPRTB: CALL
                  SHFTDLY
                              ; SHIFT ACC WITH CY
         OUT
                  PORTB
         JNC
                  SHPRTB
                              ; LOOP TILL CY SET
         JMP
                  SHPRTA
                               ; DO PORT A AGAIN
; Rotate the Acc with the CY and delay if CY not set.
SHFTDLY: MVI
                  C,DELAY
                              ; SELECT THE DELAY SERVICE
         LXI
                  H,8000H
                             ; DELAY PERIOD
                              ; DO A MOS SERVICE CALL IF NO CY
; ROTATE LEFT THROUGH CY
         CNC
                  MOS
         RAL
         RET
```

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCRIPTION	
FF01	3E	MVI	A,80	FF17	FF		
FF02	80			FF18	CD	CALL	FF23
FF03	D3	OUT	C3	FF19	23		
FF04	C3			FF1A	FF		
FF05	3E	MVI	A,00	FF1B	D3	OUT	C1
FF06	00			FF1C	C1		
FF07	37	STC		FF1D	D2	JNC	FF18
FF08	CD	CALL	FF23	FF1E	18		
FF09	23			FF1F	FF		
FFOA	FF			FF20	C3	JMP	FF08
FF0B	D3	OUT	CO	FF21	08		
FFOC	C0			FF22	FF		
FF0D	D2	JNC	FF08	FF23	ΟE	MVI	C,14
FFOE	08			FF24	14		
FFOF	FF			FF25	21	LXI	H,8000
FF10	CD	CALL	FF23	FF26	00		•
FF11	23			FF27	80		
FF12	FF			FF28	D4	CNC	1000
FF13	D3	OUT	C2	FF29	00		
FF14	C2			FF2A	10		
FF15	D2	JNC	FF10	FF2B	17	RAL	
FF16	10			FF2C	C9	RET	

Application 11: Pulse Tone Dialer

Purpose

To construct a phone dialer.

Goals

- 1. Build and test an autodialer circuit.
- Load a program that will initialize the DTMF chip and send a phone number stored in memory.

Materials

```
Qty.
      Description
      Primer Trainer
1
      RJ-11C Phone Jack
1
1
      CH1817 DAA Module
1
      MT8889C Integrated DTMF Transceiver
1
      TTL 7404
6
      0.1 µF capacitors
      22 µF capacitor
1
2
      100 K\Omega resistors
      375 K\Omega resistor
1
      3.8 MHz crystal
1
      10 K\Omega resistor
1
```

Overview

This circuit is built around the MT8889C DTMF Transceiver. This chip has several internal registers that can be used for status, control, and data. Access to these registers is by way of pin 49 from the Primer bus expansion bus header to pin 9 on the MT8889C. The state of this pin controls which ports to write or read from. Port 0C0h is used for read/write access to the data register, while port 0C1h is used to write to the control registers or read the status register. The chip also has a status line that can be read from the I/O expansion bus, pin number 3. This status line can be polled to see if a valid DTMF tone has been transmitted or received.

The receiver can be ordered from Bell Industries (www.bellind.com), 1-800-289-2355; Jaco Electronics, 1-800-989-5226; or Sterling Electronics (www.sterling.com), 1-800-745-5500.

Also present in this circuit is a CH1817 DAA module. The purpose of this module is to provide an FCC approved interface to any phone system. This module connects directly to the telephone line on one side and to the transceiver on the other. It sets the line either on or off-hook and takes the DTMF signal generated by the transceiver and puts it onto the line. Access to this is through the I/O expansion bus, pin #2. This line is inverted so that sending a 0 will set the line to off-hook. Once set to off-hook the chip can then put the DTMF signals onto the telephone line. After all of the tones have been sent it should then be set back to on-hook to free up the line. More information on the internal functions is located in Table 1.

The DAA module can be ordered directly from Cermetek (www.cermetek.com), 1-800-882-6271.

Program Description

The program first sets the DAA module to off-hook and then initializes the MT8889C (the complete initialization sequence is found in Table 5). Once the MT8889C has been initialized, the software then sets the operating parameters of the chip. The software sets it to enable the tone output, send DTMF

tones, interrupt enabled, and burst mode. A more complete description of the usage of the control registers and their bits are located in Tables 2 and 3. The program then waits for a key (0-4) on the Primer Trainer to be pressed. Once pressed it will jump to the address of the phone number that had been previously been entered in memory. Warning: the phone numbers that have been defined in this program should not be used to actually dial out. You should disconnect the phone line immediately after dialing in order to avoid annoying a person which might actually have one of these numbers and to avoid long-distance charges. The safest solution is to redefine these phone numbers to your own number or to known local numbers. This program uses a static algorithm and therefore each phone number string must be 12 bytes long and terminate with a 0FFh. A number that is less than 11 digits must be padded on the left side by 0FFh (modifying the code to take dynamic numbers is left as an challenge to the reader). Once the program jumps to the first memory location of the phone number it checks the condition of the transceiver to ensure that it is ready to accept data. When it is ready it sends the tone and waits for the transceiver to pass it off to the DAA module, which in turn puts it onto the phone line. In addition it also shows the digit being sent on display #2. The program then polls the status register on the transceiver to check if it is ready and once it is ready it will send the second tone. More information on the status register is located in Table 4 and a sample control routine is located in Table 6. This continues until the program reads an FFh and at that point it breaks out from the loop and resets the DAA module to on-hook so that the line is freed up for other devices. If a phone is hooked up in parallel, or if one uses a telephone line simulator one can hear the DTMF tones being sent from the DAA module down the line.

RS0	WR	RD	FUNCTION
0	0	1	Write to Transmit Data Register
0	1	0	Read from Receive Data Register
1	0	1	Write to Control Register
1	1	0	Read from Status Register

Table 1
Internal Register Functions

BIT	NAME	DESCRIPTION
В0	TOUT	Tone Output Control. A logic high enables the tone output; a logic low
		turns the tone output off. This bit controls all transmit tone functions.
B1	CP / DTMF	Call Progress or DTMF Mode Select. A logic high enables the receive
		call progress mode; a logic low enables DTMF mode.
B2	IRQ	Interrupt Enable. A logic high enables the interrupt function; a logic
		low de-activates the interrupt function.
В3	RSEL	Register Select. A logic high selects control register B for the next
		write cycle to the control register.

Table 2
Control Register A Description

BIT	NAME	DESCRIPTION
B0	BURST	Burst Mode Select.
B1	TEST	Test Mode Control. A logic high enables the test mode; a logic low deactivates the test mode.
B2	S/D	Single or Dual Tone Generation. A logic high selects the single tone output; a logic low selects the dual tone (DTMF) output.
B3	RSEL	Column or Row Tone Select. A logic high selects a column tone output; a logic low selects a row tone output.

Table 3
Control Register B Description

BIT	NAME	STATUS FLAG SET	STATUS FLAG CLEARED
B0	IRQ	Interrupt has occurred.	Interrupt is inactive. Cleared
		Bit one (b1) or bit two	after Status Register is read.
		(b2) is set.	
B1	TRANSMIT DATA	Transmitter is ready for	Cleared after Status Register is
	REGISTER EMPTY	new data	read or when in non-burst mode.
B2	RECEIVE DATA	Valid data is in the	Cleared after Status Register is
	REGISTER FULL	Receive Data Register	read.
В3	DELAYED STEERING	Set upon the valid	Cleared upon the detection of a
		detection of the absence	valid DTMF signal.
		of a DTMF signal.	

Table 4
Status Register Description

INITIALIZATION PROCEDURE

A software reset must be included at the beginning of all programs to initialize the control registers after a power up. The initialization procedure should be implemented 100 ms after power up.

					DA	IA	
Description:			RD	В0	B1	B2	B3
1.	Read Status Register	1	0	Χ	Χ	X	X
2.	Write to Control Register	0	1	0	0	0	0
3.	Write to Control Register	0	1	0	0	0	0
4.	Write to Control Register	0	1	1	0	0	0
5.	Write to Control Register	0	1	0	0	0	0
6.	Read Status Register	1	0	Χ	Χ	Χ	X

Table 5

TYPICAL CONTROL SEQUENCE FOR BURST MODE APPLICATIONS

Transmit DTMF tones of 50 ms burst/50 ms pause and Receive DTMF Tones.

Sequence:

- 1. Write to Control Register A
- 2. Write to Control Register B
- 3. Write to Transmit Data Register (send a digit 7)
- 4. Wait for an Interrupt or Poll Status Register
- 5. Read the Status Register
 - If bit 1 is set, the Tx is ready for the next tone.
 Write to Transmit Register (send a five)
 - If bit 2 is set, a DTMF tone has been received Read the Receive Data Register
 - If both bits are set Read the Receive Data Register Write to Transmit Data Register

	DATA					
RS0	В3	B2	B1	В0		
1	1	1	0	1		
1	0	0	0	0		
0	0	1	1	1		
1	Х	Х	Χ	Χ		
0	0	1	0	1		
0	Х	Х	Χ	Χ		
0	Х	Х	Х	Х		
0	0	1	0	1		

Table 6

The assembly language code is listed below:

```
STARTADD
           EOU
                 0FF01h
                 0FEh
OFFHOOK
           EQU
                            ; STARTING ADDRESS IN MEMORY
           ORG
                 STARTADD
                 A,OFFHOOK
MAIN:
           MVI
                            ; SET LEAST SIG BIT TO 0
           OUT
                 011h
                            ; SET DAA MODULE TO OFF-HOOK
           ; INITALIZATION SEQUENCE FOR MT8889C
                 OC1h ; READ STATUS REGISTER
           TN
                 A,00h
                           ; BYTES TO BE SENT TO CONTROL REGISTER
           MVI
           OUT
                0C1h
                           ; WRITE TO CONTROL REGISTER
           OUT
                0C1h
                           ; WRITE AGAIN TO CONTROL REGISTER
                A,08h
           MVI
                            ; SET LEFT BIT HIGH ON FIRST BYTE
           OUT
                 0C1h
                            ; WRITE TO CONTROL REGISTER
                 A,00h
           MVI
                            ; RESET THE BYTE
                 0C1h
                            ; WRITE IT TO CONTROL REGISTER
           OUT
           IN
                 0C1h
                            ; READ THE STAUS REGISTER
           ; END INITALIZATION SEQUENCE
           MVI
                 A,0Dh
                            ; SET MT8889C TO TONE OUT, DTMF, IRQ,
                            ; SELECT CONTROL REGISTER B
                           ; WRITE TO CONTROL REGISTER A
           OUT
                0C1h
           MVI
                A,00h
                           ; BURST MODE
           OUT
                 0C1h
                           ; WRITE TO CONTROL REGISTER B
           MVI
                 C,0Bh
                            ; SERVICE KEYIN
           CALL 1000h
                            ; CALL SERVICE
           MOV
                 H,L
                            ; MOVE THE KEYVALUE TO H
           VOM
                 D,L
                            ; MOVE THE KEYVALUE TO D
           ; MULTIPLY BY 12 (X = ((Y*2*2) + Y + Y)*2
           DAD H
                            ; ADD H TO REGISTER PAIR HL (Y*2)
           DAD
                            ; ADD H TO REGISTER PAIR
```

```
DAD
                            ; ADD D TO REGISTER PAIR HL (+Y)
                             ; ADD D TO REGISTER PAIR HL (+Y)
            DAD
                 D
                            ; ADD H TO REGISTER PAIR HL (*2)
            DAD
                 Η
                            ; MOVE THE OFFSET TO C
            VOM
                 C,H
                 B,00h
                            ; INITALIZE THE LEFT BYTE OF BC REGISTER PAIR
           MVI
                            ; GO TO FIRST ADDRESS OF PHONE NUMBER ARRAY
            LXI
                 H, PHONE
            DAD
                             ; ADD THE OFFSET VALUE IN BC TO HL
LOOP:
           MOV
                 A,M
                             ; GET THE PHONE NUMBER DIGIT
            MOV
                 E,A
                            ; SEND IT TO REGISTER E FOR DISPLAY
                 B,0FFh
                            ; TERMINATION VALUE
            MVI
           MVI
                 C,012h
                            ; SERVICE 012h
            CMP
                 В
                            ; IS LAST VALUE THE TERMINATION VALUE
            JΖ
                 EXIT
                            ; IF SO, DONE
                             ; ELSE WRITE DIGIT TO DTMF TRANSCEIVER
           OUT
                 0C0h
                            ; CLEAR LEFT DISPLAY BYTE
           MVI
                 d,00h
                            ; DELAY TIME
           MVI
                 H,0FFh
                            ; CALL SERVICE 12h
            CALL 1000h
           MVI
                 C,014h
                            ; SERVICE 14h
            CALL 1000h
                            ; CALL SERVICE 14h
                  0C1h
                             ; READ THE STATUS REGISTER
READ:
           IN
                                                          D,02h ; STORE 02h
            ANI
                  02h
                             ; AND VALUE WITH 02hMVI
IN D
            CMP
                 D
                             ; CMP 02h WITH ANDed STATUS
            JZ
                 INCREMENT ; IF = 0 READY FOR NEXT DIGIT
                             ; ELSE WAIT ANOTHER CYCLE FOR BUFFER TO FLUSH
            JMP
                 READ
INCREMENT:
           INX
                 Η
                             ; MOVE TO NEXT DIGIT
                 LOOP
                             ; GO BACK AND DO IT ALL OVER AGAIN
            JMP
EXIT:
           MVI
                 A,0FFh
                             ; SET DAA MODULE TO ON-HOOK
            OUT
                 11h
                             ; WRITE TO OUTPUT PORT
            ; PHONE NUMBERS - ONE DIGIT PER BYTE, MUST HAVE 12 VALUES (11
DIGITS MAX
            ; AND ONE FFh VALUE TO SIGNIFY TERMINATION OF SEQUENCE
            ; **WARNING** the phone numbers that have been defined in this
            ; program should not be used to actually dial out. You should
            ; disconnect the phone line immediately after dialing in order to
            ; avoid annoying a person which might actually have one of these
            ; numbers and to avoid long-distance charges.
            ; 123-4567
PHONE
           DB
                  1h, 2h, 3h, 4h, 5h, 6h, 7h, 0FFh, 0FFh, 0FFh, 0FFh, 0FFh
            ; 987-6543
            DB
                 9h, 8h, 7h, 6h, 5h, 4h, 3h, 0FFh, 0FFh, 0FFh, 0FFh, 0FFh
            ; 456-7890
                 4h, 5h, 6h, 7h, 8h, 9h, 0h, 0FFh, 0FFh, 0FFh, 0FFh, 0FFh
            ; 1-800-483-3737 (GTE long distance service -as of 12/27/99-)
                  1h, 8h, 0h, 0h, 4h, 8h, 3h, 3h, 7h, 3h, 7h, 0FFh
            DB
            END
```

Load the following machine language program into memory:

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF01	3E	MVI	A,0FEh	FF37	12		
FF02	FE			FF38	В8	CMP	В
FF03	D3	OUT	011h	FF39	CA	JZ	EXIT
FF04	11			FF3A	5B		
FF05	DB	IN	0C1h	FF3B	FF		
FF06	C1			FF3C	D3	OUT	0C0h
FF07	3E	IVM	A,00h	FF3D	C0		
FF08	00			FF3E	16	IVM	D,00h
FF09	D3	OUT	0C1h	FF3F	00		
FFOA	C1			FF40	26	MVI	H,0FFh
FF0B	D3	OUT	0C1h	FF41	FF		
FF0C	C1			FF42	CD	CALL	1000h
FFOD	3E	MVI	A,08h	FF43	00		
FFOE	08			FF44	10		
FFOF	D3	OUT	0C1h	FF45	ΟE	MVI	C,014h
FF10	C1			FF46	14		
FF11	3E	MV	A,00h	FF47	CD	CALL	1000h
FF12	00			FF48	00		
FF13	D3	OUT	0C1h	FF49	10		
FF14	C1			FF4A	DB	IN	0C1h
FF15	DB	IN	0C1h	FF4B	C1		
FF16	C1			FF4C	E6	ANI	02h
FF17	3E	MVI	A,0Dh	FF4D	02		
FF18	0D			FF4E	16	MVI	D,02h
FF19	D3	OUT	0C1h	FF4F	02		
FF1A	C1			FF50	BA	CMP	D
FF1B	3E	MVI	A,00h	FF51	CA	JZ	INCREMENT
FF1C	00		,	FF52	57		
FF1D	D3	OUT	0C1h	FF53	FF		
FF1E	C1			FF54	C3	JMP	READ
FF1F	0E	MVI	C,0Bh	FF55	4A		
FF20	0B		-,	FF56	FF		
FF21	CD	CALL	1000h	FF57	23	INX	Н
FF22	00			FF58	C3	JMP	LOOP
FF23	10			FF59	32		
FF24	65	MOV	H,L	FF5A	FF		
FF25	55	MOV	D, L	FF5B	3E	MVI	A,0FFh
FF26	29	DAD	H	FF5C	FF		,
FF27	29	DAD	Н	FF5D	D3	OUT	11h
FF28	19	DAD	D	FF5E	11	001	1111
FF29	19	DAD	D	FF5F	01	DB	1h,2h,3h,4h,
FF2A	29	DAD	Н	1131	0 1	בב	5h,6h,7h,0FFh,
FF2B	4C	MOV	С,Н				OFFh, OFFh,
FF2C	06	MVI	B,00h				OFFh, OFFh
FF2D	00	1111	<i>B</i> , 0011	FF60	02		01111, 01111
FF2E	21	LXI	H, PHONE	FF61	03		
FF2F	5D	ПХТ	II, FIIONE	FF62	04		
FF30	FF			FF63	05		
FF31	09	DAD	В	FF64	06		
FF32	7E	VOM	A,M	FF65	07 EE		
FF33	5F	VOM	E,A	FF66	FF		
FF34	06 EE	MVI	B,0FFh	FF67	FF		
FF35	FF	N/17.7.T	C 012h	Continue	l an	4	
FF36	0E	MVI	C,012h	Continued	on nex	ι page	•

ADDRESS FF68 FF69 FF6A	DATA FF FF FF	DESCR	IPTION	ADDRESS FF7A FF7B FF7C	DATA 07 08 09	DESCR	RIPTION
FF6B	09	DB	9h,8h,7h,6h,	FF7D	00		
			5h,4h,3h,0FFh,	FF7E	FF		
			0FFh,0FFh,	FF7F	FF		
			0FFh,0FFh	FF80	FF		
FF6C	8 0			FF81	FF		
FF6D	07			FF82	FF		
FF6E	06			FF83	01	DB	1h,8h,0h,
FF6F	05						0h,4h,8h,3h,
FF70	04						3h,7h,3h,7h,
FF71	03						0FFh
FF72	FF			FF84	08		
FF73	FF			FF85	00		
FF74	FF			FF86	00		
FF75	FF			FF87	04		
FF76	FF			FF88	08		
FF77	04	DB	4h,5h,6h,	FF89	03		
			7h,8h,9h,0h,	FF8A	03		
			0FFh,0FFh,	FF8B	07		
			0FFh,0FFh,	FF8C	03		
			0FFh	FF8D	07		
FF78 FF79	05 06			FF8E	FF		

Application 12: Pulse Tone Receiver

Purpose

To construct a phone receiver

Goals

- 1. Build and test a receiving circuit.
- 2. Load a program that will initialize the DTMF chip and perform actions on two relays from remote DTMF signals.

Materials

Qty. **Description** Primer Trainer 1 RJ-11C Phone Jack 1 CH1817 DAA Module 1 MT8889C Integrated DTMF Transceiver 1 TTL 7404 6 0.1 µF capacitors 22 µF capacitor 1 2 100 K Ω resistors 1 375 $K\Omega$ resistor 1 3.8 MHz crystal 10 K Ω resistor 1

Overview

This application has a variety of uses. It can be used in any situation where ones requires the ability to remotely access a device through a telephone line. For example, one could use this device to remotely turn a set of lights on or off or turn a series of industrial relays on or off. It is designed to run in a continuous mode and represents how an embedded application should execute.

This circuit is built around the MT8889C DTMF Transceiver. This chip has several internal registers that can be used for status, control, and data. Access to these registers is by way of pin 49 from the Primer bus expansion bus header to pin 9 on the MT8889C. The state of this pin controls which ports to write or read from. Port 0C0h is used for read/write access to the data register, while port 0C1h is used to write to the control registers or read the status register. The chip also has a status line that can be read from the I/O expansion bus, pin number 3. This status line can be polled to see if a valid DTMF tone has been transmitted or received.

The receiver can be ordered from Bell Industries (www.bellind.com), 1-800-289-2355; Jaco Electronics, 1-800-989-5226; or Sterling Electronics (www.sterling.com), 1-800-745-5500.

Also present in this circuit is a CH1817 DAA module. The purpose of this module is to provide an FCC approved interface to any phone system. This module connects directly to the telephone line on one side and to the transceiver on the other. It sets the line either on or off hook and takes the DTMF signal generated by the transceiver and puts it onto the line. Access to this is through the I/O expansion bus, pin #2. This line is inverted so that sending a 0 will set the line to off hook. Once set to off hook the chip can then put the DTMF signals onto the telephone line. After all of the tones have been sent it should then be set back to on hook to free up the line. More information on the internal functions is located in Table 1.

The DAA module can be ordered directly from Cermetek (www.cermetek.com), 1-800-882-6271.

Program Description

The program can control two relays which are signified by two LEDs turning off and on. Number one and number two on the remote phone keypad will turn LD4 and LD5 on, respectively. Number three and four will turn LD4 and LD5 respectively as well. The * on the remote phone keypad will turn off both LEDs. Once the LEDs have been set to the desired state one can reset the phone line and cause the Trainer to hang up the line by pressing the # key. One can then dial back into the Trainer after any specified amount of time to change the states of the LEDs. The program does this by running in a continual loop.

The program first initializes the MT8889C (the complete initialization sequence can be located in Table 5). Once the MT8889C has been initialized the software then sets the operating parameters of the chip. The software sets it to enable the tone output, send DTMF tones, interrupt enabled, and burst mode. A more complete description of the usage of the control registers and their bits are located in Table 2 and 3. The program waits for the DAA module to recognizes a ring and once it does so it will then set the DAA module to off hook and send three tones to the remote phone to signify that it has connected. Once connected the program listens for a 1,2,3,4,*, or # and performs the actions described above. When one is done with modifying the relays they must tell the device to hang up if they wish to free the line up. The DAA module will not reset itself.

RS0	WR	RD	FUNCTION	
0	0	1	Write to Transmit Data Register	
0	1	0	Read from Receive Data Register	
1	0	1	Write to Control Register	
1	1	0	Read from Status Register	

TABLE 1
Internal Register Functions

BIT	NAME	DESCRIPTION	
B0 TOUT		Tone Output Control. A logic high enables the tone output; a logic low turns the tone output off. This bit controls all transmit tone functions.	
B1	CP / DTMF	Call Progress or DTMF Mode Select. A logic high enables the receive	
B2	IRQ	call progress mode; a logic low enables DTMF mode. Interrupt Enable. A logic high enables the interrupt function; a logic low de-activates the interrupt function.	
В3	RSEL	Register Select. A logic high selects control register B for the next write cycle to the control register.	

TABLE 2
Control Register A Description

BIT	NAME	DESCRIPTION
В0	BURST	Burst Mode Select.
B1	B1 TEST Test Mode Control. A logic high enables the test mode; a logic low deactivates the test mode.	
B2	B2 S D Single or Dual Tone Generation. A logic high selects the single tone output a logic low selects the dual tone(DTMF) output.	
В3	RSEL	Column or Row Tone Select. A logic high selects a column tone output; a logic low selects a row tone output.

TABLE 3
Control Register B Description

BIT	NAME	STATUS FLAG SET	STATUS FLAG CLEARED
B0	IRQ	Interrupt has occurred.	Interrupt is inactive. Cleared
		Bit one (b1) or bit two	after Status Register is read.
		(b2) is set.	
B1	TRANSMIT DATA	Transmitter is ready for	Cleared after Status Register is
	REGISTER EMPTY	new data	read or when in non-burst mode.
B2	RECEIVE DATA	Valid data is in the	Cleared after Status Register is
	REGISTER FULL	Receive Data Register	read.
В3	DELAYED STEERING	Set upon the valid	Cleared upon the detection of a
		detection of the absence	valid DTMF signal.
		of a DTMF signal.	

TABLE 4
Status Register Description

INITIALIZATION PROCEDURE

A software reset must be included at the beginning of all programs to initialize the control registers after a power up. The initialization procedure should be implemented 100 ms after power up.

ľ	TA						
De	scription:	WR	RD	В0	B1	B2	B3
1.	Read Status Register	1	0	Х	Х	Х	Х
2.	Write to Control Register	0	1	0	0	0	0
3.	Write to Control Register	0	1	0	0	0	0
4.	Write to Control Register	0	1	1	0	0	0
5.	Write to Control Register	0	1	0	0	0	0
6.	Read Status Register	1	0	Х	Χ	X	Х

TABLE 5

TYPICAL CONTROL SEQUENCE FOR BURST MODE APPLICATIONS

Transmit DTMF tones of 50 ms burst/50 ms pause and Receive DTMF Tones.

90	quence:	DATA					
36	quence.	RS0	B3	B2	B1	В0	
1.	Write to Control Register A	1	1	1	0	1	
2.	Write to Control Register B	1	0	0	0	0	
3.	Write to Transmit Data Register (send a digit 7)	0	0	1	1	1	
4.	Wait for an Interrupt or Poll Status Register				,		
5.	Read the Status Register	1	Х	Х	Х	Х	
	• If bit 1 is set, the Tx is ready for the next tone. Write to Transmit Register (send a five)	0	0	1	0	1	
	• If bit 2 is set, a DTMF tone has been received Read the Receive Data Register	0	Х	Х	Х	Х	
	If both bits are set						
	Read the Receive Data Register	0	Х	Х	Х	X	
	Write to Transmit Data Register	0	0	1	0	1	

TABLE 6

The assembly language code is listed below:

,	0 0		
	ORG	0FF01h	
MAIN:	OUT MVI	A,00h 0C1h 0C1h A,08h 0C1h	;INITIALIZATION STRING
	MVI MVI	0C1h A,00h 0C1h C,14h	;TRANSCEIVER MODE SETUP ;SERVICE ROUTINE SETUP ;WAIT STATE
ONITIOON	STA	LED	COLINEED
ONHOOK:	MVI	E,01H	COUNTER
TONE:	MVI IN SUB JZ JMP	B,0FEh 12h B PHONE TONE	;WAIT FOR A TONE ;IF A TONE GO TO PHONE ;GO AND WAIT FOR IT AGAIN
PHONE:	LDA ANI OUT	LED 0FEh 11h	;SET DAA MODULE OFFHOOK
	CALL MVI	1000h A,04h	;CALL THE WAIT STATE
DIGIT: LOOP1:	OUT IN ANI MVI	0C0h 0C1h 02h D,02h	;SEND A 4 ;READ THE TRANSCEIVER STATUS REGISTER ;CHECK TO SEE IF IT IS READY FOR NEXT BIT
	CMP JZ JMP	D NEXT LOOP1	; CHECK THE STATUS BIT FOR SENDING
NEXT:	INR MVI CMP CALL JNZ	E A,03h E 1000h DIGIT	
READIN:	OUT IN CALL	0C0h 0C1h 1000h	;SEND THE LAST DIGIT ; READ THE STATUS REGISTER ;CALL A WAIT STATE
LOOP2:	IN MVI ORA CMP	0C1h E,0C5h E	;CHECK THE VALID DTMF BIT

JNZ LOOP2 INPUT: CALL 1000h IN 0C0h ;GET THE INPUT BIT CALL 1000h CPI 0CCh JΖ EXIT CPI 0CBh MVI E, OFEh JZALLOFF CPI 0C1h MVI E,0EEh JZRELAYON CPI 0C2h MVI E,0DEh RELAYON JZCPI 0C3h MVI E, ODEh RELAYOFF JZ0C4h CPI MVI E, OEEh JΖ RELAYOFF LOOP3: JMP LOOP2 RELAYOFF: LDA LED ORA Ε JMP SOUND **RELAYON:** LDA LED ANA Ε SOUND: STA LED

OUND:

STA LED
OUT 11h
MVI A,07h
OUT 0C0h
CALL 1000h
OUT 0C0h
JMP LOOP2

ALLOFF: LDA LED
ORA E
JMP SOUND

EXIT: LDA LED

ORI 03h OUT 11h JMP ONHOOK

LED: DS 1

END

Load the following machine language program into memory:

FFO1	ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF03	FF01	DB	IN	0C1h	FF37	11		
FF04	FF02	C1			FF38	CD	CALL	1000h
FF05	FF03	3E	MVI	A,00h	FF39	00		
FF06	FF04	00			FF3A	10		
FF07	FF05	D3	OUT	0C1h	FF3B	3E		
FF08	FF06	C1			FF3C	04	MVI	
FF09	FF07	D3	OUT	0C1h	FF3D	D3	OUT	0C0h
FF0A	FF08	C1			FF3E	C0		
FF0B D3 OUT OC1h FF41 E6 ANI 02h FF0C C1 FF0D 3E MVI A,00h FF42 02 FF0E O0 FF44 O2 FF44 O2 FF0F D3 OUT OC1h FF45 BA CMP D FF10 C1 FF46 CA JZ NEXT FF11 DB IN OC1h FF46 CA JZ NEXT FF12 C1 FF46 CA JZ NEXT NEXT FF47 4C AC DEXT NEXT FF47 4C AC DEXT NEXT FF47 4C AC DEXT NEXT FF47 4C DEXT NEXT FF47 4C DEXT	FF09	3E	MVI	A,08h	FF3F	DB	IN	0C1h
FFOC	FF0A	8 0			FF40	C1		
FFOD	FF0B		OUT	0C1h	FF41	E6	ANI	02h
FF0E	FF0C	C1			FF42	02		
FF0F	FF0D	3E	MVI	A,00h	FF43		MVI	D,02h
FF10	FFOE	00			FF44	02		
FF11 DB IN OC1h FF44 FF FF12 C1 F748 FF FF13 3E MVI A, ODh FF48 FF FF14 OD FF4A 3F COP1 FF15 D3 OUT OC1h FF4B FF FF16 C1 FF4B FF FF4C 1C INR E FF17 3E MVI A, O0h FF4B BF FF1 FF1B OO FF4B BB CMVI A, O3h FF1B OO FF4E OO FF1B OO COLD FF4E BB CMVI A, O3h FF1B OO CALL 1000h FF4E BB CMP E FF51B OO CALL 1000h FF1B OO CALL 1000h FF51B OO CALL 1000h FF51B OO COLD CALL 1000h FF51B OO COLD CALL FF55B FF<	FFOF	D3	OUT	0C1h	FF45	BA	CMP	D
FF12	FF10	C1			FF46	CA	JZ	NEXT
FF13	FF11	DB	IN	0C1h	FF47	4C		
FF14 OD FF4A 3F FF15 D3 OUT OC1h FF4B FF FF16 C1 F74C 1C INR E FF17 3E MVI A,00h FF4D 3E MVI A,03h FF18 00 FF4E 03 FF4E 03 FF1B 00 CALL 1000h FF18 01 OC1h FF4F BB CMP E E D CALL 1000h FF1B 00 MVI A,0F6h FF55 FF FF552 CO CD CALL 1000h	FF12	C1			FF48	FF		
FF15 D3 OUT OC1h FF4B FF FF16 C1 TF4C 1C INR E FF17 3E MVI A,00h FF4C 3C MVI A,03h FF18 00 FF4E 03 WI A,03h FF4E 03 FF5D CD CALL 1000h FF5D FF5D TF5D FF5D FF5D<	FF13	3E	MVI	A,0Dh	FF49	C3	JMP	LOOP1
FF16 C1 FF4C 1C INR E FF17 3E MVI A,00h FF4D 3E MVI A,03h FF18 00 FF4B 03 MVI A,03h FF4F 03 MVI A,03h FF5F FF4F BB CMP E FF1B CD CALL 1000h FF1B CD ANZ DIGIT FF51B CD ANZ DIGIT FF52B CD ANZ DIGIT FF52B CD ANZ DIGIT FF55B CD ANZ DIG	FF14	0D			FF4A	3F		
FF17 3E MVI A,00h FF4D 3E MVI A,03h FF18 00 FF4E 03 FF4E 03 FF4E 03 FF4E 03 FF4E 03 FF4E 03 FF5D CD CALL 1000h FF5F FF50 CD CALL 1000h FF5F FF51 CD CALL AND FF5F FF55 FF FF5F	FF15	D3	OUT	0C1h	FF4B	FF		
FF18 00 FF4E 03 CMP E FF19 D3 OUT OC1h FF4F BB CMP E FF1A C1 FF50 CD CALL 1000h FF1B OE MVI C,14h FF51 00 CALL 1000h FF1C 14 FF52 10 FF54 3D DIGIT FF51 O C2 JNZ DIGIT DIGIT FF51 3D C2 JNZ DIGIT DIGIT FF51 3D C2 JNZ DIGIT DIGIT FF52 10 FF54 3D DIGIT FF51 DE FF55 FF57 C0 FF55	FF16	C1			FF4C	1C	INR	E
FF19 D3 OUT OC1h FF4F BB CMP E FF1A C1 FF50 CD CALL 1000h FF1B OE MVI C,14h FF51 00 FF1C 14 FF52 10 FF57 FF1D 26 MVI H,06Fh FF53 C2 JNZ DIGIT FF1B 6F FF54 3D OUT OC0h FF1F 3E MVI A,0FEh FF55 FF FF20 FE FF56 D3 OUT OC0h FF21 32 STA LED FF57 C0 CD CALL OC0h FF22 C6 FF57 C0 FF58 DB IN OC1h FF59 C1 CALL 1000h OC1h FF59 C1 CALL 1000h FF59 C1 CALL 1000h FF52 C1 DC1h FF55 DC CALL <	FF17	3E	MVI	A,00h	FF4D	3E	MVI	A,03h
FF1A C1 FF50 CD CALL 1000h FF1B 0E MVI C, 14h FF51 00 CD CALL 1000h FF1C 14 FF52 10 FF53 C2 JNZ DIGIT FF1D 26 MVI H, 06Fh FF53 C2 JNZ DIGIT FF1E 3E MVI A, 0FEh FF55 FF FF54 3D OUT OC0h FF21 32 STA LED FF57 C0 CD CDL OC0h FF22 C6 FF58 DB IN OC1h OC1h FF52 C0 CALL 1000h FF52 C1 FF58 DB IN OC1h OC1h FF58 DB IN OC1h OC1h FF59 C1	FF18	00			FF4E	03		
FF1B OE MVI C,14h FF51 OO FF1C 14 FF52 10 FF51 FF51 FF51 FF52 10 FF53 C2 JNZ DIGIT FF51 FF53 C2 JNZ DIGIT FF51 FF54 3D FF55 FF54 3D FF55 FF55 <t< td=""><td>FF19</td><td>D3</td><td>OUT</td><td>0C1h</td><td>FF4F</td><td>BB</td><td>CMP</td><td>E</td></t<>	FF19	D3	OUT	0C1h	FF4F	BB	CMP	E
FF1C 14 FF5D 10 FF5D FF5D FF5D FF5D FF5D FF5D FF5D FFFF FFF	FF1A	C1			FF50	CD	CALL	1000h
FF1D 26 MVI H,06Fh FF53 C2 JNZ DIGIT FF1E 6F FF54 3D FF66 3D OUT OC0h FF1F 3E MVI A,0FEh FF55 FF FF CC OC0h FF57 CO FF66 D3 OUT OC0h OC0h FF57 CO FF57 CO FF57 CO FF67 CO CALL OC1h FF57 CO CALL 1000h FF57 CO CALL FF57 CO CALL FF57<	FF1B	ΟE	MVI	C,14h	FF51	00		
FF11E 6F FF51F 3E MVI A,0FEh FF55 FF FF520 FE FF520 FE FF56 D3 OUT OC0h OC0h <td>FF1C</td> <td>14</td> <td></td> <td></td> <td>FF52</td> <td>10</td> <td></td> <td></td>	FF1C	14			FF52	10		
FF11F 3E MVI A, 0FEh FF55 FF FF20 FE FF56 D3 OUT OC0h FF21 32 STA LED FF57 C0 CALL OC1h FF22 C6 FF58 DB IN OC1h	FF1D	26	MVI	H,06Fh	FF53	C2	JNZ	DIGIT
FF20 FE LED FF56 D3 OUT OC0h FF21 32 STA LED FF57 C0 C0 C1 CD	FF1E	6F			FF54	3D		
FF21 32 STA LED FF57 C0 FF22 C6 FF58 DB IN OC1h FF23 FF FF59 C1 CD CALL 1000h FF24 1E MVI E,01H FF5A CD CALL 1000h FF25 01 FF5B 00 CALL 1000h FF26 06 MVI B,0FEh FF5C 10 FF5D DB IN OC1h FF27 FE FE FF5D DB IN OC1h FF5D DB IN OC1h FF28 DB IN 12h FF5E C1 MVI E,0C5h FF29 12 FF60 C5 FF60 C5 FF62B BB CMP E FF2B CA JZ PHONE FF62 BB CMP E FF2C 31 FF64 5D FF65 FF FF <td>FF1F</td> <td>3E</td> <td>MVI</td> <td>A,0FEh</td> <td>FF55</td> <td>FF</td> <td></td> <td></td>	FF1F	3E	MVI	A,0FEh	FF55	FF		
FF22 C6 FF58 DB IN OC1h FF23 FF FF59 C1 FF59 C1 FF24 1E MVI E,01H FF5A CD CALL 1000h FF25 01 FF5B 00 CALL 1000h FF26 06 MVI B,0FEh FF5C 10 FF5C FF27 FE FF5D DB IN OC1h FF28 DB IN 12h FF5E C1 FF5P FF29 12 FF5F 1E MVI E,0C5h FF52R C1 MVI E,0C5h FF2A 90 SUB B FF60 C5 FF52B C1 MVI E,0C5h FF2B CA JZ PHONE FF61 B3 ORA E E FF52C AJZ JNZ LOOP2 LOOP2 FF62 BB CMP E FF65 FF FF FF66	FF20	FE			FF56	D3	OUT	0C0h
FF23 FF C1 FF54 CD CALL 1000h FF24 1E MVI E,01H FF58 CD CALL 1000h FF25 01 FF5B 00 FF5B 00 FF5C 10 FF5P 10 FF5P 10 FF5P FF5P 10 FF5P FF5P<	FF21	32	STA	LED	FF57	C0		
FF24 1E MVI E,01H FF5A CD CALL 1000h FF25 01 FF5B 00 CALL 1000h FF26 06 MVI B,0FEh FF5C 10 FF27 FE FF5D DB IN 0C1h FF28 DB IN 12h FF5E C1 FF5F 1E MVI E,0C5h FF29 12 FF5F 1E MVI E,0C5h E FF5E C1 FF5F 1E MVI E,0C5h E FF5E TE MVI E,0C5h E FF5E TE MVI E,0C5h E FF5E FF61 B3 ORA E FF52D FF62 BB CMP E FF62 BB CMP E FF62 BB CMP E FF65 FF FF FF65 FF FF FF66 CD CALL 1000h FF31 3A LDA LED<	FF22	C6			FF58	DB	IN	0C1h
FF25 01 FF26 06 MVI B,0FEh FF5C 10 FF26 10 FF27 FF 10 FF5D DB IN 0C1h 0C2h	FF23	FF			FF59	C1		
FF26 06 MVI B, 0FEh FF5C 10 FF27 FF527 FF527 FF5D DB IN 0C1h 0C2h 0C2	FF24	1E	MVI	E,01H	FF5A	CD	CALL	1000h
FF27 FE L FF5D DB IN OC1h FF28 DB IN 12h FF5E C1 C1 FF29 12 FF5F 1E MVI E,0C5h FF2A 90 SUB B FF60 C5 FF2B CA JZ PHONE FF61 B3 ORA E FF2C 31 FF62 BB CMP E FF62 BB CMP E E FF63 C2 JNZ LOOP2 LOOP2 FF65 FF FF FF FF65 FF FF FF FF65 FF	FF25	01			FF5B	00		
FF28 DB IN 12h FF5E C1 MVI E,0C5h FF29 12 FF5F 1E MVI E,0C5h FF2A 90 SUB B FF60 C5 FF2B CA JZ PHONE FF61 B3 ORA E FF2C 31 FF62 BB CMP E FF2D FF FF63 C2 JNZ LOOP2 FF2E C3 JMP TONE FF64 5D FF FF30 FF FF65 FF FF FF65 FF FF31 3A LDA LED FF67 00 CALL 1000h FF32 C6 FF68 10 FF68 10 FF69 DB IN OC0h FF34 E6 ANI 0FEh FF6A C0 FF6A C0 FF6A C0 FF6A FF6A FF6A FF6A FF6A	FF26	06	MVI	B,0FEh	FF5C	10		
FF29 12 FF5F 1E MVI E,0C5h FF2A 90 SUB B FF60 C5 FF2B CA JZ PHONE FF61 B3 ORA E FF2C 31 FF62 BB CMP E E C2 JNZ LOOP2 FF2D FF FF63 C2 JNZ LOOP2 FF65 FF FF65 FF FF65 FF FF65 FF FF66 CD CALL 1000h FF31 3A LDA LED FF67 00 CALL 1000h FF32 C6 FF68 10 FF68 10 FF69 DB IN 0C0h 0Ch FF34 E6 ANI 0F6h FF6A C0 CO CALL FF6A C0 FF6A C0 FF6A	FF27	FE			FF5D	DB	IN	0C1h
FF2A 90 SUB B FF60 C5 FF2B CA JZ PHONE FF61 B3 ORA E FF2C 31 FF62 BB CMP E FF2D FF FF63 C2 JNZ LOOP2 FF2E C3 JMP TONE FF64 5D FF FF30 FF FF65 FF FF FF FF66 CD CALL 1000h FF31 3A LDA LED FF67 00 CALL 1000h FF33 FF FF69 DB IN 0C0h FF34 E6 ANI 0FEh FF6A C0 FF6A FF35 FE FF6A C0 FF6A C0 FF6A	FF28	DB	IN	12h	FF5E	C1		
FF2B CA JZ PHONE FF61 B3 ORA E FF2C 31 FF62 BB CMP E FF2D FF FF63 C2 JNZ LOOP2 FF2E C3 JMP TONE FF64 5D FF FF2F 26 FF65 FF FF FF FF65 FF FF FF31 3A LDA LED FF67 00 CALL 1000h FF32 C6 FF68 10 FF68 10 FF69 DB IN OC0h FF34 E6 ANI 0FEh FF6A C0 CO	FF29	12			FF5F	1E	IVM	E,0C5h
FF2C 31 FF62 BB CMP E FF2D FF FF63 C2 JNZ LOOP2 FF2E C3 JMP TONE FF64 5D FF FF2F 26 FF65 FF FF FF FF30 FF FF66 CD CALL 1000h FF31 3A LDA LED FF67 00 CALL 1000h FF32 C6 FF68 10 FF68 10 FF69 DB IN 0C0h FF34 E6 ANI 0FEh FF6A C0 CO CO </td <td>FF2A</td> <td>90</td> <td>SUB</td> <td>В</td> <td>FF60</td> <td>C5</td> <td></td> <td></td>	FF2A	90	SUB	В	FF60	C5		
FF2D FF FF63 C2 JNZ LOOP2 FF2E C3 JMP TONE FF64 5D FF FF2F 26 FF65 FF FF FF FF65 FF FF30 FF FF66 CD CALL 1000h FF31 3A LDA LED FF67 00 FF68 10 FF68 FF69 DB IN 0C0h 0C0h FF734 E6 ANI 0FEh FF6A C0 FF6A C0 FF735 FE FF6A C0 FF6A C0 FF6A C0 FF7A	FF2B	CA	JZ	PHONE	FF61	В3	ORA	E
FF2E C3 JMP TONE FF64 5D FF FF65 FF FF65 FF FF65 FF FF65 FF FF66 CD CALL 1000h FF31 3A LDA LED FF67 00 FF68 10 FF68 10 FF68 FF69 DB IN 0C0h 0C0h FF734 E6 ANI 0FEh FF6A C0 FF6A C0 FF735 FE FF6A C0 FF6A C0 FF735 FE FF735	FF2C	31			FF62	BB	CMP	E
FF2F 26 FF65 FF FF30 FF FF66 CD CALL 1000h FF31 3A LDA LED FF67 00 FF68 10 FF32 FF68 10 FF69 DB IN OC0h OC0h FF34 E6 ANI OFEh FF6A C0 FF6A C0 FF735 FE FF6A C0 FF6A C0 FF735 FE FF6A C0 FF7A	FF2D	FF			FF63	C2	JNZ	LOOP2
FF30 FF FF66 CD CALL 1000h FF31 3A LDA LED FF67 00 FF32 C6 FF68 10 FF68 10 FF33 FF FF69 DB IN 0C0h FF34 E6 ANI 0FEh FF6A C0 FF35 FE	FF2E	C3	JMP	TONE	FF64	5D		
FF31 3A LDA LED FF67 00 FF32 C6 FF68 10 FF33 FF F69 DB IN 0C0h FF34 E6 ANI 0FEh FF6A C0 FF35 FE	FF2F	26			FF65	FF		
FF32 C6 FF68 10 FF33 FF F69 DB IN 0C0h FF34 E6 ANI 0FEh FF6A C0 FF35 FE	FF30	FF			FF66	CD	CALL	1000h
FF33 FF FF69 DB IN 0C0h FF34 E6 ANI 0FEh FF6A C0 FF35 FE	FF31	3A	LDA	LED	FF67	00		
FF34 E6 ANI OFEh FF6A C0 FF35 FE	FF32	C6			FF68	10		
FF35 FE	FF33	FF			FF69		IN	0C0h
	FF34	E6	ANI	OFEh	FF6A	C0		
FF36 D3 OUT 11h Continued on next page	FF35	FE						
	FF36	D3	OUT	11h	Continued	l on nex	t page	•

ADDRESS	DATA		IPTION	ADDRESS	DATA		IPTION
FF6B	CD	CALL	1000h	FF99	3A	LDA	LED
FF6C	00			FF9A	C6		
FF6D	10			FF9B	FF		_
FF6E	FE	CPI	0CCh	FF9C	В3	ORA	E
FF6F	CC			FF9D	C3	JMP	SOUND
FF70	CA	JZ	EXIT	FF9E	A4		
FF71	BC			FF9F	FF		
FF72	FF			FFA0	3A	LDA	LED
FF73	FE	CPI	0CBh	FFA1	C6		
FF74	CB			FFA2	FF		
FF75	1E	IVM	E,0FEh	FFA3	A3	ANA	E
FF76	FE			FFA4	32	STA	LED
FF77	CA	JZ	ALLOFF	FFA5	C6		
FF78	B5			FFA6	FF		
FF79	FF			FFA7	D3	OUT	11h
FF7A	FE	CPI	0C1h	FFA8	11		
FF7B	C1			FFA9	3E	MVI	A,07h
FF7C	1E	MVI	E,0EEh	FFAA	07		
FF7D	EE			FFAB	D3	OUT	0C0h
FF7E	CA	JZ	RELAYON	FFAC	C0		
FF7F	A0			FFAD	CD	CALL	1000h
FF80	FF			FFAE	00		
FF81	FE	CPI	0C2h	FFAF	10		
FF82	C2	011	0 0211	FFB0	D3	OUT	0C0h
FF83	1E	MVI	E,ODEh	FFB1	CO	001	00011
FF84	DE		_, , , , , , , , , , , , , , , , , , ,	FFB2	C3	JMP	LOOP2
FF85	CA	JZ	RELAYON	FFB3	5D	0112	
FF86	A0	02	TELLITON	FFB4	FF		
FF87	FF			FFB5	3A	LDA	LED
FF88	FE	CPI	0C3h	FFB6	C6	ПРЧ	טנונו
FF89	C3	CII	00311	FFB7	FF		
FF8A	1E	MVI	E, ODEh	FFB8	B3	ORA	E
FF8B	DE	1·1 V T	E, ODEII	FFB9	C3	JMP	SOUND
FF8C	CA	JZ	RELAYOFF	FFBA	A4	UMF	SOUND
FF8D	99	UΔ	RELATOFF	FFBB	FF		
				FFBC		T D 7	ד ביי
FF8E	FF	CDT	0C4h		3A	LDA	LED
FF8F	FE C4	CPI	0C411	FFBD	C6 FF		
FF90		N/I 7 T	B 0886	FFBE		ODT	0.2.1-
FF91	1E	MVI	E,0EEh	FFBF	F6	ORI	03h
FF92	EE	T.07		FFC0	03	OT TITE	111-
FF93	CA	JZ	RELAYOFF	FFC1	D3	OUT	11h
FF94	99			FFC2	11	T1.45	03777007-
FF95	FF	T1.45	10000	FFC3	C3	JMP	ONHOOK
FF96	C3	JMP	LOOP2	FFC4	24		
FF97	5D			FFC5	FF		
FF98	FF						

Application 13: Reaction Tester

How fast we can react could mean the difference between getting into an auto accident and arriving at our destination on time. Or the difference between scoring the goal and winning the game or going home in defeat. Each of us has a different ability to react based upon our reflexes. Our reactions are affected by a number of factors such as, sleep, exhaustion, inebriation, etc. Studies also indicate that our reaction capability can be improved through training. The Reaction Tester can be used to monitor a person's reaction time in order to determine at what level of performance the person is operating.

To use the Reaction Tester, the program listed below must be downloaded into the PRIMER. This can be accomplished by entering the machine code program in by hand or by assembling the program and downloading it to the PRIMER (Upgrade Option Required). Once the program is present in the PRIMER's memory (be sure to double check the memory contents against the program), the Reaction Tester program is ready to run. To run the program, simply press the Reset button followed by pressing the Func then Run keys.

To use the Reaction Tester program the user simply pushes one of the keys on the numeric keypad. At this time the seven segment LED displays will read "9999" indicating to the user that it is waiting for a key press to start the reaction test. When a key is pressed the display will read 00.00. At some random period of time, approximately 1 to 10 seconds, after which the discrete LEDs will light and the speaker will sound. This indicates that the user is to press a key. Upon the user's key press the speaker sound will stop and the reaction time will be displayed on the LEDs. To initiate another reaction test the user simply presses a key and the reaction tester resets and 9999 is again displayed on the LEDs.

The Reaction Tester uses a truly random generator in order to prevent the user from anticipating the start. The program also checks for false starts, where the user jumps the gun and presses the keypad before allowed to do so. This program does not require any additional parts, everything required for the Application is included on a standard PRIMER. The user could however modify the program to use an external switch and light to enhance the Reaction Tester.

The Timer Equate used in the program is used to calibrate the Reaction Timer. This value can be modified in order to provide more accurate reaction timing. To calibrate the Reaction Timer use a stopwatch in conjunction with the Reaction Timer. Start the Reaction Timer at the same time you start the stopwatch. When the stopwatch reaches five seconds stop the Reaction Timer. If the Reaction Timer is greater than five seconds raise the Timer value. If the Reaction Timer is lower than five seconds lower the Timer value.

This Application makes extensive use of the MOS Services. The program uses six different service calls and accesses these six Services a total of twelve times. The MOS Services allow the user to easily make use of advanced, EMAC supplied, software modules in their programs (for more information on Services consult the Self Instruction Manual).

The assembly language code is listed below:

```
; Reaction Tester
        ; Copyright EMAC, Inc. For use with the Primer Trainer only.
        ; This Program tests the users reaction time. It uses a
        ; randomizer so the user can not anticipate the start.
        ; It also checks for false starts where the user jumps
        ; the gun.
        ; The program first displays 9999 on the display indicating
        ; that it is waiting for a key press to start the reaction
        ; test. When a key is pressed the display will read 00.00.
        ; At some random period of time, approximately 1 to 10
        ; seconds, after which the discrete LEDs will light and the
        ; speaker will sound. This indicates that the user is to
        ; press a key. Upon the user's key press the speaker sound
        ; will stop and the reaction time will be displayed on the
        ; LEDs. To initiate another reaction test the user simply
        ; presses a key and the reaction tester resets and 9999 is
        ; again displayed on the LEDs.
        ·****************
        = 0340
                 TIMER
                            EQU
                                  0340h; timing calibration constant
        = 1000
                 MOS
                            EQU 1000h; MOS Service vector address
                 SERVOC EQU Och ; Discrete LED Service
SERV10 EQU 10h ; Pitch Speaker Service
SERV13 EQU 13h ; 7 Segment LED Service
SERV14 EQU 14h ; Delay Service
        = 000C
        = 0010
                SERV10
        = 0013 SERV13
        = 0014 SERV14
        = 0016 SERV16
                           EQU 16h ; Keypad Service
        = 0021
                SERV21
                           EQU 21h ; Decimal Point Service
        ORG
                 0FF01h
START:
        MVI
                 C,SERV13 ; display 9999 on the LEDs-
                             ; this indicates ready to start
        LXI
                 D,9999
                 MOS
        CALL
        : Get Random Number between 1 & 9
                 C,SERV16
        MVI
        MVI
                 B,10
WAIT:
                           ; decrement random number
WAIT1:
        DCR
                 В
        JZ
                 wait
        CALL
                 MOS
                           ; wait for a key press
        DCR
                 Η
                 WAIT1
        JNZ
        MVI
                 C,SERV13
                            ; display 0000 on the LEDs
        LXI
                 D,0000h
        CALL
                 MOS
        MVI
                 C,SERV21
                            ; turn on the decimal point
        MVI
                 D,10h
        CALL
                 MOS
        MVI
                 C,SERV0c
                            ; turn off the discrete LEDs
        MVI
                 E,00h
```

```
CALL
                  MOS
         ; Start Next Reaction Check at Random Interval
         INR
                  В
         LXI
                  H, Offffh
         MVI
                  C,SERV14
                               ; lengthen delay by calling the-
DELAY:
         CALL
                  MOS
                               ; delay service random # times
         DCR
         JNZ
                  DELAY
         MVI
                  C,SERV16
                               ; check for key press
         CALL
                  MOS
         DCR
                  Η
                               ; if key press detected then-
                               ; false start, start over
         JΖ
                  START
                               ; turn on discrete LEDs
         MVI
                  C,SERV0c
         MVI
                  E,Offh
         CALL
                  MOS
         MVI
                  C,SERV10
                               ; turn on speaker output
         LXI
                  D,0c00h
         CALL
                  MOS
                  D,0000h
         LXI
                               ; check for reaction key press
         MVI
                  C,SERV16
                  H, TIMER
                               ; determine reaction time
LOOP:
         LXI
LOOP1:
         DCX
                  Η
         MOV
                  A,H
         ORA
                  L
         JNZ
                  LOOP1
         INX
                  D
                  MOS
         CALL
         DCR
                  Η
         JNZ
                  LOOP
         MVI
                  C,SERV13
                               ; output the current reaction-
         CALL
                  MOS
                               ; time to the 7 segment LEDs
         MVI
                  C,SERV21
                               ; add decimal point
                  D,10h
         MVI
         CALL
                  MOS
         MVI
                  C,SERV10
                               ; turn off speaker output
                  D,0000h
         LXI
CALL
         MOS
         MVI
                  C,SERV16
                               ; check for key press
AGAIN:
         CALL
                  MOS
         DCR
         JNZ
                  AGAIN
                               ; if key press then-
         JMP
                  START
                               ; start a new reaction test
         END
```

Load the following machine language program into memory:

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF01	ΟE	MVI	C,13	FF37	05	DCR	В
FF02	13			FF38	C2	JNZ	FF34
FF03	11	LXI	D,270F	FF39	34		
FF04	OF		·	FF3A	FF		
FF05	27			FF3B	0E	MVI	C,16
FF06	CD	CALL	1000	FF3C	16		,
FF07	00			FF3D	CD	CALL	1000
FF08	10			FF3E	00		
FF09	0E	MVI	C,16	FF3F	10		
FF0A	16		0,20	FF40	25	DCR	Н
FF0B	06	MVI	B,0A	FF41	CA	JZ	FF01
FF0C	0A		2, 011	FF42	01	02	1101
FF0D	05	DCR	В	FF43	FF		
FF0E	CA	JNZ	FF0B	FF44	0E	MVI	C,0C
FFOF	0B	UNZ	FFOB	FF45	0C	1·1 V I	C, 0C
FF10	FF			FF46	1E	MVI	סס ס
FF11	CD	CALL	1000	FF47	FF	IMIVI	E,FF
		САПП	1000	FF48		CATT	1000
FF12	00				CD	CALL	1000
FF13	10	D.CD	**	FF49	00		
FF14	25	DCR	H	FF4A	10		~
FF15	C2	JNZ	FFOD	FF4B	0E	MVI	C,10
FF16	0D			FF4C	10		
FF17	FF			FF4D	11	LXI	D,0C00
FF18	ΟE	MVI	C,13	FF4E	00		
FF19	13			FF4F	0C		
FF1A	11	LXI	D,0000	FF50	CD	CALL	1000
FF1B	00			FF51	00		
FF1C	00			FF52	10		
FF1D	CD	CALL	1000	FF53	11	LXI	D,0000
FF1E	00			FF54	00		
FF1F	10			FF55	00		
FF20	ΟE	MVI	C,21	FF56	ΟE	MVI	C,16
FF21	21			FF57	16		
FF22	16	MVI	D,10	FF58	21	LXI	H,0340
FF23	10			FF59	40		
FF24	CD	CALL	1000	FF5A	03		
FF25	00			FF5B	2B	DCR	H
FF26	10			FF5C	7C	MOV	A,H
FF27	ΟE	MVI	C,0C	FF5D	B5	ORA	L
FF28	OC			FF5E	C2	FF5B	
FF29	1E	MVI	E,00	FF5F	5B		
FF2A	00			FF60	FF		
FF2B	CD	CALL	1000	FF61	13	INX	D
FF2C	00			FF62	CD	CALL	1000
FF2D	10			FF63	00		
FF2E	04	INR	В	FF64	10		
FF2F	21	LXI	H,FFFF	FF65	25	DCR	H
FF30	FF			FF66	C2	JNZ	FF58
FF31	FF			FF67	58		-
FF32	0E	IVM	C,14	FF68	FF		
FF33	14		*	FF69	0E	MVI	C,13
FF34	CD	CALL	1000	FF6A	13		-,
FF35	00						
FF36	10			Continued	d on nev	t page	
				Jonanaec	. On nex	page	•

ADDRESS	DATA	DESCR	IPTION	ADDRESS	DATA	DESCR	IPTION
FF6B	CD	CALL	1000	FF7A	CD	CALL	1000
FF6C	00			FF7B	00		
FF6D	10			FF7C	00		
FF6E	ΟE	MVI	C,21	FF7D	ΟE	MVI	C,16
FF6F	21			FF7E	16		
FF70	16	MVI	D,10	FF7F	CD	CALL	1000
FF71	10			FF80	00		
FF72	CD	CALL	1000	FF81	10		
FF73	00			FF82	25	DCR	H
FF74	10			FF83	C2	JNZ	FF7F
FF75	ΟE	MVI	C,10	FF84	7F		
FF76	10			FF85	FF		
FF77	11	LXI	D,0000	FF86	C3	JMP	FF01
FF78	00			FF87	01		
FF79	00			FF88	FF		