

 THE

 PRIMER

 TRAINER

 SELF INSTRUCTION
 MANUAL

 Manual Revision 1.0

 For board revision 3

Copyright 2004, EMAC INC.
UNAUTHORIZED COPYING, DISTRIBUTION,

OR MODIFICATION PROHIBITED
ALL RIGHTS RESERVED

1

2

INTRODUCTION TO THE PRIMER TRAINER 5

INTRODUCTION TO COMPUTERS 7

Computer Math 7

Computer Logic 9

A BRIEF OVERVIEW OF THE PRIMER HARDWARE 10

MEMORY 10

INPUT/OUTPUT 10

REGISTERS 10

TECHNICAL CIRCUITRY DESCRIPTION 12

Schematic Sheet 2: Microprocessor and Expansion Bus 12

Schematic Sheet 3: I/O Decoding and Memory 13

Schematic Sheet 4: Display and Keypad Circuitry 14

Schematic Sheet 5: Digital I/O and Timer 15

Schematic Sheet 6: Optional Serial Communication Port 16

Schematic Sheet 7: Analog I/O 16

Schematic Sheet 8: Power Supply, Speaker and Miscellaneous 16

HARDWARE FEATURES 18

LANGUAGES USED BY THE PRIMER 20

8085 Machine Language 20

Assembly Language 20

GETTING STARTED 22

LESSON 1: USING THE MONITOR OPERATING SYSTEM 24

LOADING A PROGRAM INTO MEMORY 24

VIEWING AND CHANGING REGISTER CONTENTS 25

ADDRESS/REGISTER PAIR DISPLAYS 25

SOME TIPS ABOUT CHANGING REGISTERS 26

3

LESSON 2 : RUNNING YOUR FIRST PROGRAM 27

LESSON 3: LOADING REGISTERS AND TRANSFERRING DATA BETWEEN REGISTERS 29

LESSON 4: EIGHT BIT ADDITION 31

LESSON 5: EIGHT BIT SUBTRACTION 32

LESSON 6: SIXTEEN BIT SUBTRACTION 33

LESSON 7: SIXTEEN BIT ADDITION 35

LESSON 8: SIXTEEN-BIT SUBTRACTION USING TWO'S COMPLEMENT ADDITION 37

LESSON 9: BINARY CODED DECIMAL SIXTEEN-BIT ADDITION 38

LESSON 10: MULTIPLICATION 40

LESSON 11: DIVISION 42

LESSON 12: USING LOGIC INSTRUCTIONS 43

LESSON 13: USING CONDITIONALS 45

LESSON 14: USING REGISTER INDIRECT ADDRESSING 47

LESSON 15: USING REGISTER INDIRECT ADDRESSING TO PERFORM 24-BIT ADDITION49

LESSON 16: USING REGISTER INDIRECT ADDRESSING TO MOVE DATA 51

LESSON 17: USING VARIABLES 53

LESSON 18: THE STACK AND RELATED INSTRUCTIONS 56

LESSON 19: USING THE XTHL INSTRUCTION. 60

LESSON 20: SUBROUTINES 63

LESSON 21: USING MONITOR OPERATING SYSTEM SUBROUTINES 66

LESSON 22: USING PITCH (SERVICE 10) 67

LESSON 23: USING ADCIN (SERVICE 9) 69

4

LESSON 24: USING COMPARE INSTRUCTIONS 71

LESSON 25: USING INTERRUPTS 75

LESSON 26: WRITING YOUR OWN PROGRAMS 78

APPENDIX A: JUMPER DESCRIPTIONS AND I/O ADDRESSES 82

APPENDIX B: THE PRIMER KEYPAD DESCRIPTION 83

APPENDIX C: 8085A CPU INSTRUCTIONS IN OPERATION CODE SEQUENCE 85

APPENDIX D: MOS SERVICES 87

5

Introduction to the PRIMER Trainer

The PRIMER Trainer is a compact, low cost, 8085 based microprocessor system, designed primarily for educational
purposes. In spite of its low cost and small size, it contains many important and educational features. The PRIMER has
digital I/O, analog I/O, and a display plus keypad for human interface. There are also several options that can be added to
the basic unit to enhance flexibility and functionality.

STANDARD FEATURES OF ALL PRIMERS

 • 80C85 microprocessor operating at 3.072 MHZ.
 • 256 bytes of RAM
 • 8-bit digital inputs via 8 station DIP switch.
 • 8 digital outputs with LED's for status indication.
 • 6 digit numeric LED display.
 • 20 key keypad for data entry.
 • Digital to analog converter, 6-bit resolution.
 • Analog to digital converter 6-bit resolution.
 • A sound port, which consists of a piezoelectric beeper driven by a programmable counter, can produce variable

frequencies.
 • Monitor Operating System (MOS) EPROM.
 • Operation from a 7 to 10 VDC supply.

Additionally, the PRIMER may be assembled with the following on-board options, or they may be added later :

 • Extra RAM: A 32K byte static RAM or RAMDISK may be installed.

 • Extra RAM/Real Time Clock: A 32K byte battery backed static RAM with Real Time Clock may be installed. The

clock keeps time in hundredths of seconds, seconds, minutes, hours, day of week, day of month, month and year,
even when the PRIMER is off. It automatically compensates for leap years, and keeps time in military or AM/PM
mode.

 • Extra EPROM: The student may create his own programs, or other operating systems may be added, including

high level languages such as E-FORTH, MTBASIC, etc.

 • RS-232 port: Provides the PRIMER with the ability to hook up to a "dumb terminal" or personal computer.

The following peripheral boards may be connected to the expansion bus connector CN1.

 • 32 LINE PARALLEL I/O BOARD: This gives the user 32 lines of digital I/O on two Opto-22 I/O rack compatible

connections. Of the 32 lines, 8 are output only and the other 24 are programmable as inputs or outputs. The 24
lines are implemented using the popular 8255 PPI chip.

• EPROM PROGRAMMER BOARD: This allows programming of popular EPROM devices such as the 27c512,

27c256, 27c128 and 27c64 with 21V and 12.5V programming voltage capability. This option is required along
with the RAM and serial port upgrade in order to take full advantage of the EPROM programmer interface menu.
Documentation on this interface is included when you purchase the EPROM PROGRAMMER BOARD. (To see
the EPROM programmer interface menu on your PC monitor, connect your serial port to a PC running a terminal
emulation package and press “func.” then “4" on the PRIMER keypad. The only interaction after this point is
through the PC keyboard).

6

Unit Description

The standard PRIMER will allow the student to enter programs into the units' memory, allow the student to run them, and
to view the results.

The Monitor Operating System (the standard monitor software in EPROM) included will cause the keyboard controller chip
to scan the keypad buttons, interpret the entries, and allow storage of data into the 256 byte RAM included in the PRIMER.
 The operating system also displays related data on the 6-digit LED display. The operating system will allow the student to
examine the data stored at various memory locations, examine the contents of the microprocessor's registers and other
functions, via the display and keypad. The operating system software will permit the student to run (execute) the program
entered, and to execute the program in steps, instruction by instruction, to permit debugging of programs.

The instruction manual contains several lessons in which the student may write programs to access and use the digital I/O,
analog I/O, and experiment with the sound port, interrupts, and timers. All that is needed to perform this is included in the
basic PRIMER kit.

Optional Hardware and Software

POWER SUPPLY
Any filtered DC power source from seven (7) to ten (10) volts DC may be used to power the PRIMER. Power is
fed to the unit via power jack J1. Make sure that the power supply's output plug has a positive tip and a negative
sleeve. Current consumption will be less than 500 mA. (350mA to 420mA typically). If desired, a wall plug/DC
power supply with built in power plugs may be ordered separately. Note: Be careful to observe correct type of
voltage and polarity, or else the PRIMER may be seriously damaged!

MEMORY

The PRIMER's built-in RAM memory is 256 bytes. The Monitor Operating System uses a few bytes at the top of
this memory. This leaves more than two-hundred bytes for code that may be entered, which is quite a lot
considering it is entered by hand. However, if larger memory is desired, as is the case when higher level operating
systems such as E-FORTH and MT-BASIC are used, an additional 32 K byte static RAM may be added. Also an
Extended Monitor Operating System (EMOS) may be installed in place of the standard Monitor Operating System
EPROM.

DATA/FUNCTION KEYS

The standard PRIMER comes with a twenty key keypad to select functions, and enter data.

COMMUNICATION PORT
Without all the options, the PRIMER is a powerful, stand-alone unit that has the potential to do more than just be a
training device. It has a easy to use interface that has the potential, with a little more hardware added to become a
full blown computer/controller. One of the additions to the PRIMER that help accomplish this end is the Serial RS-
232 Communication Port. With this hardware option installed, the PRIMER can communicate with a terminal or
PC, permitting greatly increased flexibility. This option is essential when the high-level language EPROMS are
installed on the PRIMER.

EXPANSION PORT

The expansion port is a 50 pin header connector that provides access to the 8085 microprocessor's multiplexed
Address/Data Bus, control signals, and PRIMER DC power. Connection of other circuit cards to this bus allows
the PRIMER to perform an almost unlimited number of functions. The connector footprint allows the PRIMER to
interface with most of EMAC's standard peripherals, the most notable being EMAC's EPROM Programmer card
and digital parallel I/O board. The connector also has extra pins not used by EMAC peripherals, but which are
useful to the students who may design peripheral boards of their own.

EXTERNAL I/O PORT

The External digital I/O port connector can be added at any time to provide direct access to the TTL level digital
output and input lines, via a ribbon cable. These ports are 8 bits each, and are in parallel with the DIP switch and
output LEDs. The I/O port connector permits easy access to the I/O lines so the student may connect switches
and relay contacts to the digital input lines and relay drivers, solid state relays (SSRs) to the output lines. These
inputs and outputs are used to allow the PRIMER to control various devices for very interesting projects.

7

Introduction to Computers

Computers basically perform three functions: inputing data, processing the data and outputing data. Some devices that are
commonly used to input information to a computer are keyboards, DIP switches and joysticks. Common computer output
devices are light emitting diodes (LEDs), liquid crystal displays (LCDs), video monitors, and printers. Disk drives and
modems are common devices that have both input and output characteristics. To process the information obtained by the
input devices and to control what information will be sent to the output devices we must introduce the next lower level of a
computer; the microprocessor.

A microprocessor, which is also referred to as the central processing unit (CPU), processes the information that is input to
the computer and determines what data will be sent to the output devices. The microprocessor has within it an arithmetic
logic unit (ALU) which performs addition, subtraction, comparisons and logical functions, which will be discussed later.

One thing you must know about computers is that they don't really think like people do. They can only do what the
computer manufacturer or the computer user tells them to do. The microprocessor can do many different things, but in
order for something useful to be done it must follow a group of instructions called a program. Below is a "program" or a
group of instructions that you could write which a person may follow in order to quench their thirst.

1) Get a glass.
2) Get some milk from the refrigerator.
3) Pour the milk in the glass.
4) Drink the milk.
5) If you are still thirsty continue from step three.
6) Put glass in sink
7) put milk in refrigerator.

In the same way, by knowing the microprocessor's language, you can give it a group of instructions that it can perform and
it would perform them exactly as you commanded it. The microprocessor can only obey one instruction of a program at a
time and these instructions tell the microprocessor whether to input data, output data or perform one of the ALU functions.

Computer Math

A microprocessor performs all arithmetic in binary, although it may be translated to different forms (i.e. decimal,
hexadecimal..). The binary number system consists of the numbers 0 and 1 which are called binary digits or bits for short.
There are several words used to represent the binary numbers 0 and 1 and they are often used interchangeably,
depending on the context in which they are used. They are as follows:

binary 1 = true on high set +5 volts set
binary 0 = false off low reset 0 volts clear

In the 8085 microprocessor the binary numbers are organized in groups of 8 bits which are called bytes and groups of 16
bits which are called words. When referring to a byte, it is often necessary to describe particular bits, so the numbering of
each of the 8 bits is as follows:

 7 6 5 4 3 2 1 0

So in the binary number, 10001000, bit 7 and bit 3 are 1 and the rest are 0. In binary number 00010001, bit 4 and bit 0 are
have a value of 1 and the rest are 0. When referring to a word, the bits are numbered:

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

s you know, in decimal numbers, each position of a digit has a different weight. For example in the decimal number 1732:
(The digit numbers are read from right to left, 0 to 3)

digit # weight value = decimal result
3 103 * 1 = 1000
2 102 * 7 = 700
1 101 * 3 = 30
0 100 * 2 = 2
sum of numbers * weights = 1732

In the same way the binary system has weights for each bit position. The weight for a bit is 2 to the power of the bit

8

number (2(bit number)). The binary number 11111111 can be converted to decimal by knowing the weights of each bit, as in
the example below:

bit # weight value = decimal result
7 27 * 1 = 128
6 26 * 1 = 64
5 25 * 1 = 32
4 24 * 1 = 16
3 23 * 1 = 8
2 22 * 1 = 4
1 21 * 1 = 2
0 20 * 1 = 1

 sum of bits * weights = 255

The three forms of numbers we will use in this manual are binary, hexadecimal (hex, for short) and decimal. Below is a
table of the binary, and hex equivalents of the decimal numbers 0 through 20.

DECIMAL HEX BINARY
 0 0 0000
 1 1 0001
 2 2 0010
 3 3 0011
 4 4 0100
 5 5 0101
 6 6 0110
 7 7 0111
 8 8 1000
 9 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111
16 10 10000
17 11 10001
18 12 10010
19 13 10011
20 14 10100

Hexadecimal is used to represent binary values because it is very easy to convert numbers from binary to hexadecimal.
For example, to convert the following binary number to hexadecimal:

 101101101101011

Start from the right digit and put the number into groups of four binary digits (bits). If there are not enough bits in the
number to make a full four bits in the group on the left side, add zeros to the left of the number.

 0101 1011 0110 1011

Now replace the binary groups with their hexadecimal equivalents using the table above and you will get the following
result:

 5 B 6 B

It is just as easy to convert hex to binary. Merely replace each hex digit with the corresponding 4 binary digits from the
table above and you have your binary number, for example:

 HEX
 F C 1 8

 BINARY
 1111 1100 0001 1000
In this manual you will see the words "least significant" or "low order" and "most significant" or "high order". These refer to
the mathematical weight of the part of a number that is being described. In all number systems the digit on the left end is
the most significant or high order digit and the digit on the right end is the least significant or low order digit. For example in
the binary number 00010010, the bit on the left end is the most significant bit and the bit on the right end is the least
significant bit. In the hex word 01FF the left two digits are the most significant byte (MSB) and the two right digits are the

9

least significant byte (LSB).

Computer Logic

The 8085 supports 4 logical operations:

1) The AND operation takes two input bits and returns a 1 bit if both input bits are 1 and a 0 bit if either bit is 0.

2) The OR operation takes two input bits and returns a 1 bit if either input bit is 1 and a 0 bit if both input bits are 0.

3) The XOR operation takes two input bits and returns a 0 bit if the input bits are the same and a 1 bit if they are different.

4) The NOT operation takes one input bit and returns a 1 if the input bit is 0 and returns a 0 if the input bit is 1. This is
called complementing or inverting.

The 8085 performs these operations 8 bits at a time, by performing the logic operation on each bit position, For example:

 01110010 <-X
AND 10010011 <-Y

 00010010 <-Z

Bit 0 of X is ANDed with bit 0 of Y and gives the result in bit 0 of Z. Bit 1 of X is ANDed with bit 1 of Y and gives the result
in bit 1 of Z and the pattern continues on up to bit 7.

The following show the way logical operations work with bytes:

00010010
AND 01000010

00000010

01100111

OR 10101110
11101111

11101101

XOR 01111001
10010100

NOT 11001010

00110101

A Brief Overview of the PRIMER Hardware

MEMORY

The 8085 microprocessor can access 65536
individual memory locations in the range 0 to 65535 in
decimal (0 to FFFF in hex) but only one at a time.
There are two types of memory in most
microprocessor based systems, memory that can be
read but not written to, which is called Read Only
Memory (ROM), and memory that can be read from
and written to, which is called Read/Alter Memory or
Random Access Memory (RAM). Both RAM and
ROM chips have address pins which are connected to
the microprocessor's address pins. These pins are
connected through what is called an address bus and
through this bus the microprocessor can select a
memory location for writing or reading of data.
Writing to ROM chips has no effect.

The RAM and ROM chips in the PRIMER trainer have
eight pins which send data to, or receive data from
the microprocessor through a group of eight
connections called the data bus. Since there are 8
pins in the RAM and ROM chips, this allows numbers
from 0 to 255 (0 to FF in hex) to be read from or
written to each memory location.

INPUT/OUTPUT

The 8085 microprocessor can also send data to and receive data from chips other than the RAM or ROM. When the
microprocessor wants to perform input or output it disables the RAM and ROM chips and sends an input/output (I/O)
address to the address bus. The I/O address is only 8 bits but it appears on the lower 8 bits (A0-A7) and the higher 8 bits
(A8-A15) of the address bus simultaneously. Since the address generated is only 8 bits long, only I/O addresses from 0-
255 (0-FF hex) can be selected. Most microprocessor-based systems have circuitry which decode the address from the
address bus and select the appropriate I/O device. Usually these devices are dedicated to either input only or output only.
If an input device has been selected, 8 bits of data is transmitted from the input device to the data bus and into the
microprocessor. If an output device has been selected, the 8 bits of data is sent from the microprocessor to the data bus
and to the output device.

The control bus is a group of connections which provide control over reading or writing of memory or I/O devices. Below is
a block diagram showing the way the CPU (microprocessor) connects to the memory and I/O devices through the address
bus, data bus and control bus.

REGISTERS

The 8085 microprocessor has within it temporary storage devices called registers. Registers work similarly to RAM in that
they store binary values. The 8 bit general purpose registers provided by the 8085 are named A, B, C, D, E, H and L. The
A register is often referred to as "the accumulator".

10

The 8085 has many instructions which use these individual
general purpose registers. There are also instructions which
view a pair of the general purpose registers as a single 16
bit register. The register pairs that are used in these
instructions are BC, DE, and HL. When they are paired with
other registers C,E and L represent the least significant 8
bits of the register pairs (bits 0-7) and B,D and H represent
the most significant 8 bits (bits 8-15). Some instructions
view the A register and flag register (described below) as a
16 bit register called the processor status word (PSW). The
A register is the most significant 8 bits and the flag register
is the least significant 8 bits of register. The PSW is shown
with a diagram of the individual bits of the flag register,
below.

There are also registers that are dedicated to special
purposes. The registers and their descriptions are as
follows:

The stack pointer (SP) is a 16 bit register which
points to a memory location in RAM which will hold
temporary values in an area of RAM called the
stack. The stack is explained in detail in a later
lesson.

The program counter (PC) is a 16 bit register which
points to the memory location of the next machine
language instruction to be executed.

The flag register is an 8 bit register which has
individual bits, called flags, that indicate the result
of arithmetic or logical operations. Most of these
flags will be described later in the manual.

11

12

Technical Circuitry Description

Following is a technical description of the actual hardware circuitry of the PRIMER. It describes circuitry on a sheet by
sheet basis and is intended to be understood by a person with a background in digital electronics, though a person without
this background may be able to glean some useful information from it. It is not necessary to understand this section in
order to use the PRIMER.

Schematic Sheet 2: Microprocessor and Expansion Bus

The Microprocessor

The 8085 microprocessor chip is the brain of the PRIMER system. It coordinates almost all activity in the PRIMER. The
8085 microprocessor is a collection of counters, gates, registers, decoders, (etc.) that sequentially fetches instructions from
memory, finds the purposes of each instruction, and executes the purpose of each instruction. The instructions are placed
in memory in the order they are expected to be used. The types of instructions are widely variant, but very concise. They
operations consist of moving data, logical operations, branching and conditional branching, some mathematical operations,
and input/output. When correctly assembled into a logical order, these primitive instructions form what is called a program.
Programs can simply move data from an input port to an output port, using a few instructions, or they can perform complex
control operations using many different input and output ports and the number of instructions would stretch out to the
thousands.

The 8085 is built to be able to access 65,536 possible memory locations, and 256 I/O locations. The architecture of the
microprocessor expects both the program and the data to reside in sequentially arranged memory. The programmer (a
person who creates programs) must assemble the program correctly so the microprocessor will know what memory
contents are intended to be instructions and which ones are data.

The 8085 and most other microprocessors must start executing the program at its beginning, which in the case of the 8085
is at memory address 0. This is accomplished by a circuit that applies a signal to the pin named RST-IN on the
microprocessor when the computer is turned on. On the PRIMER, this signal comes from the Power-on/Pushbutton Reset
circuit shown on the schematic. When power is applied to the PRIMER, capacitor C1, initially discharged, holds the
microprocessor's RST-IN* pin, low (the " * " means the signal is active low). The low signal on the RST-IN pin causes the
8085 to reset some of its internal devices and make an internal register called the program counter point to the beginning of
the program. Another event that occurs is that RST-OUT signal is asserted, which resets the PPI chip (U4), display/keypad
controller (U5) and if populated, the optional UART (U17). Note that since U5 has a different reset polarity, it is instead
reset by the inverse of RST-OUT which comes from U19 pin 1. If EMAC peripherals are connected to the expansion port
they are also affected by the RST-OUT signal. This reset condition can also be brought about by pressing the reset button
(PB1) which merely shorts out C1 and brings the RST-IN pin low.

As the capacitor charges through R1, the RST-IN* line voltage rises until a logic high de-asserts this signal. Diode D1
serves to quickly discharge capacitor C1 through the power supply only when power is off. With RST-IN* de-asserted, the
8085 begins operation.

The system clock oscillator, whose frequency is set to 6.144 MHZ by crystal Y1, drives all timing functions within the 8085
and it runs as long as power is applied to the PRIMER. It is possible to run the 8085 under a wide range of frequencies,
but in the PRIMER we use 6.144 MHZ to provide compatibility with circuits used elsewhere in the system. The oscillator
signal is divided by two within the 8085, and this signal is now the main system clock, referred to as SYSCLK. All timing of
the microprocessor's operation is driven by this SYSCLK, which in our case is 3.072 MHZ. Even asynchronous input
signals like RST-IN*, and interrupts are internally synchronized to this oscillator. Each pulse of this clock signal, is called a
"T state", when referring to operations internal to the 8085 and its busses.

The first thing the microprocessor will do after RST-IN* de-asserts, is to fetch an instruction at memory address 0. Before
the instruction can be fetched, the memory address of the instruction must be output from the microprocessor. To reduce
the number of pins on the 8085's package, a scheme called multiplexing is employed. Multiplexing allows the AD0-AD7
pins to be used as the data bus and also to output the lower 8 bits of the 16 bit address needed to select the first
instruction. These pins must be demultiplexed before they can be used properly. The 8085 outputs the low byte of the
address on signal lines AD0-AD7, and the high byte directly on signal lines A8-A15. A signal called Address Latch Enable
(ALE) strobes high, then low, causing the address latch (chip U8) to trap the address byte that is on pins AD0-AD7. The
output of this latch then joins up with address lines A8-A15, to provide a 16 bit, filtered, stable, linear address to the
memory chips and decoders (described later).

13

The 16 bit linear address is applied to the memory block (memories and decoders) to select the address that the 8085
wants to read from or write to. In the case of an instruction fetch, the 8085 signal RD* will be asserted, to read the byte
from the memory selected. This byte will then go into the instruction decoder, which will determine what instruction it is,
and then the 8085 will execute the instruction. Depending on what type of instruction it is, the 8085 will either fetch
additional data or read/write data to other memory locations or perform I/O, (etc.). Each time a bus transaction occurs
these operations will occur: the low byte of the address will be sent to AD0-AD7, which will then be held by the address
latch. A complete cycle of instruction fetch, decode, and execution, forms a "bus cycle", using anywhere from 3 to 14 T-
States, (SYSCLK pulses) depending on the type of instruction.

The 8085 has five pins dedicated to "interrupting" the microprocessor. These pins are named TRAP, RST 7.5, RST 6.5,
RST 5.5 and INTR. When a signal is applied to one of these pins an "interrupt" is generated. An interrupt is a special
function of the 8085 to suspend the program it is running then execute a program related to the interrupt that requested it.
Once the interrupt is completed, the 8085 must RESTORE the original program's data and status, and RETURN to it where
it left off from. Sometimes the interrupt is deliberately ignored by MASKING the interrupt, so interrupts can be turned on or
off as needed, should a section of code be so important to require that it not be interrupted until it is finished.

An interrupt may be likened to answering the telephone while reading a book. When the telephone rings, you put the book
down on it's face to mark your place, then you answer the phone. When you are done, you pick up the book and begin
reading where you left off. Should you be too engrossed in the story, you can ignore the ringing telephone (you can mask
it). But if you ignore it too long, you'll miss the call. Sometimes interrupts can be missed as well. Some interrupts can be
made to latch, usually by hardware. These latched interrupt requests will persist, just as a person on the phone might
continue ringing (interrupting) until you answer it.

Bus Expansion Port

The PRIMER's Bus Expansion Port is also shown on Schematic Sheet 1. It is actually a simple connector with leads
running to power sources and microprocessor pins. The 8085's AD0-AD7 lines run out to the connector, as well as
address lines A0-A15, control signal IO/M* (which the 8085 asserts to tell whether it is doing a memory or I/O transaction),
RD*, WR*, RST-OUT, SYSCLK, GROUND, and PWR (this is directly from the power jack, 5V is not provided on the bus
connector). Also inclued are INTRQ, and INTA*, which allow the use of a multi-level interrupt controller; S0, and S1, which
are part of the 8085 machine status output; RDY/WT* which is used to put the 8085 into a wait state; HOLDRQ and
HLDACK which are used to allow another bus master to assume control of the bus; and finally, ID* and EXTIOCS*, which
are used by external I/O devices of the EPAC 2000 family. The Bus Expansion Port footprint permits direct connection of
the PRIMER to most EPAC peripheral cards, via a 50 pin ribbon cable.

The schematic shows " Module Ports " , which are connections to other parts of the board not shown on this page of the
schematic. Often one page of a schematic is not big enough to show an entire circuit but, of course, the actual wiring on
the printed circuit board is one complete unit. Module ports denote that these connections actually do exist, only they are
shown elsewhere. The name or label of the module port must match exactly on another sheet of the schematic to denote
that the connections go there. Individual lines to module ports also connect these lines to corresponding points on other
sheets of the schematic, such as lines RD*, and WR*.

Schematic Sheet 3: I/O Decoding and Memory

The decoder section of a microprocessor system sorts out the address bus signals from the 8085, and picks out (selects)
the correct chip(s) in the memory or I/O sections that the 8085 wants to access. The decoder must evaluate the address
applied to it, and determine whether the address is for a memory access, or an I/O map access. Most decoders are
custom hardware collections of gates, using various levels of integration. As every system has a different configuration of
memory and I/O, every decoder is unique to that design.

In the PRIMER, two types of memory maps may be decoded based on the setting of OJ3. In the standard map (OJ3 in
position A), a 16K (K=1024 bytes) byte space is reserved for program EPROM, starting at address 0000 hex and ending at
3FFF hex (remember the 8085 begins execution at 0000 hex after reset). This socket may hold 32K EPROM chips but
only the lower 16K can be used with this jumper setting. The monitor operating system program is actually very small,
requiring less than 4K, but 32K EPROM chips are the smallest memory chip of compatible footprint that will fit there.

Almost all programs (the PRIMER's monitor is no exception) will require some memory that can be written to as well as
read. The PRIMER can provide this type of memory, without additional discrete RAM chips. The 8155
PPI/MEMORY/TIMER I.C. is a multi-function chip, with digital I/O ports, a timer/counter, and 256 bytes of RAM in it. When
OJ3 is in position A , this memory is used for storage of variables, pointers, executable code and various other functions.
Because the 8155 has both I/O and memory mapped elements, the decoder section provides an additional specially
encoded line called 8155CS for this device. The 8155 will be described in more detail later. The optional 32 K byte

14

memory socket allows a 32 K static RAM chip to be installed onto the PRIMER. In the standard map it starts at 4000 hex
and goes to BFFF hex.

With OJ3 in position A, the 8155 PPI's memory space begins at C000 hex and ends at the top of the 8085's address range
at FFFF hex. Note that this range is 16 K, but the actual memory is only 256 bytes. What happens is the same 256 bytes
repeat themselves over and over again, in this case 64 times over. In other words, hexadecimal addresses C000, C100,
F300 and FD00 all refer to the first memory address within the 8155 and C0FF, C1FF, F3FF and FDFF all refer to the last
memory address within the 8155. Programs that are written must use only the amount of memory that is available.

The alternate memory map (OJ3 set to position B) reserves 32 K of EPROM at addresses 0000 hex to 7FFF hex, and 32 K
static RAM from 8000 hex to FFFF hex. The 256 bytes of RAM in the 8155 PPI are ignored, so in this map, the entire 64 K
of memory that the 8085 is capable of accessing contain no duplicate memory cells as does the standard map.

The PRIMER uses a very simple decoder. Two, "2 to 4 line" decoders decode the appropriate 8085 address lines to select
the proper chips. The memory decoder observes the code on address lines A14 and A15. The state of these lines
represent 16 K intervals of address. To change the decoder interval to 32 K bytes boundaries, the decoder pin that is
connected to A14 can instead be connected to ground. The I/O decoder observes the state of address lines A6 and A7.
The I/O map is only 256 addresses wide. The I/O decoder is maximally used at select rates of 64 addresses per output.

The 8085 signal line IO/M* tells the decoders that the address is an I/O MAP transaction, if it is high, or that it is a memory
map transaction, if it is low. A simple inverter changes the polarity of IO/M* to IO*/M. Since each decoder has an active
low enable input, connection of the appropriate polarity signal of IO/M* to the appropriate decoder, will enable the right
decoder for the job at hand. Also all decoder outputs are active low signals, and will be de-asserted unless the right
address in the right map selects it.

The EPROM chip select will be valid for memory addresses 0000 hex to 3FFF hex, (or to 7FFF hex if OJ3 is set to B) and
simply goes directly to the EPROM's chip enable. The optional static RAM chip select must be valid for addresses 4000
hex to BFFF hex, (or 8000 to FFFF hex if OJ3 is set to B) which is an interval of 32 K. As the memory decoder outputs at
intervals of 16 K, (standard map) two chip selects are logically negative OR'ed by AND gate U10A. This produces a single
32 K wide chip select for this memory.

The 8155 chip has elements of both the memory map and the I/O map, so a similar AND gate logically negative OR's the
memory and I/O map selects into a single dual mapped chip select for the 8155. The memory portion of this chip select is
valid throughout C000 hex to FFFF hex. The I/O portion is I/O addresses 00 hex to 3F hex.

The keypad and display controller (U5), which will be described in more detail later, is I/O mapped from 40 hex to 7F hex,
and the optional 8251A communication controller from I/O addresses 80 hex to BF hex. A special I/O chip select, used
primarily for EPAC expansion peripherals, via the bus expansion connector, uses the remaining I/O space of C0 hex to FF
hex. As in the memory chip select description, many of the addresses repeat in the I/O map, since these chips only use a
few of the available addresses.

The rest of the address bus lines, not used by the chip select decoder described, go directly to the memory chip(s) other
I/O chips, and bus expansion connector. Inside these chips are decoders which select the precise internal memory cells or
device registers denoted by the address pins. In more complex systems, the chip select decoders can be more precise,
but this increases the complexity and cost of the system. The simple device select decoder used here in the PRIMER will
serve quite well, as long as programs are written carefully.

Schematic Sheet 4: Display and Keypad Circuitry

The PRIMER has a key pad matrix of pushbuttons, for entering commands, loading data or programs, and testing
programs. It also has a 6 digit LED matrix display, to view data. U5 is a specialized Display/Keypad controller chip, which
removes the chores of keyboard scan, switch de-bounce, and display refresh, from the microprocessor. The controller
contains its own memory which stores key press data and data to be displayed. Through the I/O map, the 8085 sends
commands to the controller that configure the operational characteristics of the display/keypad system, then writes the
display characters themselves to the controller’s internal display RAM. The controller scans this display RAM, and drives
the outputs to the display LED's continuously thereafter. No further microprocessor action need be taken until a new
display pattern is needed.

Display/Keypad controller has 8 data bus lines that connect directly to the 8085's AD0 to AD7 lines. These bi-directional
bus leads transfer data and control information between the 8085 and controller. Signals RD*, and WR* determine whether
data is read from or written to it. Address line A0 is used by the controller to determine whether the byte is a command

15

byte, or a data byte for the internal RAM and the 8279CS* chip select pin determines whether it will perform bus
transactions or not. The 8279_RDY signal is a signal sent out to the 8085 that the controller momentarily drives low when it
is not able to receive data. This basically suspends the 8085’s operation until the signal is asserted high again. Because
address line A0 is used to select the function, two I/O map addresses exist for the Display/Keypad controller. A program
that operates the controller merely writes to or reads from two consecutive addresses to control all functions. With A0
being low, the controller’s memory can receive data from, or send data to the data bus. If A0 is high, the bus transaction is
a command or status byte.

The base address of U5 in the PRIMER is 40 hex. The I/O decoder's chip select will be valid for all I/O map transactions
up to 7F hex. Therefore, the two addresses for U5 repeat themselves throughout this range, just as the memory addresses
repeat in the 8155. This repetition is common to all I/O devices on the PRIMER, due to the broad nature of the chip select
decoder used.

The signals RST-OUT*, and KEYINT also terminate at the Display/Keypad controller. RST-OUT* will hardware clear the
controller’s internal control registers to their default state, which at a later time can be changed to other states by the
PRIMER's program in the EPROM. However, the data in the internal RAM is not cleared by hardware. Finally, the KEYINT
signal is a special control line that is set active high by the controller when a valid key entry is made. This line goes through
a jumper that (in its default connection) connects to the RST 5.5 interrupt pin on the 8085 microprocessor.

The controller scans the keypad buttons and debounces the key inputs to avoid erroneous entries due to contact bounce or
key rollover. After this, it stores the key inputs in the internal keypad RAM. When a valid key entry is made, the controller
generates an interrupt request to the 8085 via the KEYINT line, and holds the key data in the keypad RAM until the 8085
actually reads the key memory. Should the microprocessor not respond immediately, the controller will store in the internal
key RAM up to 8 key entries.

When the PRIMER is turned on, the Display/Keypad controller is configured by the PRIMER software to produce what is
referred to as an "encoded scan" on its SCBIT0-SCBIT3 lines. This encoded scan is decoded by a A6259K "3 to 8"
decoder and driver, to produce 1 of 6 active low high current sinks for the common cathode LED's. The SCBIT0-SCBIT3
lines also go to a 74HC138 to provide a keyboard row decoder.

When a key is pressed, a low signal will be presented to one of the corresponding return lines COL0-COL3 which are
connected to pullup resistors. The key must be closed and scanned several times in order to be recognized by the
Display/Keypad controller. It is then entered into key RAM and an interrupt request is generated which tells the
microprocessor to read the controller’s keypad RAM and interpret the key code to perform the function that is dedicated to
the key. The key must be released and stay that way for several more scans before that key or another key will be
accepted. This is the keypad debounce feature. The controller will also ignore additional key closures if a key is already
being pressed.

Schematic Sheet 5: Digital I/O and Timer

The 8155 combination Digital I/O, Timer, and Memory Chip provides the PRIMER with capability to experiment with Digital
input and output, programmable timing, and provides the read/write memory function for the system. Its bus interface is
very similar to the interface for the Display/Keypad controller. The 8155 also has 8 data bus lines, RD*, and WR* control
signals, and RESET input. There are additional bus control lines, but no individual address inputs are required since the
lower byte of the address and the data are demultiplexed within the 8155 from the AD0-AD7 inputs. The 8155 is missing
the address line(s) the Display/Keypad controller has, instead, it uses two new signals, IO/M*, and ALE. These signal lines
are the same as described in the previous microprocessor description. The 8155 chip is a special function chip made
specifically to work along with the 8085. It has an internal address latch, and an internal address decoder, which operates
in parallel with the PRIMER's address latch. The internal address latch and decoder uses the 8085 ALE signal, to trap the
low order 8 bits of multiplexed address. Since the internal RAM is only 256 bytes and there are only 4 I/O addresses, only
the low 8 multiplexed address/data bits are needed anyway. The chip select signal for the 8155 resolves whether bus
transactions will occur to the address internally latched and selected during microprocessor read or write cycles, to either
the I/O or memory sections of the 8155.

The Digital I/O ports are two "byte wide" (8-bit) ports, and one six bit port. The ports can be independently set to be
OUTPUT or INPUT ports. On the PRIMER unit, Port A is set by monitor software to function as an output port and eight
LEDs serve as status indicators of the bit state for each output line. Each LED lights when the bit for it is set LOW (0),
and it is off when the bit is set HIGH (1). Therefore, negative logic levels are assumed.

Port B of the 8155 is set by software to input. An eight station DIP switch is used to set each bit LOW (0) when each
station is turned on. Negative logic is also assumed here. When a switch station is switched OFF, a resistor pullup brings
the line HIGH. Port C of the 8155 goes to the digital to analog converter which is described later. The 8155 chip is totally

16

flexible as to what kind and data and direction is present on each port, however, for hardware purposes on the PRIMER,
the default configuration should be maintained.

The 8155 has a programmable timer/counter in it that is software programmable to count from 1 to 16,383. The counter
becomes a timer if it is fed a regular pulse train, as it is in the PRIMER. The SYSCLK signal is first divided by ten, and fed
to the 8155 timer input. The timer's output goes to the 8085's RST 7.5 interrupt input, and to an AND gate that drives a
piezo-electric speaker element (see sheet 7 for more details).

Schematic Sheet 6: Optional Serial Communication Port

If MTBASIC, E-FORTH or EMOS are installed on the PRIMER, this option will be required. The 8251A chip is called a
Universal Asynchronous Receiver Transmitter or UART. The UART interfaces serial data transmissions or receptions to
parallel data. The PRIMER's UART uses a very common communication protocol known as the RS-232 standard which
uses special voltage levels to connect to computer terminals, desktop PCs, etc.

The 8251A connects to the 8085 bus, and through software the 8085 can communicate to the terminal or PC via the
8251A. The UART operates on standard TTL-MOS voltage levels, and because the RS-232 standard uses Bi-polar
voltage levels, a special interface chip, the MAX-232 (or equivelent) converts the TTL levels to RS-232 voltages. The
MAX-232 chip contains special power supply circuits, called a "charge pump" that boosts the 5 volts used in the PRIMER to
+8 volts and -8 volts for the RS-232 link. Voltage translating drivers are also built into the chip. The optional serial
communications port interfaces to a terminal or PC through a DB-9 shell connector.

The serial communication rate (or baud rate) must be set to the rate used by the terminal or PC. Placement of jumper JP1
can set the baud rate from 300 baud up to 19,200 baud. The 614.4 KHZ COMCLK, which is generated by a circuit on
Schematic Sheet 4, is divided down by U16 providing seven different frequencies.

The PRIMER allows interrupt driven serial communications. To enable the hardware to do this, jumper OJ1 can be moved
to connect the 8085's RST 6.5 interrupt input to the RXRDY (receive ready) pin of the 8251A UART, instead of its default
connection to Vcc.

Schematic Sheet 7: Analog I/O

This sheet of the PRIMER shows the Analog I/O system for the unit. Many Microprocessor systems read analog signals,
such as temperatures, pressures, and amperage. Because microprocessors are digital devices, some sort of interface is
required to change an analog voltage into a digital code the microprocessor can deal with. In many cases, the
microprocessor system will also output a digital signal, after processing the analog and digital inputs it has reviewed.

The PRIMER has a 1 channel analog output, and a 1 channel analog input with the range of both at approximately 0 to 5
volts. The digital to analog (D/A) output comes from a R-2R ladder network of resistors, which is then buffered by op-amp
U14A. The D/A ladder is driven by port C of the 8155. The D/A converter has 6 bit resolution, so programs may be written
which write a value in the range of 0-63 decimal to the D/A port, resulting in an analog voltage proportional to the number
written to the port.

The analog to digital (A/D) input is a voltage comparator, made up of U14B, and some digital level shifting circuitry. The
comparator has an input pin on connector CN3, where the voltage to be measured is applied. The comparator then
compares this input voltage to the D/A ladder output voltage, and sends a digital signal to the SID input of the 8085. This
digital signal is high (or 1) when the D/A voltage is higher than the input voltage and the digital signal is low (or 0) when the
D/A voltage is lower than the input voltage. The PRIMER's monitor operating system contains a built in program which
converts an input voltage to a decimal value in the range of 0-63. Using this built in program within other programs and
attaching the appropriate hardware will allow the PRIMER to function as a voltmeter, temperature gauge, pressure gauge
or any other kind of analog measurement device. The PRIMER can then be used as what is often referred to as an
"embedded controller".

Schematic Sheet 8: Power Supply, Speaker and Miscellaneous

The final area of the PRIMER schematics is the power supply section. In the PRIMER only a very simple power supply is
required. The D.C. input is fed from power jack J1, and is pre-filtered by C8, then applied to an LM7805 regulator. The
LM7805 regulator is an industry standard device found in almost all small microprocessor systems, because its application
is very simple. The LM7805 regulator steps the 7 to 10 VDC power supply input down to the +5 volts required by the
microprocessor and all the other digital logic chips. Some of the input power bypasses the LM7805, and goes directly to
the LM358 dual op-amp chip, U14. The LM358 needs " voltage overhead " to work correctly for the analog voltages it

17

operates with.

Capacitor C9, and several other capacitors spread about the board provide D.C. power supply bypass. These bypass
capacitors stabilize the power supply voltage fed to the logic devices on the PRIMER.

To understand the speaker circuit, remember that as described earlier, the SYSCLK signal is first divided by ten, and fed to
the 8155 timer input. The timer's output goes to the 8085's RST 7.5 interrupt input, and to an AND gate that drives a piezo-
electric speaker element. The piezo-electric speaker has a limited frequency range, but many useful sounds can still be
produced by appropriate setting of the timer's divide ratio, and turning the output on and off through the 8085's SOD signal.
 The SYSCLK frequency of 3.072 MHZ is divided down by U12 to 307.2 KHZ, then fed to the timer input of the 8155. By
setting the timer's divide ratio from 2 to 16383 (in software), the range of frequencies can be from 153.6 KHZ down to
18.75 Hz.

Also shown on this sheet, are the spare gates that are not used by the PRIMER circuit, but present on the board. This
often occurs since gate packages often come with multiple gates on one chip. As is customary, unused gate inputs should
be defined to an idle logic state to prevent random oscillations, latchup, etc. This is done primarily for CMOS and NMOS
devices, because TTL gates usually have built-in pullups on their inputs.

18

Hardware Features

HARDWARE RESET: The PRIMER board can be reset through the reset button provided on the board. There is a reset
output pin on the expansion connector which allows the resetting of the PRIMER to reset any devices that may be
connected to the expansion connector.

SERIAL COMMUNICATION PORT: The PRIMER uses an RS232 standard serial communication port. The port
interfaces to a PC or terminal through a DB-9 shell connector. The serial communication rate (or baud rate) must be set to
the rate used by the terminal or PC. Placement of jumper JP1 can set the baud rate from 300 baud up to 19,200 baud.
MOS services are available which access the 8251 serial communication port.

DIP SWITCH: The DIP switch has 8 switches which may be used for applications such as selection of program options.
The DIP switch is connected to the system data bus and is accessed through I/O, address 012H. A MOS service is
available which accesses the DIP switch.

DIGITAL OUTPUTS: The PRIMER has 8 outputs and each output can be independently programmed to an ON (+5v or
binary 1) or OFF (0v or binary 0) state. The outputs are connected directly to the digital output LEDs and an LED can be
turned on by the output of a binary 0, and turned off by the output of a binary 1. The outputs are also connected to the
digital I/O connector CN3.

The output is driven by the 8155 I/O I.C. which, in the standard configuration, uses PORT A (11H) as the output port, PORT
B (12H) as the input port and PORT C (13H) as an analog output port.

NOTE: The standard configuration of the 8155 which is set up by MOS should not be changed. Also, since PORT A

outputs have limited drive capabilities, buffering should be considered if these outputs are to be used.

DIGITAL INPUTS: The PRIMER allows 8 inputs through 8155 port B. These inputs are connected directly to the 8 station
DIP switch. The inputs are also connected to digital I/O connector CN3, so if the DIP switches are all turned off, you may
input external TTL level signals through this connector.

D/A: An analog output voltage in the range of approximately 0 to +5v can be output from the PRIMER. This digital to
analog convertor is implemented through an R-2R ladder which is connected to bits 0-5 of output PORT C. The output
from the R-2R ladder is available on pin 19 of the digital I/O connector CN3. MOS provides a service which uses this D/A
convertor.

A/D: The PRIMER provides an analog input (digital I/O Connector CN3 pin 20) which can convert a voltage in the range of
0 to +5 volts to a 6 bit value. This conversion is done by a MOS service using the D/A convertor and a comparator. The
service starts by outputting 0 volts from the D/A convertor and then increasing the output voltage until the comparator
senses that the output voltage exceeds the input voltage. When the input voltage has been exceeded, the last number that
was output to the D/A convertor is the digital representation of the analog input voltage. The schematic of the circuitry for
D/A and A/D is on Schematic Sheet 7.

 Note: Since the service that performs the A/D conversion uses the D/A convertor, the D/A convertor cannot be

used at the same time an analog signal is being converted to digital.

TIMER/COUNTER: The PRIMER comes equipped with a 14 bit timer/event counter. This timer/counter is resident in the
8155 I/O I.C. By loading a user programmable termination count, time intervals from 3.25 microseconds to 53.3
milliseconds. When the termination count is reached, a RST 7.5 interrupt can then be issued to the CPU. If interrupts are
not desirable the timer can be read directly or the interrupt line can be polled. The timer can also be set up to reload itself
or to stop counting upon reaching the termination count. In either case, an interrupt can be issued.

The timer/counter is a 14 bit down counter that counts the 'timer input' pulses and provides a pulse or square wave to the
8085 RST 7.5 interrupt when the terminal pulse is reached. The user can reprogram the length of the count before the

19

termination pulse is reached if so desired. The user can also determine the timer interval by programming the counter
register from values 2H to 3FFFH. The timer/counter has four operating modes which are:

Mode 0 No operation mode (NOP) does not affect the timer.

Mode 1 Stop mode stops the timer/counter if it is running otherwise NOP.

Mode 2 Stops the timer if running immediately after the terminal count has been reached otherwise NOP.

Mode 3 The start mode loads the output mode and count length and starts the timer/counter immediately if timer is not

running, otherwise it waits for the terminal count then starts the timer/counter.

The timer/counter has four output modes which are as follows:

Mode 0 Outputs a low during the second half of the count, which is equivalent to a single square wave.

Mode 1 Outputs a continuous square wave when the terminal count is reached.

Mode 2 Outputs a single pulse when the terminal count is reached.

Mode 3 Outputs a single pulse and reloads automatically.

The timer/counter operating modes are programmed through the 8155 control register (I/O address 10H). The lower 8 bits
of the count length is written to I/O address 14H. The upper 6 bits of the count length along with the 2 bit output mode is
written to I/O address 15H. The timer/counter can be used as an external program interval timer. If you wish to perform a
software operation at a specific time interval, then the timer/counter can be programmed to that interval. Upon the resulting
timer interrupt your program can execute the desired software.

The timer/counter is also used to drive the PRIMER's speaker. Different frequencies can be output from the speaker using
a MOS service.

See the 8155 PDF for more details.

EXPANSION CONNECTOR

The PRIMER has a 40 pin expansion connector (CN1) on board which provides additional expansion capabilities.
Primarily, this port gives access to the Data and Low Address Busses and Control Lines. EMAC offers modular expansion
boards that plug into this connector.

20

Languages Used By the PRIMER

8085 Machine Language

The 8085 microprocessor has 246 instructions and each instruction is represented by an 8 bit binary value, which is called
an op code or an instruction byte. The Instruction Set Encyclopedia ((c) Intel Corporation) included at the end of this
manual, divides these instructions into five general categories which are as follows:

1) Data Transfer Group: Moves data between registers or between memory locations and registers.
2) Arithmetic Group: Adds, subtracts, increments or decrements data in registers or memory.
3) Logic Group: AND's, OR's, XOR's, compares, rotates or complements data in registers or between memory and a
register.
4) Branch Group: Initiates conditional or unconditional jumps, calls, returns, and restarts.
5) Stack, I/O, and Machine Control Group: Includes instructions for maintaining the stack, reading from input ports,
writing to output ports, setting and reading interrupt masks, and changing the flag register.

Some machine language instructions require a byte or even two bytes of additional information. The microprocessor reads
the instruction and determines whether it requires an extra byte or two bytes. If the instruction requires another byte the
8085 will get the byte from the next consequtive address following the instruction byte, and if the instruction requires two
bytes the 8085 will get them from the next two consequtive addresses following the instruction byte. In instructions that
require two extra bytes, the byte following the op code is the least significant byte and the second byte after the op code is
the most significant byte. To help you remember this order, remember that the high order byte is in the higher memory
address than the low order byte.

Microprocessors can only run (execute) programs written in machine language. Programs written in languages such as
BASIC or assembly language (discussed later) first must be translated to machine language before they can be executed.

Assembly Language

Intel (c) has designed a way to represent the 8085's machine language instructions using words called "mnemonics".
Using these mnemonics, a language called "assembly language" was created which allows you to write machine language
programs in a more readable form. An assembly language program cannot be understood by the 8085 until it is translated
to machine language with a program called an "assembler". In the following lessons, programs will be listed in assembly
language followed by the machine language translation of the program.

Below is an example assembly language program, showing the four basic fields of a line of assembly language: label,
mnemonic, operand and comment. Note that assembly language programs usually don't have line numbers, but these are
included to aid in explaining assembly language.

 LABEL MNEMONIC OPERAND COMMENT
1 dips equ 12h ; port for the DIP switches
2 num equ 4 ; number of reads of the DIP switches
3 org 0ff01h ; starting address of the program
4 lxi h,dtaspac ; load the HL register with start
5 ; of storage space
6 mvi c,num ; load C register with value of num
7 loop: in dips ; load A register with the DIP
8 ; switch values
9 mov m,a ; store the value of A register
10 ; at memory address pointed to by HL
11 dcr c ; decrement the C register
12 jnz loop ; if C<>0, jump to loop
13
14 rst 7 ; return to MOS
15 dtaspac: ds num ; set aside the number of bytes
16 ; specified by num
17 db 12h,4,1001b,0 ; store this data in memory
18 end ; end of the assembly language

In order to make assembly language more readable and easier to modify, the provision was included which allows the use
of a string of characters called a symbol or label to represent a numerical value. In the program above, the string of

21

characters "dips" represents the value 12 hex, so line 7 which says "in dips" means, load the A register with the data from
input port 12 hex (which is the DIP switch port). As you can see, this is more readable than its assembly language
equivalent "in 12h". The value of a symbol is assigned using the EQU instruction. The symbol on the left of the instruction
is assigned the value on the right. As you can see in line 1 "dips" is assigned the value 12 hex and in line 2 "num" is
assigned the value 4 decimal which is the same as 04 hex. Most assemblers assume that a number is decimal unless it is
otherwise noted. Binary numbers are indicated by ending with a "b" or "B". Hex numbers must begin with a decimal
number and end with "h" or "H". If they don't begin with a decimal number, the assembler will think they are labels, as in
the case of the hex numbers DEAFh or BADh (they look like words instead of numbers). Start the hex numbers with 0 to
solve this problem (0DEAFh, 0BADh).

The ORG mnemonic tells the assembler the starting address in memory of the instructions that follow it. Line 3 shows that
the program is to be assembled starting at address FF01.

The DS mnemonic tells the assembler to set aside the number of bytes of memory specified by the value to the right of the
mnemonic. This memory is reserved for the storage of data instead of machine language.

The mnemonic DB takes the data that follows the mnemonic and stores the hex value(s) of the data in memory. The
values can be binary, hex or decimal numbers or a mixture of these but each number always uses one byte of memory. If
the number is too large to be stored in one byte of memory the assembler will give an error message. In line 17 of the
example program above, the first byte of data following the mnemonic is stored at the first memory location following the
four bytes reserved by the DS mnemonic. The rest of the data on the line follow it sequentially in memory.

When a symbol is in the label field of a certain line, and the mnemonic for that line isn't "equ", its value will be made the
memory address of the op code represented by the mnemonic. In line 7 of the program above, "loop" is assigned the value
of the memory address of the op code of the "in" mnemonic. Line 12 uses the value of the label "loop" to produce the
machine language for the "jnz" instruction. In line 15 the label "dtaspac" is assigned the value of the memory address of
the first byte of the bytes reserved by the DS mnemonic. In line 4 the value of "dtaspac" is used to produce the machine
language for the "LXI H" instruction.

Every character after a semicolon is considered a comment. Comments are used to describe the workings of a program to
a person who might be reading the assembly language. They have no effect on the program because when the assembler
encounters the ';' it ignores the rest of the characters on the current line.

The mnemonic END tells the assembler that this is the end of the program. The mnemonics END, EQU, ORG, DB and DS
are all called "pseudo-ops", which means they are not translated into machine language directly. These are used by the
assembler to aid in assembling the machine language. Lines 4 through 14 contain mnemonics that actually correlate
directly to machine language.

22

Getting Started

Before attempting to perform the lessons that follow make sure that in option jumper 1 (OJ1), pins 1 and 2 are connected
together, as well as pins 3 and 4. You should have a MOS or EMOS EPROM in the U2 socket and both OJ2 and OJ3
should have connectors in position "A" if you are using MOS or position "B" if you are using EMOS

You need to provide the PRIMER with an appropriate power source. The PRIMER requires a power supply in the range of
7 to 10 volts DC that can supply more than 480 milliamps of current. This power may be taken from a bench power supply,
a wall mounted power supply or any other suitable power source. The power supply's output plug tip must be positive and
the sleeve must be negative. A wall mounted power supply that meets all of the previous stated requirements may be
obtained from EMAC Inc.

Once power has been correctly applied to the PRIMER's power jack, press the reset button to assure that the system is
properly initialized. The PRIMER should give a tone and then show hex numbers on the digital displays. If this doesn't
happen after about 2 seconds remove the power and make sure that the power supply meets the above stated
requirements. If the power supply meets the requirements, but nothing happens you may need to do some hardware
troubleshooting or send the board back to EMAC for repair.

If the PRIMER is now running you may want to run the PRIMER diagnosis function. This function allows you to check the
DIP switches, digital output LEDs, A/D convertor, 8155 timer, speaker, numeric displays, keypad and the optional serial
RS-232 port. If you do not have the serial communications option or if you have it but do not want to test it, skip to To
begin diagnosis:.

Before the PRIMER can communicate through the serial port, its baud rate must be the same as the PC or terminal the
PRIMER is communicating with. The PRIMER's baud rate can be set by placing a jumper in JP1 in the position
corresponding to the desired baud rate. The baud rates are labeled 300, 600, 1200, 2400, 4800, 9600 and 19,200 next to
JP1. The PC or terminal must use serial protocol with 1 stop bit 8 data bits and no parity.

 The following information regarding the cable assembly should be followed carefully to assure correct operation.

"Handshaking" lines are not required by the PRIMER but may be necessary for the IBM PC and compatibles used as
terminal emulators. If the terminal emulator requires handshaking lines, wire a null modem cable by connecting together
the PC's RS-232 handshake lines CTS, DSR, DCD and DTR. The diagrams below show the required connections for PC's
 and terminals with DB25 connectors and PC's with DB9 connectors.

PC or ADM
and WYSE

PRIMER TERMINALS

DB9 PINS DB25 PINS
TX 2 ───── 3 RX
RX 3 ───── 2 TX
GND 5 ───── 7 GND

(optional null-modem connections)
 ┌─ 5 CTS
 ├─ 6 DSR
 ├─ 8 DCD
 └─ 20 DTR

PRIMER PC

DB9 PINS DB9 PINS
TX 2 ───── 2 RX
RX 3 ───── 3 TX
GND 5 ───── 5 GND

(optional null-modem connections)
 ┌─ 8 CTS
 ├─ 6 DSR
 ├─ 1 DCD
 └─ 4 DTR

Note: When a data terminal has 2 connectors, use the one marked "MODEM".

To begin diagnosis:

Press the "Func." key then "1". When the diagnosis begins a checksum is performed on the ROM and if an error is
detected you will hear a beep and "b.E." will be shown on the right 2 displays indicating "Bad EPROM". If there was an
error, pressing a key will resume the diagnostics. If no error occurred "....r.d." will be shown on the numeric displays
indicating that "RAM Diagnostics" are occurring. If a faulty RAM location is detected, its memory address will be shown on
the left 4 numeric displays and "b.r." (indicating Bad RAM) will be shown on the right 2 displays. Note that if you don't have

23

a 32K RAM and you get a bad RAM error at 8000 or 4000, this is not a valid error. Pressing a key following this error
message will cause the diagnosis to continue. The RAM diagnostics should be completed in under 30 seconds, if the RAM
is okay. If an optional 32k RAM is in memory slot 1 and option jumper OJ3 is in position "A" you should turn off the
PRIMER and move the jumper to position "B" then turn it on again and run the diagnosis function. If the RAM is okay, and
you want the position "A" memory map again, turn off the PRIMER and move the jumper to its original position. Note that
no memory check is done on the RAM within the 8155 chip if a 32k RAM is in slot 1.

After the RAM diagnostics, the PRIMER will try to determine whether there is a serial port. If there isn't or if it is not
working, "n.u." will be displayed (indicating No UART). If a serial port is detected, it is examined to see if it is configured for
a local loopback test. It is configured for local loopback when the transmit and receive lines of the serial port are connected
to each other (pins 2 and 3 respectively of the DB9 connector CN2). This connection allows data transmitted by the UART
to be looped back to the UART, testing both the transmitter and the receiver.

If it is configured for local loopback and the serial port is working, the bytes 00 to FF hex will be transmitted and displayed
on the left 2 displays (this will happen quite rapidly at higher baud rates, so if you want to watch it, set JP1 to around 2400
baud). If there is a problem with the serial communications, you will hear a beep and "b.S." will be shown on the right 2
displays indicating a Bad Serial port. Pressing a key after this will resume the diagnostics and the UART will be disabled.
If the local loopback test runs without errors "L.L." will be shown on the left 2 displays, the UART will be disabled and the
diagnostics will continue. If "L.L." is not displayed and it has been verified that the transmit and receive lines were
connected together, there is a problem with the serial port circuitry.

If the PRIMER serial communications option is not configured for local loopback but instead is connected to a terminal, the
following will be shown on the terminal display:

 UART test
>
If you type a key at the terminal, its hexadecimal ASCII value will be shown on the left two displays on the PRIMER, and
the character will be echoed back to the terminal display. For example if the letters "A" and "B" are typed at the terminal,
the following will be shown on the terminal display:

 UART test
>A
>B
>

Note: If your terminal has the ability to "auto echo" you will see 2 characters displayed for each key pressed.

Also, after the RAM check is done, the hexadecimal representation of the A/D input will be shown on the right 2 displays. If
you want to test the A/D convertor you need to connect a variable voltage source, ranging from 0 to +5 volts, to the analog
input of the external digital I/O connector CN3 (this is above and to the left of the ADDRESS/REGISTER PAIR displays).
This can be simply done with a 10K potentiometer by connecting the wiper to the analog input and one of the other two
connections to +5V and the other to ground. Connector CN3 provides +5 volts on pin 22, analog input on pin 20 and
ground on pin 18. When the analog input voltage is ground the display should show "00". As you slowly increase the
voltage to 5 volts, the display will show a value from 02 to 3F hex. Also when the display no longer shows "00" the speaker
will begin to make a high pitched tone and which will gradually become lower pitched as the voltage approaches 5 volts.
Turn the voltage back to 0 and the tone will stop.

Each DIP switch is programmed to control an individual digital output LED. The best way to test the DIP switches and the
LEDs is to turn each of the switches on, allowing only one switch on at a time. Then turn all the switches on at once, and
finally turn all of them off.

Pressing one of the keys on the keypad will cause the hexadecimal value of that key to be shown on the middle two
displays. The hexadecimal values of the keys, starting at the top row and reading from left to right are 00 to 0F for the first
4 rows and 14 to 17 for the last row.

When you want to return to the Monitor Operating System, just press the reset button.

24

LESSON 1: Using the Monitor Operating System

The Monitor Operating System allows the user to:

 view and change memory contents
 view and change register contents
 view and change stack contents
 execute one instruction at a time
 run a program
 select a breakpoint

This lesson will introduce the first two topics listed above and the other four will be introduced in later lessons

VIEWING AND CHANGING MEMORY CONTENTS

When you first turn on the PRIMER trainer, the displays marked "ADDRESS/REGISTER PAIR" will show "FF01" and the
display marked "DATA/OP" will show some random byte in hex. The number on the "ADDRESS/REGISTER PAIR" display
is the value of the program counter register (PC) and the number on the "DATA/OP" display is the data at the memory
address pointed to by the program counter. Since PC = FF01 it "points" to the data at that memory address, so if the data
at that memory address happened to be the hex number DB then "DB" would be shown on the "DATA/OP" display. Below
is an illustration the program counter pointing to the data at memory address FF01. The values shown in the memory
addresses in the diagram most likely are not the actual values that are in the PRIMER's memory. This is because the
memory contains mostly random values when the PRIMER is turned on; The values were chosen just for examples.

ADDRESS DATA
FF01 DB <-PC
FF02 12
FF03 D3
:
: (memory addresses FF04-FFFF)

When an address and the data at that address is displayed, the PRIMER is in "data entry mode". Press the "enter" key and
the PC register will be incremented to FF02 and shown on the "ADDRESS/REGISTER PAIR" display and the data pointed
to by the new value of the PC will be shown on the "DATA/OP" display. If the data at memory address FF02 happened to
be 12 hex, then "12" would be shown on the "DATA/OP" display. The program counter pointing to the data at memory
address FF02 is illustrated below.

ADDRESS DATA
FF01 DB
FF02 12 <-PC
FF03 D3
:
: (memory addresses FF04-FFFF)

Press "enter" as many times as you want. Press the "Dec." key and the value displayed for PC will be decremented and
the number on the "DATA/OP" display is the byte of data pointed to by the new PC memory address. Press the "Dec." key
until PC is FF01 again or press the reset button.

Type "F" and "C", and you will see the hex number "FC" on the "DATA/OP" display. If you type a wrong digit, or
you want to change the value you typed, just type the two correct hex digits and they will overwrite the others. Now type
"0" and "7" and press "enter" and the PC will be incremented and the PC value FF02 will be displayed along with the data
pointed to by the new value of PC. Type the number 55 and press the "Dec." key. You will see that the data at address
FF01 is now 07. Press the "enter" key and you will see that the data at address FF02 is not 55 as was typed before. This
is because hex numbers that are typed aren't stored until the "enter" key is pressed. This is a useful feature when you
have typed a number and decide you do not want it to be stored in memory or wish not to change the original value.

LOADING A PROGRAM INTO MEMORY

In the lessons that follow, it is necessary to load programs into memory. The machine language for the programs are listed
in the following format:

25

ADDRESS DATA INSTRUCTION
FF01 DB IN 12
FF02 12
FF03 D3 OUT 11
FF04 11
FF05 C3 JMP FF01
FF06 01
FF07 FF

Before entering a program into memory, press the reset button. This resets the general purpose registers and flag register
to zero and sets the stack pointer to FFD4 and the program counter to FF01. Look at the program data table above. In
order for a machine language program to be loaded into memory properly, the addresses under the column marked
"ADDRESS" must contain the data to the right of them in the column marked "DATA" after you have completed loading the
data. The column marked "instruction" just tells what instruction the data stands for, so this can be ignored. Since the PC
value is FF01, type DB, which is the data from the table that belongs in that address, and press "enter". The PC is now
FF02 so type 12 and press enter. Continue typing the data which belongs in the current PC address and pressing enter
until all the addresses listed in the table have been loaded. Now press the "dec." key and verify that the data at the current
PC address is the same as the data in the program data table. If the data is not the same, just type the correct number and
press enter and then continue pressing the "dec." key and verifying data until the program counter is FF01 again. Once
you become comfortable with entering programs into memory you may want to skip the verification process. Don't be
alarmed if you type a program incorrectly and it doesn't work, because it is impossible for a program to damage the
PRIMER. The worst thing that can happen is that you would have to press the reset button, or if the program was
corrupted you may have to enter the program into memory again.

VIEWING AND CHANGING REGISTER CONTENTS

It is a good learning aid to be able to examine the values of the 8085's registers. To view the contents of a register you
must first press the "func." key (which will cause the display to show "Func.") and then the key corresponding to the register
you want to examine. When the "func." key is pressed, the next key pressed will invoke the alternate function of the key.
The keys that have alternate functions have the standard function followed by a slash "/" and the alternate function. For
example the "8/B.P." key's standard function is digit 8 and after the "func." key is pressed the alternate function "B.P." will
be invoked.
Each line in the table below shows the key that should be pressed after pressing the "func." key and the data that will be
shown in the "ADDRESS/REGISTER PAIR DISPLAYS" as a result.

ADDRESS/REGISTER PAIR DISPLAYS

 DATA DISPLAYED ON DATA DISPLAYED ON
KEY DS1 (LEFT DISPLAY) DS2 (RIGHT DISPLAY)
A.F. = A register flag register
B.C. = B register C register
D.E. = D register E register
H.L. = H register L register
S.P. = High order byte of SP Low order byte of SP
P.C. = High order byte of PC Low order byte of PC

Pressing one of the above keys after the "func." key is pressed will cause the value in the registers to be shown in the
displays marked "ADDRESS/REGISTER PAIR" and the register name to be shown in the display marked "DATA/OP".
After this, pressing any key other than the numeric keys (0-F) will cause the PRIMER to return to the data entry mode.

If you want to change the value of the A register, press the "func." key and then the "A.F." key and as a result the displays
show "0000 A.F.". To change the value of the A register to 1F hex without changing the flag register, press the following
keys in order: "1","F","0","0","enter". After pressing the "enter" key the display will no longer show the A register and flag
register, instead it will return to the data entry mode. View the PSW (the A register and flag register) again by typing the
"func." key, then the "A.F." key. You will see that the values that were entered before are still in the registers. Notice that
in order not to change the value of the flag register, it was necessary to enter its value again (00). If the flag register had
been 40 and you wanted to change the A register to 2B without changing the flag register you would have to press the
following keys (don't do this, this is just an example): "2", "B", "4", "0", "enter".

Now we will change the value of the flag register and we will assume that it
doesn't matter what the value of the A register is. To make the flag register
41 hex type "4", "1". Notice that after pressing these two keys, the two
zeros have been shifted to the A register display. Now press "enter", then

view the A register and flag register
again and you will see the new value
(0041 hex) that was just entered.

26

As described earlier, the flag register is an 8 bit register which has
individual bits called flags, that indicate the result of arithmetic or logical
operations. To see what the values of the individual bits are, you must
convert the hexadecimal value of the flag register to binary. If you don't
remember how to do this, refer back to the section on Computer Math in
Introduction to Computers. For example, to find out what the current flag
values are, convert 41 hex to binary (see diagram to the right).

 HEX
 4 1

 BINARY
 0100 0001

 0 1 0 0 0 0 0 1
 │ │ │ │ │ │ │ │
 │ │ │ │ │ │ │ Carry Flag
 │ │ │ │ │ │ undefined
 │ │ │ │ │ Parity Flag
 │ │ │ │ undefined
 │ │ │ Auxiliary Carry Flag
 │ │ undefined
 │ Zero Flag
 Sign Flag

According to the diagram above, the Carry and Zero flags have a value of 1 and the Sign, Auxiliary Carry, and Parity flags
have a value of 0. If the flag register is D5, all the defined flags are set. You may need to refer back to this diagram in
later lessons when they ask you to examine the flag register. A shortcut to determining the status of the carry flag is to
examine the rightmost digit of the flag register. If the digit is even (0,2,4,6,8,A,C,E) then the carry flag is 0, otherwise, if the
digit is odd (1,3,5,7,9,B,D,F) the carry flag is 1.

SOME TIPS ABOUT CHANGING REGISTERS

You can point the PC (program counter) register to any location by changing the PC register's contents. This eliminates
the need of pressing the "enter" or "dec." keys many times in order to view or change data at memory addresses that are
distant from the current address.

If you are typing a new value for a register and you haven't pressed "enter" since you started doing this, you can press the
"step","func." or "dec." keys to return to the data entry mode and the register will not be changed.

27

LESSON 2 : Running Your First Program

NEW INSTRUCTIONS

IN <byte> op code = DB
Load the A register with the data that is on the input port specified by the byte following the instruction. No
flags are affected.

OUT <byte> op code = D3

Send the data in the A register to the output port specified by the byte following the instruction. No flags
are affected.

JMP <addr> op code = C3

Load the program counter (PC) with the address contained in the two bytes following the instruction. The
first byte following the op code is the least significant byte of the address, the second byte is the most
significant byte of the address. No flags are affected.

Below is an example 8085 program written in assembly language. This program reads the binary value of the DIP switches
and outputs the value to the digital output LEDs and then repeats these instructions indefinitely. The program may be
stopped by pressing the reset button.

ASSEMBLER PROGRAM
leds equ 11h
dips equ 12h

org 0ff01h
loop: in dips ; load A register with

; DIP switch values
out leds ; output A register to LEDs
jmp loop ; jump to loop
end

MACHINE LANGUAGE PROGRAM

ADDRESS DATA INSTRUCTION
FF01 DB IN 12
FF02 12
FF03 D3 OUT 11
FF04 11
FF05 C3 JMP FF01
FF06 01
FF07 FF

To run this machine language program, turn on the PRIMER Trainer and the program counter address FF01 will be shown
on the left four displays. Load the machine language data from the above table into memory. Once the whole program has
been entered correctly return the program counter address to FF01 by pressing the reset button or loading the PC register
with FF01, then run the program by pressing "Func." and the "Step/Run" key. You should see that as you move the DIP
switches the digital output LEDs will turn off or on accordingly. Now press the reset button and the program will stop, the
digital output LEDs will turn off and the display will show "FF01 db".

The PRIMER allows you to execute a single machine language instruction starting at the address in the PC
register. This procedure is called single stepping. After the instruction is completed, the PC register points to the address
of the next instruction and the PRIMER will be returned to data entry mode. To single step the first instruction, press the
"stp/run" key and the displays will show "FF03 d3" which is the new value for PC and the data pointed to by PC. The IN
instruction was executed and the PC register was returned with the address of the next instruction, the OUT instruction. To
single step the rest of the program, do the following:

1) Single step again and the display will show "FF05 C3". the OUT 11 instruction has been executed and the PC
register was returned with the address of the JMP FF01 instruction.

2) Single step again and the display will show "FF01 db". This display shows FF01 because that is the value that
was loaded into the PC register by the JMP FF01 instruction. You can see that the mnemonic came from the
instructions ability to cause the program counter to "jump" to another location. PC now points to the IN 12
instruction again.

28

3) Single step again and the display will show "FF03 d3". The IN instruction has been executed and the PC
register was returned with the address of the OUT instruction.

Right after step three, the value of the DIP switch has been loaded into the A register and it can be viewed by pressing
"Func." then the "A/A.F." key. The value of the A register will be shown in the pair of digits on the left. Change the value of
the A register (in this program the flag values don't matter). Now do step one and you will see the digital output LEDs now
show the new value of the A register*. If you press "Step" three more times, the IN instruction will change the A register to
the value of the DIP switches again and the OUT instruction will display the new value of the A register on the digital output
LEDs.

* NOTE: The PRIMER was designed so the digital output LEDs will turn on when a logic 0 is output to a particular bit of
port A. So, for example, if 01h is output to the port all LEDs will be turned on except for LED 0, and if F0h is output to the
port, all LEDs will be turned off except LEDs 3 to 0.

29

LESSON 3: Loading Registers and Transferring Data Between Registers

NEW INSTRUCTIONS

MVI A,<byte> op code = 3E
MVI B,<byte> op code = 06
MVI C,<byte> op code = 0E
MVI D,<byte> op code = 16
MVI E,<byte> op code = 1E
MVI H,<byte> op code = 26
MVI L,<byte> op code = 2E

Load the register that follows the MVI mnemonic with the byte value following the op code. No flags are
affected.

XCHG op code = EB

Exchange the value in register D with H and the value in register E with L. No flags are affected.

MOV A,B op code = 78
Copy the B register to the A register. No flags are affected.

MOV B,C op code = 41

Copy the C register to the B register. No flags are affected.

RST 7 op code = FF
The address following the RST 7 instruction is pushed on the stack and then the instructions starting at
address 0038 are executed. No flags are affected.

The program below demonstrates the instructions used to load registers and the instructions used to move values between
registers.

ASSEMBLER PROGRAM

org 0ff01h
mvi a,1 ; load A with 1
mvi b,2 ; load B with 2
mvi c,3 ; load C with 3
mvi d,4 ; load D with 4
mvi e,5 ; load E with 5
mvi h,6 ; load H with 6
mvi l,7 ; load L with 7
xchg ; exchange the value of DE with HL
xchg ; do it again
mov a,b ; copy B to A
mov b,c ; copy C to B
rst 7 ; return to MOS
end

MACHINE LANGUAGE PROGRAM

ADDRESS DATA INSTRUCTION
FF01 3E MVI A,1
FF02 01
FF03 06 MVI B,2
FF04 02
FF05 0E MVI C,3
FF06 03
FF07 16 MVI D,4
FF08 04
FF09 1E MVI E,5
FF0A 05
FF0B 26 MVI H,6
FF0C 06
FF0D 2E MVI L,7
FF0E 07
FF0F EB XCHG
FF10 EB XCHG
FF11 78 MOV A,B
FF12 41 MOV B,C
FF13 FF RST 7

Enter the program into memory and then press the reset button which will change the program counter to FF01. If you

30

examine registers A,B,C,D,E,H and L you will see that pressing the reset button clears them to 0.

To examine this program we will use a breakpoint. A breakpoint is an address in memory where you desire the program to
stop (or break) and return to the data entry mode. This allows you to run part of your program at full speed and then stop
before executing the instruction that the breakpoint points to so you can examine registers or single step or other things.
The software break is performed by the MOS (Monitor Operating System) program using the RST 7 software interrupt.
When the user specifies a break address the MOS replaces the op code at this address with the RST 7 (FF hex)
instruction. The user's program can then execute full speed until encountering the RST 7 instruction. When the user's
program reaches the break, the RST 7 instruction returns control to the MOS program. The MOS program then restores
the op code that was replaced by the RST 7 instruction. The MOS program only allows the use of one breakpoint at a time,
and this is automatically reset to 0000 after the breakpoint has been encountered. The user can however hand insert
breakpoints by placing RST 7 instructions at strategic locations throughout the user's program. Remember that any hand
inserted breakpoints must also removed by hand when they are no longer needed. When inserting a software breakpoint it
is important to remember that if the program execution never reaches the breakpoint address it will not stop. All
breakpoints must point to op codes before they will work. If the breakpoint address is pointing to a byte other than the op
code in a two or three byte instruction, the program will not stop at the breakpoint address. Not only will the program not
stop, the program will also not work properly because one of the bytes in the two or three byte instruction will have been
changed to FF hex. All breakpoint addresses must be above 8000 hex. Those below 8000 hex will not stop execution,
even if the op code at that address is executed.

To select a breakpoint, press the "func." key followed by the "8/B.P." key and the display will show the breakpoint address
in the "ADDRESS/REGISTER PAIR" displays and "B.P." in the "DATA/OP" display. A breakpoint is selected the same
way you change a register and all the rules regarding changing registers apply to setting a breakpoint; just type the address
and press "enter". Remember that B.P. (breakpoint) is not a register within the 8085 microprocessor, it is just a function
supported by the MOS. Follow these steps:

CURRENT PC

FF01 Set a breakpoint at address FF0F and run the program. After the breakpoint occurs the PRIMER will be in

data entry mode displaying the address FF0F. Examine the registers and you will see that A,B,C,D,E,H
and L have been loaded with 1 - 7 respectively. Remember that when you examine the A register the flag
register is also shown, so the displays will show "0100 A.F.".

FF0F Single step and the first XCHG instruction will be executed. Examine the DE and HL register pairs and

you will see the previous value of HL is now in DE and the previous value of DE is now in HL.

FF10 Single step and the second XCHG instruction will be executed which will exchange DE with HL again.

Examine the DE and HL register pairs and you will see that their values are the same as before the first
XCHG instruction.

FF11 Single step and the instruction MOV A,B will be executed which copies the B register to the A register.

Examine these registers to verify this.

FF12 Finally, single step the MOV B,C instruction and the C register will be copied to the B register. Examine

the BC register pair.

FF13 This is the end of the program.

The last instruction in the machine language program is FF which is the RST 7 instruction. Read the instruction's definition
at the beginning of this lesson, again (stack will be explained later). The PRIMER's ROM has instructions at address 0038
which return control of the microprocessor to the MOS. Try to single step the RST 7 instruction; As you can see nothing
happens. Now press the reset button, then run the program by pressing the "STP/RUN" key (don't press "FUNC") and you
will see that the program stops at the address of the RST 7 instruction and returns to the data entry mode showing "FF13
FF" on the displays.

31

LESSON 4: Eight-Bit Addition

NEW INSTRUCTIONS

ADD C op code = 81
The C register is added to the A register with the result being stored in the A register. The Z,S,P,CY and
AC flags are affected.

MOV A,B op code = 78

The contents of the B register are copied to register A. No flags are affected.

This program adds the B and C registers together and stores the result in the A register. This is done by copying the value
of B to A and then adding the value of C to A.

 org 0ff01
loop: mov a,b ; A is a copy of B

add c ; Add C to A
rst 7 ; return control to MOS
end

ADDRESS DATA INSTRUCTION
FF01 78 MOV A,B
FF02 81 ADD C
FF03 FF RST 7

To test the ADD C instruction, load the program into memory, press the reset button and do the following:

1) The B and C registers will be loaded with numbers whose sum will not be greater than 9 so that the result will not

have to be translated to decimal to see that the instruction worked properly. Load the BC register pair with 0403,
which is the same as loading B with 4 and C with 3, then run the program. The program will stop at FF03 because
of the RST 7 instruction. (Because the microprocessor is so fast the program stops almost immediately, so you
may think that it didn't actually run the program, but by examining the registers you will see that it did.) If you
examine the A register you will see that it has the value 7, and if you convert the flag register to binary you will see
that bit 0 (the carry flag) is 0 which means that the result of the addition was small enough to fit in the A register.

2) Press the reset button and load the BC register pair with FFFF then run the program. When the program stops at

FF03 examine the A register and flag register and you will see that the A register is now FE and that bit 0 of the
flag register (the carry flag) is now 1 which indicates that the result of the addition was too big to fit in the A
register.

32

LESSON 5: Eight-Bit Subtraction

NEW INSTRUCTION

SUB C op code = 91
The C register is subtracted from the A register with the result being stored in the A register. The Z,S,P,CY
and AC flags are affected.

If the previous program is still in memory and you change the instruction at FF02 to 91 (SUB C) the following program is the
result. This program will subtract the C register from the B register and store the result in the accumulator. This is done by
copying the value of B into A and then subtracting C from A. The result will be in the A register.

org 0ff01
loop: mov a,b ; A is a copy of B

sub c ; subtract C from A
rst 7 ; return control to MOS
end

ADDRESS DATA INSTRUCTION
FF01 78 MOV A,B
FF02 91 SUB C
FF03 FF RST 7

1) To test the SUB C instruction, load the program into memory and move the program counter to FF01. Load the

BC register pair with 0906, which is the same as loading B with 9 and C with 6, then run the program. When the
program stops at FF03, you will notice that the A register is now 3 and if you convert the flag register to binary you
will see that the carry flag is 0.

2) Press the reset button, load B with 1F and C with 3D then run the program. You will see that the A register is E2

and the carry flag is 1. In every subtraction the carry flag is set if the number in the A register is smaller than the
value being subtracted from it (in this case the A register was 1F and 3D was subtracted from it). The carry flag
could more appropriately be referred to as a "borrow flag" when the flag value is the result of a subtraction.

33

LESSON 6: Sixteen-Bit Subtraction

NEW INSTRUCTIONS

SUB E op code = 93
The E register is subtracted from the A register with the result being stored in the A register. The Z,S,P,CY
and AC flags are affected.

SBB D op code = 9A

Subtracts the D register and the carry flag from the A register with the result being stored in the A register.
 The Z,S,P,CY and AC flags are affected.

MOV A,C op code = 79

The contents of the C register are copied to register A. No flags are affected.

MOV C,A op code = 4F
The contents of the A register are copied to register C. No flags are affected.

MOV B,A op code = 47

The contents of the A register are copied to register B. No flags are affected.

Using the carry flag with subtraction instructions allows you to subtract 16 bit, 24 bit or even larger numbers. The following
program subtracts the value of the DE register pair from the value of the BC register pair, leaving the result in the latter.

org 0ff01
; subtract low order bytes 1st

mov a,c ; A is a copy of C
sub e ; A = A - E. Set carry flag if A < E
mov c,a ; C = A - E

; subtract high order bytes and carry flag
mov a,b ; A is a copy of B
sbb d ; A = A - D - carry flag
mov b,a ; B = A
rst 7 ; stop the program
end

ADDRESS DATA INSTRUCTION
FF01 79 MOV A,C
FF02 93 SUB E
FF03 4F MOV C,A
FF04 78 MOV A,B
FF05 9A SBB D
FF06 47 MOV B,A
FF07 FF RST 7

Load the BC register pair with 2100 hex and load the DE register pair with 10FF hex. The following is an equation that the
program will perform.

 2100 hex
 -10FF hex
 =1001 hex

If you single step the program starting at address FF01 you will see the following after each step:

CURRENT PC
FF01 A equals C which is 00.

FF02 A = A - E. Since A (00) is less than E (FF), the carry flag is set (examine bit 0 of the flag register). The

subtraction will be performed as if there was a 1 digit to the left of the A register. In this case the
subtraction will be performed as if A = 100 hex. (100 hex - FF hex) = 01 so A equals 01.

FF03 C equals A which is 01.
FF04 A equals B which is 21 hex.

34

FF05 The D register and the Carry flag are subtracted from the A register (A = A - D - carry flag = 21 hex - 10
hex - 1 = 10 hex).

FF06 B equals A which is 10 hex

FF07 This is the end of the program.

Examine the BC register pair and you will see that it is now 1001 hex just as predicted in the equation that was shown. Try
pressing the reset button and loading BC and DE with other values such that the C register is greater than the E register
and single step the program again.

35

LESSON 7: Sixteen-Bit Addition

NEW INSTRUCTIONS

ADD E op code = 83
Adds the E register to the A register, storing the result in the A register. The Z,S,P,CY and AC flags are
affected.

ADC D op code = 8A

Adds the D register and the carry flag to the A register, storing the result in the A register. The Z,S,P,CY
and AC flags are affected.

The same concept used in the previous lesson can be applied to make a 16 bit addition program.

 org 0ff01

; add low order bytes 1st
mov a,c ; A is a copy of C
add e ; A = A + E. Set carry if result > 0FFh
mov c,a ; C = A + E

; add high order bytes and carry flag

mov a,b ; A is a copy of B
adc d ; A = A + D + carry flag
mov b,a ; B = A
rst 7 ; stop the program
end

ADDRESS DATA INSTRUCTION
FF01 79 MOV A,C
FF02 83 ADD E
FF03 4F MOV C,A
FF04 78 MOV A,B
FF05 8A ADC D
FF06 47 MOV B,A
FF07 FF RST 7

If the previous program is still in memory the only changes that need to be made are that the SUB instruction must be
replaced with an ADD, and the SBC with an ADC. This is done by changing the byte at address FF02 to 83 and the byte at
address FF05 to 8A. If the program is no longer in memory, load the one listed above.

Load the BC register pair with 2302 hex and load the DE register pair with 10FF hex. The following is an equation that the
program will perform.

 2302 hex
 +10FF hex
 =3401 hex

If you single step the program starting at address FF01 you will see the following after each step:

CURRENT PC

FF01 A equals C which is 02.

FF02 A = A + E. Since A + E = 101 hex and that is too big to fit in the A register, the carry flag is set (examine

bit 0 of the flag register) and the A register is 01.

FF03 C equals A which is 01.

FF04 A equals B which is 23 hex.

FF05 The D register and the carry flag are added to the A register (A = A + D + carry flag = 23 hex + 10 hex + 1

= 34 hex).

FF06 B equals A which is 34 hex

36

FF07 This is the end of the program.

Examine the BC register pair and you will see that it is now 3401 hex just as predicted in the equation that was shown. Try
pressing the reset button and loading BC and DE with other values and running the program again. Try loading the C and
E registers with values that will not set the carry flag when the ADD E instruction is executed.

37

LESSON 8: Sixteen-Bit Subtraction Using Two's Complement Addition

NEW INSTRUCTIONS

DAD B op code = 09
Add the 16 bit number in BC to the 16 bit number in HL and store the result in HL. The carry flag is 1 if the
result is too big to fit in HL.

CMA op code = 2F

Complement the bits in the A register (i.e. change ones to zeros and zeros to ones). No flags are affected

INX B op code = 13
Increment the value in the BC register pair. No flags are affected

The 8085 microprocessor's DAD instruction provides a quicker method of 16 bit addition. The following is a simple
program that adds the BC register pair to the HL register pair. Try running the program with HL = 01FF and BC = 7001,
the result in HL will be 7200 hex.

ADDRESS DATA INSTRUCTION
FF01 09 DAD B
FF02 FF RST 7

There is no instruction for 16 bit subtraction, but this can be simulated by changing the register that you want to subtract to
its two's complement form and then executing a DAD instruction. A number is changed to two's complement form by
complementing every bit and then incrementing the number.

Below is a program that subtracts BC from HL by changing BC to its two's complement form, then the program adds BC to
HL repeatedly. Note that the result in the carry flag will not indicate a borrow as it did in the SUB and SBC instructions.

org 0ff01h
mov a,b ; put B in A
cma ; so it can be complemented
mov b,a ; put the new value in B
mov a,c ; Do the same for C
cma
mov c,a ; BC has been complemented (1's complement)
inx b ; now increment the BC register pair which will make

; it 2's complement
loop: dad b ; add BC to HL

jmp loop ; add it again
end

ADDRESS DATA INSTRUCTION
FF01 F3 MOV A,B
FF02 2F CMA
FF03 47 MOV B,A
FF04 79 MOV A,C
FF05 2F CMA
FF06 4F MOV C,A
FF07 03 INX B
FF08 09 DAD B
FF09 C3 JMP FF08
FF0A 08
FF0B FF

Enter the above program into memory, then load HL with FFFF and BC with 00FF. Set a breakpoint at FF08 then run the
program. When the program breaks, you will see that BC is now the two's complement of 00FF which is FF01. Single step
the DAD instruction and HL will be FF00 (FFFF - FF), single step the JMP and DAD again and HL will be FE01 (FF00 -FF)
and so on. With each DAD instruction 00FF is subtracted from HL.

38

LESSON 9: Binary Coded Decimal Sixteen-Bit Addition

NEW INSTRUCTION

DAA op code = 27
Change the value in the A register to two binary coded decimal digits. This is done by: (a) Adding 6 to the
A register if the value of its lower 4 bits is greater than 9, or if the auxiliary carry flag is set. (b) Adding 6 to
the upper 4 bits of the A register if they are greater than 9 or if the carry flag is set. The Z,S,P,CY, and AC
flags are affected.

NOP op code = 00

This instruction does nothing but take up one byte in a program. No flags are affected.

Decimal numbers can be stored in binary form as binary coded decimal (BCD) numbers. Each decimal digit takes 4 bits
just as hex numbers do, but in BCD, digits A-F are not valid numbers.
For example, the hex number 9999 is 9999 in BCD. The DAA instruction was provided so it would be possible to perform
binary coded decimal math using the ordinary hex addition instructions.
 According to its definition, DAA will give the following results following a hex addition instruction:

 19
+29(hex add)
 32
+06(DAA)
 48

 67
+75(hex add)
 DC
+66(DAA)
142

 43
+72(hex add)
 B5
+60(DAA)
115

Note that DAA can only give 2 decimal digits and the carry flag as a result. In these examples the carry flag represents the
hundreds digit.
The following program will add the BCD number in DE to the BCD number in BC and store the BCD result in BC.

 org 0ff01

; add low order bytes 1st
mov a,c ; A is a copy of C
add e ; A = A + E. Set carry flag if A<E
daa ; decimal adjust accumulator
mov c,a ; C = A + E

; add high order bytes and carry from DAA
mov a,b ; A is a copy of B
adc d ; A = A + D + carry flag
daa ; decimal adjust accumulator
mov b,a ; B = A
rst 7 ; stop the program
end

ADDRESS DATA INSTRUCTION
FF01 79 MOV A,C
FF02 83 ADD E
FF03 27 DAA
FF04 4F MOV C,A
FF05 78 MOV A,B
FF06 8A ADC D
FF07 27 DAA
FF08 47 MOV B,A
FF09 FF RST 7

Enter the program into memory then press reset and load BC with 1934 and load DE with 1879.

CURRENT PC

FF01 Single step to FF03 and examine the A register (it will be AD hex). Since both the upper 4 and lower 4

binary digits of the A register are greater than 9 then 66 will be added to it in the DAA instruction that
follows.

39

FF03 Single step the DAA instruction and examine the A register and you will see that 66 was added to it which
set the carry flag and made the A register 13.

FF04 Single step to FF07 and examine the A register (it will be 32) and flag register. The auxiliary carry flag

will be 1 and the carry flag will be 0 so the DAA instruction that follows will add 6 to the A register.

FF07 Single step the DAA instruction at this address and by examining the A register you will see that 6 was

added to it.

FF08 Single step and the A register will be copied to the B register.

FF09 This is the end of the program.

Verify that the BC register is 3813, which is the sum of the decimal numbers 1934 and 1879. Now replace the DAA
instructions at FF03 and FF07 with 00, which is an instruction that does nothing. Load DE and BC with the same values as
before then run the program again. This time the BC and DE registers will be added as if they were hex numbers and the
result will be 31AD hex.

40

LESSON 10: Multiplication

NEW INSTRUCTIONS

RAL op code = 17
Rotate all the bits in the accumulator one position left and put the carry flag in bit 0 and put the value that
was rotated out of bit 7 into the carry flag. Only the carry flag is affected.

DAD H op code = 29

Add HL to HL and store the result in HL. If the result is greater than 16 bits, the carry flag will be 1,
otherwise 0. Only the carry flag is affected.

DAD D op code = 19

Add DE to HL and store the result in HL. If the result is greater than 16 bits, the carry flag will be 1,
otherwise 0. Only the carry flag is affected.

ORA A op code = B7

This instruction logically ORs the A register with itself. The CY and AC flag will be 0, and the Z,S and P
flags will be affected according to the value of the A register. The A register is not changed.

The following program illustrates the use of a rotate instruction as a method of multiplication. Shifting the digits of a base
10 (decimal) number left is the same as multiplying the number by its base, which is 10. In the same way, in the base 2
(binary) number system, shifting a binary number left is the same as multiplying it by its base, which is 2. For example:

DECIMAL
1423 shifted left 1 digit = 14230
1423 * 10 = 14230

BINARY

0111 shifted left 1 digit = 01110
0111 * 0010 = 01110
below is the example converted to decimal
(7 * 2 = 14)

By using more than one left shift on a number you can effectively multiply the number by 4, 8, 16, 32, 64, 128 and so on.
The number of times you shift a number left determines the amount the original number was multiplied by. For example if
you shift a number right 3 times, it is the same as multiplying it by 2*2*2 or 8.

Often when doing multiplication using left shifts, the result won't fit in an 8 bit register. The RAL instuction, because
of the way it uses the carry flag will allow you to write programs which shift bits from register to register which can allow
shifting of very large numbers. In the previous instructions the carry flag indicated a carry or borrow, but RAL uses it for
two other purposes: RAL shifts the carry flag into bit 0 of the A register and then loads the carry flag with the value shifted
out of bit 7 of the A register. The program below shows how the carry flag can be used to pass a bit from one register to
another. The program shifts the bits in the DE register pair left one bit position.

org 0ff01h
loop: mov a,e ; load A with low byte first

ora a ; clear the carry flag (cy=0) so RAL will shift 0 into bit 0
ral ; rotate left through carry
mov e,a ; store in E
mov a,d ; load A with high byte

; what was shifted out of bit 7 in the last RAL is in the CY
flag..

ral ; ..which is shifted into bit 0 in this RAL
mov d,a ; store in D
rst 7 ; return to MOS
end

ADDRESS DATA INSTRUCTION
FF01 7B MOV A,E
FF02 B7 ORA A
FF03 17 RAL
FF04 5F MOV E,A
FF05 7A MOV A,D
FF06 17 RAL
FF07 57 MOV D,A
FF08 FF RST 7

41

Load the above program into memory then load the DE register pair with 0080 hex (128 decimal) and run the program.
This value is chosen because it will show that after you run the program, bit 7 of E is shifted into bit 0 of D, giving a result of
0100 (128 * 2 = 256 decimal). Examine the DE register pair to verify this. Run the program using other values for DE and
verify that the program really does multiply DE by 2, but make sure values are less than 8000 hex or the result won't fit in
the DE register pair.

If you want to multiply the HL register pair by 2 the DAD H instruction can be used. It adds HL to HL which is the
same as multiplying HL by 2. Below is a simple program which illustrates the DAD H instruction.

org 0ff01h
loop: dad h ; add hl to hl

jmp loop ; do it again

ADDRESS DATA INSTRUCTION
FF01 29 DAD H
FF02 C3 JMP FF01
FF03 01
FF04 FF

Load the program into memory and press reset then perform the same tests that were done for the previous example by
loading the HL register pair with the same values that DE was loaded with and single stepping. The results will be the
same.
A quick "times 10" algorithm can be made using a combination of multiply by 2 instructions and an addition instruction.
Below is the equation " X = Y * 10 " which is broken down into a form which the 8085 can easily handle:

X = Y * 10
X = (Y * 5) * 2
X = ((Y * 4) + Y) * 2
X = ((Y * 2 * 2) + Y) * 2

The last equation above is translated into the following program.

 org 0ff01h

mov d,h ; put original value of
mov e,l ; HL into DE
dad h ; HL = HL * 2
dad h ; HL = HL * 2
dad d ; HL = HL + DE
dad h ; HL = HL * 2
rst 7 ; return to MOS
end

ADDRESS DATA INSTRUCTION
FF01 54 MOV D,H
FF02 5D MOV E,L
FF03 29 DAD H
FF04 29 DAD H
FF05 19 DAD D
FF06 29 DAD H
FF07 FF RST 7

Load the program into memory then load HL with 0003. After running the program, HL will be 001E which is 30 decimal.
Change the program counter back to FF01 (don't press reset, or the registers will be cleared) then run the program again.
This time HL will be 012C which is 300 decimal.

In the lesson "Using Monitor Operating System Subroutines" is a description of a service which multiplies two 16 bit
numbers.

42

LESSON 11: Division

NEW INSTRUCTIONS

RAR op code = 1F
Shift all the bits in the accumulator one position right and put the carry flag in bit 7 and put the value that
was shifted out of bit 0 into the carry flag. Only the carry flag is affected.

MOV A,D op code = 7A

The contents of the D register are copied to register A. No flags are affected.

MOV D,A op code = 57
The contents of the A register are copied to register D. No flags are affected.

 MOV A,E op code = 7B

The contents of the E register are copied to register A. No flags are affected.

MOV E,A op code = 5F
The contents of the A register are copied to register E. No flags are affected.

Just as shifting a number to the right is the same as multiplying it by its base, shifting a number to the left is the same as
dividing the number by its base. This allows the 8085 to perform division by 2 by shifting a binary number to the right.
When division is done this way, the remainder will be the bit shifted out of the lowest bit position. The following program
divides the number in DE by two, leaving the quotient in DE and the remainder in the carry flag.

org 0ff01h
loop: mov a,d ; load A with high byte first

ora a ; clear the carry flag (cy=0)
rar ; rotate right through carry
mov d,a ; store in D
mov a,e ; load A with low byte
rar ; whatever was shifted out of bit 0 in the last RAR will be put

; in the CY flag which is shifted into bit 7 in this RAR
mov e,a ; store in E
rst 7 ; return to MOS
end

ADDRESS DATA INSTRUCTION
FF01 7A MOV A,D
FF02 B7 ORA A
FF03 1F RAR
FF04 57 MOV D,A
FF05 7B MOV A,E
FF06 1F RAR
FF07 5F MOV E,A
FF08 FF RST 7

Load the program into memory, load the DE register pair with 0007 hex and then run the program. You will see that DE is
now 3 and if you examine the A.F. register you will see that the carry flag is 1 which indicates a remainder of 1. Try other
values of DE and verify that the program actually does divide the DE register by 2.

In the lesson "Using Monitor Operating System Subroutines" is a description of a division service which divides a value in
the HL register pair by the value in the DE register pair.

43

LESSON 12: Using Logic Instructions

NEW INSTRUCTIONS

ANI <byte> op code = E6
Logically AND the A register with the byte following the op code and store the result in the A register. The
Z,S,P,CY and AC flags are affected.

XRI <byte> op code = EE

Logically XOR the A register with the byte following the op code and store the result in the A register. The
Z,S,P,CY and AC flags are affected.

ORI <byte> op code = F6

Logically OR the A register with the byte following the op code and store the result in the A register. The
Z,S,P,CY and AC flags are affected.

Sometimes it is desired to change bits of a register to different values. Examine the result of the ANI instruction.

10010010 (A register)
ANI 11000011 (<byte>)
 10000010 (result)

If there is a 0 in a bit position in <byte> then the corresponding bit in the result will be 0. If there is a 1 in a bit position in
<byte> then the corresponding bit in the A register will be copied to the result. Knowing this, the AND operation would be
useful in a program where you needed to check the status of an input port bit. The way this is done is illustrated below.
The A register holds the value of the input port, and <byte> has a bit set which corresponds to the one you want to examine
and all other bits are 0.

00101111 (input port value)
ANI 00100000 (examine bit 5)

00100000 (result)

All bits in the value of the input port have been made 0 except that the bit that we wanted to examine is 1. According to the
logic of the AND operation, all bits would have been 0 if the input port bit 5 was off. This method of making certain bits 0
and passing other bits is called "masking" and the data that is ANDed to the A register is called the "mask".

In the situation where it is needed to change bits to 1, the OR operation should be used. As seen below, a bit value in A is
copied to the result if the corresponding bit value in <byte> is 0, and a bit is set to 1 in the result if the corresponding bit
value in <byte> is 1 .

01000011 (A register)
ORI 10101110 (<byte>)

11101111 (result)

To complement or toggle particular bits (change 1s to 0s and 0s to 1s), the XOR operation can be used.

10101011 (A register)
XRI 11110000 (<byte>)

01011011 (result)

If a bit in <byte> is 1 then the corresponding bit in A will be toggled in the result, otherwise if it is 0 the corresponding bit in
A will be passed to the result unchanged.

The following program combines the instructions ANI, ORI and XRI to change the data from input port B
(connected to the DIP switches) by setting, resetting and toggling the bits. This process of changing bits is called "bit
manipulation". Bit manipulation instructions are used by the MOS to allow the 8085 to control other chips in the PRIMER
and to read data from them.

44

leds equ 11h
dips equ 12h

org 0ff01h
loop: in dips ; get the input port DIP switch values

ani 00111111b ; make bits 6 and 7, zero
ori 00110000b ; make bits 5 and 4, one
xri 00000110b ; toggle bits 2 and 1
out leds ; display A on discrete LEDs
jmp loop ; jump to loop
end

ADDRESS DATA INSTRUCTION
FF01 DB IN 12
FF02 12
FF03 E6 ANI 3F
FF04 3F
FF05 F6 ORI 30
FF06 30
FF07 EE XRI 06
FF08 06
FF09 D3 OUT 11
FF0A 11
FF0B C3 JMP FF01
FF0C 01
FF0D FF

Load the above program into memory then press reset and run it. You will see that the LEDs will light up according to the
following rules:

LED NUMBER STATUS
7 on
6 on
5 off
4 off
3 off if DIP switch #3 is off or on if the switch is on
2 on if DIP switch #2 is off or off if the switch is on
1 on if DIP switch #1 is off or off if the switch is on
0 off if DIP switch #0 is off or on if the switch is on

NOTE: If you are facing the PRIMER, the DIP switches are numbered 7-0 from left to right. Also, a DIP switch in the on

position will produce a logic 0 input and in the off position will produce a logic 1 input.

45

LESSON 13: Using Conditionals

NEW INSTRUCTIONS

JNZ <addr> op code = C2
If the zero flag is 0, load the PC register with the two bytes following the op code, otherwise start
executing the instruction after this one. The first byte following the op code is the low byte of the address,
the second byte is the high byte of the address. No flags are affected.

The program below is the same as the one in Lesson 2 except that it provides a way to stop the program without pressing
the reset button.

leds equ 11h
dips equ 12h

org 0ff01h
loop: in dips ; load the A register with DIP switch values

out leds ; output the value to LEDs
ora a ; Set Z flag if A = 0
jnz loop ; jump to loop if A not = 0
rst 7 ; return to MOS
end

The JNZ instruction is the same as the JMP instruction only it has a conditional (NZ) attached to it. Conditionals, in
general, control whether an instruction will be executed or whether it will be ignored. If the instruction is ignored, the
instruction following it will be executed. Not only the can the JMP instruction be controlled by conditionals but also the
CALL and RET instructions which are discussed.

Below is a list of the different jump instructions that use conditionals and the values of the flags that are necessary for the
jump to occur:

JNZ = Jump if result of operation was not 0 (if Z = 0)
JZ = Jump if result of operation was 0 (if Z = 1)
JNC = Jump if no carry from the operation (if CY = 0)
JC = Jump if the operation caused a carry (if CY = 1)
JPO = Jump if the parity of the result is odd (if P = 0)
JPE = Jump if the parity of the result is even (if P = 1)
JP = Jump if a positive number result. (if S = 0)
JM = Jump if a negative number result. (if S = 1)

ADDRESS DATA INSTRUCTION
FF01 DB IN 12
FF02 12
FF03 D3 OUT 11
FF04 11
FF05 B7 ORA A
FF06 C2 JNZ FF01
FF07 01
FF08 FF
FF09 FF RST 7

Press the reset button and enter the program into memory. Now set the DIP switches to the off position so the value of the
DIP switches will not be zero. Run the program and it should work the same as the one in lesson 2, until the value of the
DIP switches are changed to zero. This happens when the DIP switches are moved to the on position and when this is
done, the program will execute the RST 7 instruction, return to the MOS and display "FF09 FF" which is the address and
the op code of the RST 7 instruction.

To analyze the program press the reset button and perform the following steps:

CURRENT PC
FF01 Move the DIP switches to the off position and single step to address FF06.
FF06 Examine the flag register and you will see that bit 6 (the zero flag) is 0 indicating that the ORA A

instruction did not give a zero as a result. ORing A with A will only give a 0 result if A equals 0 and as you
can see, A is not 0. Single step and the JNZ FF01 instruction will be executed because the conditional is
true (since zero flag is 0).

46

FF01 Move the DIP switches to the on position, so that the value of the DIP switches wil be be 0 and single step
to address FF06 again.

FF06 Examine the flag register and you will see that bit 6 (the zero flag) is 1 indicating that the ORA A

instruction gave a zero as a result. As you can see, the A register is 0. Single step and the JNZ FF01
instruction won't be executed because the conditional is false (since zero flag is 1).

FF09 This is the end of the program.

47

LESSON 14: Using Register Indirect Addressing

NEW INSTRUCTIONS

LXI H,<word> op code = 21
Load the HL register pair with the word (a word = 2 bytes) that follows the op code. The byte following the
op code goes in the L register and the byte after that goes into the H register. No flags are affected.

MVI M,<byte> op code = 36

Copy the byte that follows the op code to the byte in memory pointed to by the HL register pair. No
registers are affected.

MOV E,M op code = 7E

Copy the byte in memory pointed to by the HL register pair to the E register. No flags are affected.

INX H op code = 23
Increment the value of the HL register pair. No flags are affected

MOV M,E op code = 73

Copy the E register to the byte in memory pointed to by the HL register pair. No registers are affected.

According to the definitions of MVI M,<byte>, MOV M,E and MOV E,M, the M referred to by these instruction works the
same way as a register, in that data can be loaded from it or stored to it, as bytes. But it is different than a register because
M refers to a certain location in memory. The HL register pair points to this memory location. Since the HL register pair is
16 bits it can point to any address in memory from 0000 to FFFF just as the PC register can.

For example, if HL had the value of 0131 hex and the MOV E,M instruction was executed, the data at memory
address 0131 will be copied to the E register. This is show below:

ADDRESS DATA
:(addresses 0000-012F)
:
0130 3C
0131 01 <-HL
0132 CD
0133 D8
:
:(addresses 0134-FFFF)

The value loaded into E is the value of the byte pointed to by HL. If HL was 0133 then the value loaded into E would be
D8; If HL was 0132 then the value loaded into E would be CD and so on.

The MVI M,<byte> instruction works similarly, but instead of reading the byte pointed to by HL, it writes data to the byte
pointed to by HL. If HL was FFC3 and the MVI M,03 instruction was executed then 03 would be written to the data at
address FFC3. The value of the data at address FFC3 before and after the MVI M,03 instruction is shown below.

 BEFORE

ADDRESS DATA
:(addresses 0000-FFC0)
:
FFC1 32
FFC2 01
FFC3 20 <-HL
FFC4 14
:
:(addresses FFC5-FFFF)

 AFTER
ADDRESS DATA
:(addresses 0000-FFC0)
:
FFC1 32
FFC2 01
FFC3 03 <-HL
FFC4 14
:
:(addresses FFC5-FFFF)

If the value of HL was changed to FFC1 and the MVI M,03 instruction was executed then the data at address FFC1 will be
changed to 03.

This method of accessing memory described in this lesson is called register indirect addressing. The following
program will copy a byte from one memory location to another and also store a value in memory illustrating the use of the
HL register pair to indirectly access memory.

48

org 0ff01h
lxi h,addr ; load HL with the address of the reserved byte.
mov e,m ; load E with data pointed to by HL
inx h ; HL=HL + 1 (point to next address)
inx h ; HL=HL + 1 (point to next address)
inx h ; HL=HL + 1 (point to next address)
inx h ; HL=HL + 1 (point to next address)
mov m,e ; store E at new address in HL

addr: inx h ; HL=HL + 1 (point to next address)
mvi m,77h ; store 77h at new address in HL
rst 7 ; return to MOS
ds 2 ; this is a 2 byte reserved location.
end

ADDRESS DATA INSTRUCTION
FF01 21 LXI H,FF0A
FF02 0A
FF03 FF
FF04 5E MOV E,M
FF05 23 INX H
FF06 23 INX H
FF07 23 INX H
FF08 23 INX H
FF09 73 MOV M,E
FF0A 23 INX H
FF0B 36 MVI M,77h
FF0C 77

 FF0D FF RST 7
FF0E 00 (NOT AN INSTRUCTION, BUT DATA)
FF0F 00 (DATA)

Enter the program into memory then press reset which clears the general purpose registers and changes the program
counter to FF01. Do the following:

CURRENT PC

FF01 Single step and examine the HL register which should be FF0A.

FF04 Single step and the data pointed to by HL (the data at memory address FF0A) will be put in the E register.

FF05 Single step four times, which will execute four INX H instructions, thereby pointing HL to the place to store data.

Examine the HL register pair.

FF09 Single step and the value in the E register will be stored at the new address pointed to by HL (at FF0E).

FF0A Single step and an INX H instruction will be executed.
FF0B Single step and 77 will be stored at the new address pointed to by HL (at FF0F).

FF0D This is the end of the program. Press "enter" and the data at FF0E will be displayed. You will see that the

instruction at FF09 (MOV M,E) did store the value of the E register here. Press enter again and you will see that
the instruction at FF0B (MVI M,77) actually stored 77 at FF0F.

Notice that this program loads the E register with a byte from a memory location within the program itself (FF0A)

and that the byte is actually an instruction. Though this is totally legal in machine language it is not useful. The program
was written this way so that the value loaded into the E register would be known beforehand. Remember that the value of
HL can be anything from 0000 to FFFF so data can be stored or read anywhere in memory.

49

LESSON 15: Using Register Indirect Addressing to Perform 24-Bit Addition

NEW INSTRUCTIONS

ADD M op code = 86
Adds the byte in memory pointed to by the HL register pair to the A register, storing the result in the A
register. The Z,S,P,CY and AC flags are affected.

ADC M op code = 8E

Adds the carry flag and the byte in memory pointed to by the HL register pair to the A register, storing the
result in the A register. The Z,S,P,CY and AC flags are affected.

INX H op code = 23

Increment the HL register pair. No flags are affected.

Sometimes the need arises to add two 24 bit numbers. This can be done using register indirect addressing, as in the
example program below. The program adds the 3 byte number at addresses FF10, FF11 and FF12 to the 3 byte number in
the C,D and E registers and stores the result in C,D and E. The byte in E and the byte at FF10 are the least significant
bytes and the byte in C and the byte at FF12 are the most significant bytes.

org 0ff01h
lxi h,num
mov a,e ; A=least significant byte
add m ; add data at hl address to A
mov e,a ; save result in E
inx h ; point to next memory address
mov a,d ; A=2nd most significant byte
adc m ; add carry and data at hl address to A
mov d,a ; save result in D
inx h ; point to next memory address
mov a,c ; A=most significant byte
adc m ; add carry and data at hl address to A
mov c,a ; save result in C
rst 7 ; return to MOS

num: db 5Ch,0A3h,0Eh ; 3 bytes of storage
end

ADDRESS DATA INSTRUCTION
FF01 21 LXI H,FF10
FF02 10
FF03 FF
FF04 7B MOV A,E
FF05 86 ADD M
FF06 5F MOV E,A
FF07 23 INX H
FF08 7A MOV A,D
FF09 8E ADC M
FF0A 57 MOV D,A
FF0B 23 INX H
FF0C 79 MOV A,C
FF0D 8E ADC M
FF0E 4F MOV C,A
FF0F FF RST 7
FF10 5C (least significant byte)
FF11 A3 (2nd most significant byte)
FF12 0E (most significant byte)

Load the the above program and data into memory. After loading the program, the 3 byte number stored in memory
addresses FF12, FF11 and FF10 will be 0EA35C. Press the reset button then load C with 01 and DE with F7BF so that C
and DE will contain the 3 byte number 01F7BF, and do the following:

CURRENT PC
FF01 Single step and HL will be loaded with FF10 which is the address of least significant digit of the three byte

number that is stored in memory.

50

FF04 Single step and the A register will be loaded with the value of the E register. Examine the A register (it
should be BF)

FF05 Single step and the ADD M instruction will be executed which will add to the A register the data at the

memory address pointed to by HL. The memory address is FF10 and the data at that address is 5C, so
the result of this instruction will be BF + 5C = 11B. Since 11B won't fit in the A register, the carry flag is
set and the A register is 1B. Examine the A register and flag register to verify this.

FF06 Single step and the A register will be copied to the E register.

FF07 Single step and HL will be FF11 which points to the second most significant byte of the three byte number

stored in memory.

FF08 Single step and the D register will be copied to the A register. Examine the A register; it should be F7.

FF09 Single step and the ADC M instruction will be executed which will add to the A register, the carry flag from

the last ADD M instruction and the data at the memory address pointed to by HL. The memory address is
FF11 and the data at that address is A3, so the result of this instruction will be F7 + A3 + carry flag = 19B.
 Since 19B won't fit in the A register, the carry flag is set and the A register is 9B. Examine the A register
and flag register to verify this.

FF0A Single step and the A register will be copied to the D register.

FF0B Single step and HL will be FF12 which points to the most significant byte of the three byte number stored

in memory.

FF0C Single step and the A register will be loaded with the value of the C register. Examine the A register (it

should be 01).

FF0D Single step and the ADC M instruction will be executed which will add to the A register the carry flag from

the last ADC M instruction and the data at the memory address pointed to by HL. The memory address is
FF12 and the data at that address is 0E, so the result of this instruction will be 01 + 0E + carry flag = 10.
Since 10 fits in the A register, the carry flag is zero and the A register is 10. Examine the A register and
flag register to verify this.

FF0E Single step and the A register will be stored in the C register.

FF0F This is the end of the program.

The result stored in the C,D and E registers is 109B1B which is the sum of 01F7BF and 0EA35C. Try running the program
with different values in the C,D and E registers with other values stored at memory locations FF10, FF11 and FF12.

51

LESSON 16: Using Register Indirect Addressing to Move Data

NEW INSTRUCTIONS

INX B op code = 03
Increment the BC register pair. No flags are affected.

INX D op code = 13
Increment the DE register pair. No flags are affected.

DCR L op code = 2D

Decrement the L register. Z,S,P and AC flags are affected.

LDAX B op code = 0A
Copy the byte from the memory location pointed to by the BC register pair to the A register. No flags are
affected.

STAX D op code = 12

Copy the A register to the byte in memory pointed to by the DE register pair. No flags are affected.

The program below uses indirect addressing to copy a series of bytes from one memory location to another.
Copying blocks of data from one memory location to another is done quite often in word processor programs and programs
that use graphics, such as video games. For this program the BC register must be loaded with the address of the start of
the memory block to move, DE must be loaded with the address (a RAM address) to which you want to copy the memory
block and L must be loaded with the number of bytes in the block that you want to copy.

org 0ff01h
loop: ldax b ; load A with byte pointed to by BC

stax d ; store A at address in DE
inx b ; increment BC. This points BC to the

; next address from which to get a byte.
inx d ; increment DE. This points DE to the

; next address to store a byte.
dcr l ; decrement L
jnz loop ; if L is not 0, then loop again
rst 7 ; return to MOS
db 0,0 ; make these bytes 0 so we can see they have changed
end

ADDRESS DATA INSTRUCTION
FF01 0A LDAX B
FF02 12 STAX D
FF03 03 INX B
FF04 13 INX D
FF05 2D DCR L
FF06 C2 JNZ FF01
FF07 01
FF08 FF
FF09 FF RST 7
FF0A 00 (data, not an instruction)
FF0B 00 (data also)

After entering the program into memory, press reset and load BC with FF03, load DE with FF0A, load HL with 0002 and do
the following:

CURRENT PC

FF01 Single step and the A register will be loaded with the value of the byte pointed to by the BC register pair (the byte

at FF03 is 03).

FF02 Single step and the A register will be stored at the memory address pointed to by the DE register pair (FF0A).

FF03 Single step and the BC register pair will be incremented so that it points to the next memory address (FF04) from

which to get data.

52

FF04 Single step and the DE register pair will be incremented so that it points to the next memory address (FF0B) to
store data.

FF05 Single step and the L register will be decremented. Since the result is not 0, the zero flag is 0.

FF06 Single step and JNZ FF01 will load PC with FF01 since the zero flag is 0.

FF01 Single step and the A register will be loaded with the value of the byte pointed to by the BC register pair (the byte

at FF04 is 13).

FF02 Single step and the A register will be stored at the memory address pointed to by the DE register pair (FF0B).
FF03 Single step and the BC register pair will incremented so that it points to the next memory address (FF05) from

which to get data.

FF04 Single step and the DE register pair will incremented so that it points to the next memory address (FF0C) to store

data.

FF05 Single step and the L register will be decremented and since the L register has been decremented to 0 the zero

flag has been set.

FF06 Single step and since the zero flag is 1 the PC register will be loaded with FF09 which is the address of the

instruction following the JNZ FF01 instruction.

FF09 This is the end of the program. Press "enter" and you will see that the byte at FF03 has been copied to memory

address FF0A; Press enter again and you will see that the byte at FF04 has been copied to memory address
FF0B.

Press reset, load BC with FF01 and load DE with FF0A as before, but this time load HL with 0009 and run the program.
Running the program will make another copy of the program beginning at address FF0A. Examine the memory from FF0A
to FF12 and you will see that it matches the memory from FF01 to FF09. You can also experiment with different values for
BC, DE and L, but be careful in your choice of values for DE and L because some values will cause the program to destroy
itself by writing data in addresses FF01 to FF09.

This program uses what is called "conditional looping". Conditional looping causes an instruction or group of instructions to
be repeated as long as a certain condition becomes true. The instructions that are repeated in this program are LDAX B,
STAX D, INX B, INX D and DCR L and the condition that must be true is that the L register must not be zero. You noticed
that when the program was run, the L register was 2 and the instructions were executed 2 times. So you see that the value
of L determines the number of times that the instructions will be executed. The way this works is the DCR L instruction
decrements the L register and sets the zero flag if the L register is now zero and the JNZ FF01 will jump to the first
instruction as long as the L register is not 0. If the L register is 0 before the DCR L instruction is executed the latter will
cause the L register to be changed to FF hex and the instructions will be repeated 256 times.

53

LESSON 17: Using Variables

NEW INSTRUCTIONS

SHLD <addr> op code = 22
Store the L register at memory address <addr> and store the H register at memory address <addr+1>.
The first byte after the op code is the low order byte of <addr> and the second byte after the op code is the
high order byte of the address. No flags are affected.

LHLD <addr> op code = 2A

Load the L register with the data at memory address <addr> and load the H register with the data at
memory address <addr+1>. The first byte after the op code is the low order byte of <addr> and the
second byte after the op code is the high order byte of the address. No flags are affected.

STA <addr> op code = 32

Store the A register at memory address <addr>. The first byte after the op code is the low order byte of
<addr> and the second byte after the op code is the high order byte of the address. No flags are affected.

LDA <addr> op code = 3A

Copy the value from memory address <addr> to the A register. The first byte after the op code is the low
order byte of <addr> and the second byte after the op code is the high order byte of the address. No flags
are affected.

RLC op code = 07
Shift every bit left and copy the bit shifted out of bit 7 into bit 0 and the carry flag. Only the carry flag is

 affected.

Variables are areas of RAM that the programmer intends to be changed during the execution of a program. In contrast,
constants are values that a programmer does not desire to change. For example, if you want to load the A register with an
8 bit constant, use the instruction MVI A,<byte>, but if you want to load it with an 8 bit variable, use the instruction LDA
<addr>. Similarly, when you want to load the HL register pair with a 16 bit constant, use the LXI H,<addr> instruction, or if
you want to load it with a 16 bit variable, use the instruction LHLD <addr>.
To store a value in an 8 bit variable, you can use the instruction STA <addr> and to store a 16 bit variable, you can use
SHLD <addr>.

The program below uses a 16 bit variable and 8 bit variable to produce a LED pattern that changes at a varying rate. The
program could have easily been written using registers instead of variables. It is written this way to demonstrate the new
instructions.

org 0ff01h
lxi h,8000h ; load hl with the constant 8000h
lxi d,-100h ; load de with the constant -100h
mvi a,1 ; load A with the constant 1

dlay: sta leddta ; store A in the LED data variable
dad d ; add de to HL
shld dlaytm ; store the new delay

dlay1: dcx h ; decrement HL
mov a,h ; move H to A
ora l ; so it can be ORed with L
jnz dlay1 ; if H and L are not 0, go to dlay1
lda leddta ; get the LED data
out leds ; output the pattern to the LEDs
rlc ; rotate bits left
lhld dlaytm ; load hl with delay variable again
jmp dlay ; do another delay

dlaytm: ds 2 ; length of delay
leddta: ds 1 ; bit pattern to output to LEDs

end

54

ADDRESS DATA INSTRUCTION
FF01 21 LXI H,8000
FF02 00
FF03 80
FF04 11 LXI D,FF00
FF05 00
FF06 FF
FF07 3E MVI A,1
FF08 01
FF09 32 STA FF24
FF0A 24
FF0B FF
FF0C 19 DAD D
FF0D 22 SHLD FF22
FF0E 22
FF0F FF
FF10 2B DCX H
FF11 7C MOV A,H
FF12 B5 ORA L
FF13 C2 JNZ FF10
FF14 10
FF15 FF
FF16 3A LDA FF24
FF17 24
FF18 FF
FF19 D3 OUT 11
FF1A 11
FF1B 07 RLC
FF1C 2A LHLD FF22
FF1D 22
FF1E FF
FF1F C3 JMP FF09
FF20 09
FF21 FF
FF22 FF (dlaytm least significant byte)
FF23 FF (dlaytm most significant byte)
FF24 FF (leddta)

Enter the program into memory and do the following:

CURRENT PC
FF01 Single step once and HL will be loaded with the constant 8000h.

FF04 Single step again and DE will be loaded with -100h (FF00h) so subtraction can be performed by using DAD D.

FF07 Single step and the A register will be 1.
FF09 Single step and the A register will be copied to the variable space at FF24.

FF0C Load the PC register with FF24 and you will see that the data that was there before (FF) has been changed to 01.

Restore the original value of the PC register by loading it with FF0C. Single step and DE will be added to HL
which will change HL to 7F00h which is the same result that would occur if 100h was subtracted from it.

FF0D Single step and HL will be stored in the 16 bit variable space. Load the PC register with FF22 and you will see that

the L register has been stored at FF22. Press enter and you will see that the H register has been stored at FF23.
Load the PC register with FF10.

FF10 Set a breakpoint at FF16 and run the program from the current address (FF10). This is done because the

instruction at this address and the 3 that follow will be repeated until the HL register equals 0, which in this case
will be 32,512 times.

FF16 Examine the A register then single step and examine it again. You will see that it has been loaded with the value

that was stored at FF24 earlier.

FF19 Single step twice and the A register will be output to the digital output LEDs and then its value will be rotated left.

FF1C Examine the HL register pair then single step and examine it again. HL has now been loaded with the variable that

55

was stored earlier using the SHLD FF22.

FF1F Run the program from here to see what the program does.

This program has demonstrated the usefulness of variables to remove the limitations caused by having only a few
registers. As you write larger programs you may find that the use of variables is an absolute necessity. The last page of
the assembly language listing of MOS shows the system variables used by MOS.

56

LESSON 18: The Stack and Related Instructions

NEW INSTRUCTIONS

PUSH PSW op code = F5
Put the processor status word (A register and flag register) on the stack. No flags are affected.

PUSH B op code = C5
Put the BC register pair on the stack. No flags are affected.

POP PSW op code = F1

Get the processor status word (A register and flag register) from the stack. Z,S,P,CY and AC flags are
affected.

POP B op code = C1

Get the BC register pair from the stack. No flags are affected.

The 8085 microprocessor allows you to choose an area of RAM to be a section of temporary storage called a stack. The
key element of the stack is the 8085's internal stack pointer register (SP). The SP can be set to start at any address in
memory, but it is best to leave it equal to or less than the address that is selected by the MOS.

Memory is most often shown with low addresses being at the top of a listing, and higher addresses being at the bottom as
in the example below:

ADDRESS DATA INSTRUCTION
(this is not a working program)
FF01 F3 DI
FF02 21 LXI H,FF20
FF03 20
FF04 FF
FF05 22 SHLD FFE9
FF06 E9
FF07 FF
:
: (addresses FF08 - FFCF)
:
FFD0 40
FFD1 23
FFD2 61
FFD3 03

SP-> FFD4 00

For example, if SP = FFD4 (as in the above example) and BC = 1234 and a PUSH B instruction is executed, the B register
is copied to memory address SP - 1 (FFD3) and the C register is copied to memory address SP - 2 (FFD2), then 2 is
subtracted from SP so that the stack now looks like this:

STACK ADDRESS STACK DATA DESCRIPTION

(this is not a working program)
:
:
FFD0 40
FFD1 23

SP-> FFD2 34 VALUE FROM C REGISTER
FFD3 12 VALUE FROM B REGISTER
FFD4 00

If the A register is 56 and the flags are 78 and a PUSH PSW is executed then the stack will look like this:

STACK ADDRESS STACK DATA DESCRIPTION

(this is not a working program)
:
:

SP-> FFD0 78 VALUE FROM FLAGS
FFD1 56 VALUE FROM A REGISTER
FFD2 34 VALUE FROM C REGISTER
FFD3 12 VALUE FROM B REGISTER
FFD4 11

57

You can now see where the name "stack" comes from, data is "stacked" in memory with every PUSH instruction. Since the
stack grows down in memory it is possible for it to eventually overwrite your program, so you must be careful when using
the stack.

POP instructions work the opposite of PUSH instructions. For example, if a POP H instruction was executed after the
PUSH PSW in the previous example, then the data at memory address SP would be copied into the L register and the data
at memory address SP + 1 would be copied into the H register then 2 would be added to SP. In other words, the data that
was in the PSW when it was pushed on the stack will be copied into the HL register pair. Similarly if PUSH BC was
executed followed by POP HL, then B would be copied to H and C would be copied to L.

To demonstrate the way PUSH and POP works, load the program counter register with FFCB then load the following
program into memory, exactly as it is shown.

org 0ffc7h ; start program near top of stack
push psw ; put PSW on stack (A register and flags)
push b ; put BC register pair on stack
pop psw ; remove data from stack and put in PSW
pop b ; remove data from stack and put in BC

 db 0,0,0,0,0 ; there are zeros in the stack area so
db 0,0,0,0,0 ; it will be in a known initial state

ADDRESS DATA DESCRIPTION
PC-> FFC7 F5 PUSH PSW

FFC8 C5 PUSH B
FFC9 F1 POP PSW
FFCA C1 POP B
FFCB 00
FFCC 00
FFCD 00
FFCE 00
FFCF 00
FFD0 00
FFD1 00
FFD2 00
FFD3 00

SP-> FFD4 00 (stack pointer is here)

Load the program counter with FFC7 again and load the A register with 01, the flags register with 02, load BC with 0304
and do the following:

1) Examine the SP register which should be FFD4.

2) Examine the stack contents and they should be 0000. This is done the same way as examining a register.
Press the "func." key and then the "9/S.C." key and the stack contents will be displayed in the
"ADDRESS/REGISTER PAIR" displays. Remember that S.C. is not an 8085 internal register, it is just a way that
the MOS provides for viewing the two bytes on top of the stack.

3) Single step once at address FFC7. This pushes the PSW on the stack (the A register and flags).

4) If you examine SP then you will find that it is now FFD2 which is 2 less than before.

5) The stack contents will now be 0102 which is the value of the PSW that was pushed on the stack. Examine the
stack contents to verify this.

The listing below shows what the stack looks like now and the PC and SP registers are shown pointing to their respective
memory addresses.

58

ADDRESS DATA DESCRIPTION
FFC7 F5 PUSH PSW

PC-> FFC8 C5 PUSH B
FFC9 F1 POP PSW
FFCA C1 POP B
FFCB XX (undefined value)
FFCC XX (undefined value)
FFCD XX (undefined value)
FFCE XX (undefined value) (See note below)
FFCF XX (undefined value)
FFD0 XX (undefined value)
FFD1 XX (undefined value)

SP-> FFD2 02 value from flags
FFD3 01 value from register A
FFD4 00

7) Execute the PUSH B instruction by single stepping once.

8) If you examine the SP then you will find that it is now FFD0 which is 2 less than before and the stack contents
will be 0304 which is the value pushed on the stack by the PUSH B instruction.

9) By examining the memory from FFD0 to FFD4 you will see that the data is as the listing below. Return PC to
the value of FFCD.

ADDRESS DATA DESCRIPTION
FFC7 F5 PUSH PSW
FFC8 C5 PUSH B

PC-> FFC9 F1 POP PSW
FFCA C1 POP B
FFCB XX (undefined value)
FFCC XX (undefined value)
FFCD XX (undefined value) (See note below)
FFCE XX (undefined value)
FFCF XX (undefined value)

SP-> FFD0 04 value from register C
FFD1 03 value from register B
FFD2 02 value from flags
FFD3 01 value from register A
FFD4 00
10) Single step the POP PSW and observe that SP = FFD2 which is now 2 more than before, then examine the
A.F. register (A register and flag register) and you will see that it is now the value that was put on the stack by the
PUSH B instruction.

11) Single step the POP B and you will see that SP is back to the value that it had at the beginning of the program
(FFD4) and that the BC register pair is now the value which was pushed on the stack with the PUSH PSW
instruction.

ADDRESS DATA DESCRIPTION
FFC7 F5 PUSH PSW
FFC8 C5 PUSH B
FFC9 F1 POP PSW
FFCA C1 POP B

PC-> FFCB XX (undefined value)
FFCC XX (undefined value)
FFCD XX (undefined value)
FFCE XX (undefined value)
FFCF XX (undefined value) (See note below)
FFD0 XX (undefined value)
FFD1 XX (undefined value)
FFD2 XX (undefined value)
FFD3 XX (undefined value)

SP-> FFD4 00

Note: The “undefined values” shown in the machine language listing are values that MOS PUSHes and POPs
from the stack on each breakpoint or single step. This is done without affecting the important values that your
program stores on the stack, but this does affect the unused stack memory. So, though MOS returns with the

59

stack pointer at the same place, some of the bytes below the stack pointer address will be changed because of the
PUSHes. If it were possible to run the program full speed and stop it at FFCB without single stepping or
breakpoints, the memory values would be defined as follows:

ADDRESS DATA DESCRIPTION
FFC7 F5 PUSH PSW
FFC8 C5 PUSH B
FFC9 F1 POP PSW
FFCA C1 POP B

PC-> FFCB 00
FFCC 00
FFCD 00
FFCE 00
FFCF 00
FFD0 04 value from register C
FFD1 03 value from register B
FFD2 02 value from flags
FFD3 01 value from register A

SP-> FFD4 00

Unfortunately there is no way to stop the program and view the memory without setting a breakpoint or using RST
7 so this cannot be demonstrated.

The stack has another purposes other than storing general purpose registers. It is also used by the RST 7 instruction
which was discussed in an earlier lab and the XTHL, CALL and RET instructions which will be discussed later.

60

LESSON 19: Using the XTHL Instruction.

NEW INSTRUCTIONS

XTHL op code = E3
Exchange L with the value at memory address SP and exchange H with the value at memory address SP
+ 1. No flags are affected.

PUSH H op code = C5

Put the HL register pair on the stack. No flags are affected.
POP H op code = C1

Get the HL register pair from the stack. No flags are affected.

MOV A,M op code = 7E
Copy the byte from the memory location specified by the HL register pair to the A register. No flags are
affected.

MOV M,A op code = 77

Copy the byte from the A register to the memory location specified by the HL register pair. No flags are
affected.

DCR D op code = 15

Decrement the D register. Z,S,P and AC flags are affected.

One of the best uses for the XTHL instruction is in programs where there is a need for more registers. You can load the HL
register with a value and push it on the stack (call this value HL2) and then load HL with a another value (call this value
HL1). After that, an XTHL instruction will save HL1 on the stack and then load HL with HL2 allowing HL2 to be accessed.
If another XTHL instruction is executed the stack will hold HL2 again and HL will equal HL1 which will allow HL1 to be
accessed.

The program below demonstrates this action by multiplying DE by HL using repeating additions and returning the
result with the BC register pair being the most significant word and HL being the least significant word.

org 0ff01h ; starting address of program
push h ; put HL on stack. This value is

; the number of adds left to go.
lxi h,0000 ; HL=0000
mov b,h ; B=0
mov c,l ; C=0 (BC=0)

loop: dad d ; HL= HL + DE
jnc nocarry ; skip INX B if carry flag = 0
inx b ; if result too big for HL

; add 1 to BC
nocarry: xthl ; swap sum with number of adds to go

dcx h ; 1 less add left to go
mov a,h ; A=H
ora l ; if H and A = 0 then zero flag = 1
xthl ; swap new # left to go, with sum
jnz loop ; if zero flag = 0, do another DAD D

; At this point, adds left to go is 0.
pop psw ; clear the stack and quit
rst 7 ; end of program

ADDRESS DATA INSTRUCTION
FF01 E5 PUSH H
FF02 21 LXI H,0000
FF03 00
FF04 00
FF05 44 MOV B,H
FF06 4D MOV C,L
FF07 19 DAD D
FF08 D2 JNC FF0C
FF09 0C
FF0A FF
FF0B 03 INX B
FF0C E3 XTHL
continued on next page...

61

FF0D 2B DCX H
FF0E 7C MOV A,H
FF0F B5 ORA L
FF10 E3 XTHL
FF11 C2 JNZ FF07
FF12 07
FF13 FF
FF14 F1 POP PSW
FF15 FF RST 7

Load the program into memory and press the reset button. Load the HL register with 0002 and the DE register with FFFF
and do the following:

CURRENT PC

FF01 Single step and the HL register will be PUSHed on the stack. Examine the stack contents and they will be

the same as the HL register. This value on the stack determines how many times the addition will be
performed.

FF02 Single step and HL will be loaded with 0000 which is the beginning value for the sum.

FF05 Single step twice and the MOV B,H and MOV C,L instructions will be executed which make BC=0000

which is the high order word of the result.

FF07 Single step and the DAD D instruction will cause DE to be added to the sum that is held in HL (examine

HL).

FF08 Since the result of the DAD D instruction is small enough to fit in the HL register pair, the carry flag is not

set. Therefore the JNC FF0C instruction will be executed which will jump over the INX B instruction.
Single step and PC will be FF0C, which is the address of the instruction following INX B.

FF0C Examine the stack contents and the HL register then single step. Examine the stack contents and HL

register again and you will see that the XTHL instruction has exchanged their values; HL is now the
number of additions that are left to do, and the value on the stack holds the sum from the addition.

FF0D Single step and 1 will be subtracted from HL which indicates that there is now 1 addition left to go.

FF0E The instruction at this address and the one at the following address are used to determine whether HL is

0000. These two instructions are needed because the DCX H instruction doesn't affect any flags. Single
step and the H register will be copied to the A register.

FF0F Single step again and the A register will be ORed with the L register without changing the L register.

Remember that by definition when you logically OR bits, a zero will result only if the bits being ORed are
both 0. So if registers A and L are both 0 then the ORA L instruction will cause the zero flag to be 1,
otherwise the zero flag will be 0. In this case the value of L is 1 and A is 0 so the zero flag will be 0.

FF10 Single step and the XTHL instruction will swap the value on the stack with the value in HL. This makes HL

the sum again and the value on the stack is the number of additions left to go.

FF11 Single step and the JNZ instruction will be executed which will return the PC to FF07. Notice that the

XTHL instruction was executed after the ORA L instruction that determines whether the HL register pair is
0000. Since XTHL doesn't affect the flag register, the flags that were affected by the ORA L instruction
are the same as before XTHL was executed.

FF07 Single step and the DAD D instruction will be executed which will add DE to the sum in HL again.

FF08 This time the result of the addition wouldn't fit in the HL register pair, so the carry flag is set. Single step

and the JNC FF0C instruction won't be executed since the carry flag is 1, instead PC will be changed to
the address of the instruction following JNC FF0C.

FF0B Single step and 1 will be added to the BC register pair. This will happen in this program every time the

carry flag is set by the previous DAD D instruction.

62

FF0C Single step the XTHL instruction and HL is now the number of additions that are left to do, and the value

on the stack holds the sum from the addition.

FF0D Single step and 1 will be subtracted from the number of additions left to do in the HL register.

FF0E Single step and the H register will be copied to the A register.

FF0F Single step and the L register will be ORed with the A register and since both of the registers are 0 the

result in the A register will be 0 and the zero flag will be set.

FF10 Single step and the XTHL instruction will swap the value on the stack with the value in HL. This makes HL

the sum again and the value on the stack is the number of additions left to go (0000).
FF11 Single step and the PC register will be loaded with FF14 which is the address of the instruction following

the JNZ FF07 instruction. This is because the zero flag must be 0 in order for the instruction to load the
PC register with FF07.

FF14 Examine the SP register then single step and examine it again. Before single stepping, SP was FFD2 and

after single stepping it is FFD4, which is the value it had when the program started. The POP PSW
instruction was used just to restore the stack to its original starting position, the value that was loaded into
the A register and flag register was not needed.

FF15 This is the end of the program. Examine the BC and HL register pairs and they should be 0001 and FFFE

respectively, which represents the number 0001FFFE which is the product of FFFF and 0002.

Try other values for DE and HL (HL must be greater than 0). Take note that since this program uses repeating
additions to perform multiplication the larger the value of HL the longer the program will take to perform the multiplication.
For example, if HL = FFFF the program will take approximately 3 seconds to perform the multiplication.

63

LESSON 20: Subroutines

NEW INSTRUCTIONS

CALL <addr> op code = C3
Put the address of the next instruction on the stack and load the program counter with the two bytes that
follow the op code. The byte immediately following the op code is the least significant byte of the address
and the one after that is the most significant byte.

RET op code = C9

Remove a 16 bit address from the stack and load it into the program counter. No flags are affected.

DCR H op code = 25
Decrement the H register. Z,S,P and AC flags are affected.

PUSH B op code = C5

Put the BC register pair on the stack. No flags are affected.

The CALL and RET instructions allow the possibility of subroutines. A subroutine is a part of a program which performs a
function that is needed in many different parts of the main program. The CALL instruction jumps to a subroutine after
putting on the stack the address of the instruction following the CALL. The subroutine's last instruction executed will be a
RET which will cause the program to return to the address that is on the stack. Later in this manual there are some
example programs which use subroutines that are built in the MOS.

The following program uses a subroutine which outputs the value in the A register to the digital output LEDs and delays for
a period of time proportional to the value in HL.

leds equ 11h ; ouput port address for LEDs

org 0ff01h
lxi h,8000h ; starting delay length

loop: mvi a,00001111b ; bit pattern for 4 left LEDs lit.
call delay ; output the bit pattern and delay
cma ; complement A
call delay ; output the bit pattern and delay
mvi a,01010101b ; pattern for lighting odd# LEDs
call delay ; output the bit pattern and delay
dcr h ; decrease the delay
jmp loop ; jump to loop

delay: push h ; save HL on stack

push psw ; save A register & flags on stack
out leds ; output pattern in A to LEDs

delay1: dcx h ; decrement delay length
mov a,h ; A=H so H it can be ORed with L
ora l ; H ORed with L is 0 if HL=0000
jnz delay1 ; if HL>0 then jump to delay1

; Registers are POPed in reverse order of PUSHes
pop psw ; restore A register and flags
pop h ; restore HL register
ret ; return to instruction after the CALL
end

ADDRESS DATA INSTRUCTION
FF01 21 LXI H,8000
FF02 00
FF03 80
FF04 3E MVI A,0F
FF05 0F
FF06 CD CALL FF16
FF07 16
FF08 FF
FF09 2F CMA
FF0A CD CALL FF16
FF0B 16
FF0C FF

continued on next page...

64

FF0D 3E MVI A,55
FF0E 55
FF0F CD CALL FF16
FF10 16
FF11 FF
FF12 25 DCR H
FF13 C3 JMP FF04
FF14 04
FF15 FF
FF16 E5 PUSH H
FF17 F5 PUSH PSW
FF18 D3 OUT 11
FF19 11
FF1A 2B DCX H
FF1B 7C MOV A,H
FF1C B5 ORA L
FF1D C2 JNZ FF1A
FF1E 1A
FF1F FF
FF20 F1 POP PSW
FF21 E1 POP H
FF22 C9 RET

Load the program into memory and run it; The program should display 3 different patterns on the discrete LEDs, one after
the other, and repeat the patterns again. The delay between each pattern should slowly decrease until the patterns are
changing so quickly that they are not observable. Then the delay will suddenly become much longer and then slowly
decrease again. If the program is working as described, press the reset button and do the following:

CURRENT PC
FF01 Single step to the first CALL instruction at address FF06 and examine the stack content (it will be 0000)

and the stack pointer will be FFD4.

FF06 Single step and the CALL FF16 instruction will be executed causing the program to jump to FF16, the start

of the subroutine.

FF16 The CALL instruction has put the address of the instruction following it, on the stack. Examine the stack

contents to verify this. Examine and write down the value of the PSW and HL then single step twice which
will first PUSH the HL register pair then PUSH the PSW on the stack. Set a breakpoint at FF20, then run
from the current address.

FF20 This is the first instruction following the delay loop. Compare the PSW and HL with the values that you

wrote down and you will see that they have been changed. Execute the POP PSW instruction by single
stepping and the original value of the PSW will be restored.

FF21 Single step again and the POP H instruction will be executed which will restore the original value of HL.

Notice that the order of POPing data from the stack is the opposite of the order of PUSHing. This is
because the last item PUSHed on the stack is the first one that can be POPed off. POPing the PSW and
HL off the stack has restored the return address (FF09) to the top of the stack. Examine the stack
contents to verify this.

FF22 Execute the RET instruction by single stepping and it will remove the return address from the stack and

jump to the address. The stack contents will be 0000 again with the stack pointer at FFD4 after the RET
instruction.

FF09 Single step and the A register will be complemented.

FF0A Now that you understand what happens during the CALL of a subroutine, check the stack content to verify

that it is 0000. Set a breakpoint at the address (FF0D) of the instruction following this CALL and run from
the current address.

FF0D The subroutine has output the bit pattern that was in the A register and paused for period of time

proportional to the value of HL and returned to this address.

65

s you can see, a subroutine CALL acts like a user-defined op code. A subroutine can perform a task without changing the
registers, as in the program above, or it can change the registers according to the rules that you define when writing the
subroutine. For example, you could write a subroutine that would take the value of the B register and multiply it by the C
register and return the result in the BC register. Programmers usually have a library of useful subroutines like this which
can be included in their programs.

Subroutines can also make CALLs to other subroutines, and those subroutines can call others and so on. The only limit is
the amount of memory the stack can use.

66

LESSON 21: Using Monitor Operating System Subroutines

This lesson illustrates the use of one of the Monitor Operating System (MOS) subroutines. These subroutines
(also called services) that are in ROM can be run by loading the C register with the service number and executing a CALL
1000H. You may also do it without writing a program or affecting the PC register, by loading the appropriate registers and
pressing "func." then "2". All registers that are not used as input or output to the service are not affected. Please refer to
appendix D for the description of the MOS services.

An example program using MOS services:

The following example outputs the hex number 1234 to the left four numerical displays.

mos equ 1000h
ledhex equ 12h

org 0ff01h ; program starts at this address
mvi c,ledhex ; ledhex service routine
lxi d,1234h ; load DE with 1234 hex
call mos ; call MOS for ledhex service

wait: jmp wait ; loop here till reset is pressed
end ; so display won't be erased. Normally

; programs terminate with a rst 7

ADDRESS DATA INSTRUCTION
FF01 0E ; MVI C,12
FF02 12
FF03 11 ; LXI D,1234
FF04 34
FF05 12
FF06 CD ; CALL 1000
FF07 00
FF08 10
FF09 C3 ; JMP 0FF09
FF0A 09
FF0B FF

Load the program into memory, press the reset button then run it. You will see "1234" on the "ADDRESS/REGISTER
PAIR" displays and it will continue to display until you press the reset button. Press the reset button and single step to
FF06 which is the address of the CALL 1000 instruction. Single step again and you will see that instead of the program
stopping at the instruction at the address of the subroutine being CALLed, as in the previous lesson, the program will stop
at the instruction following the CALL 1000 instruction. The reason for this inconsistency is that the MOS checks to see if
the CALL that is being single stepped is in ROM or RAM, and if it is in ROM it will run the subroutine full speed until it is
finished. This is because the method of single stepping used by the PRIMER requires the instructions being single stepped
to be in RAM. You will also notice that you couldn't see the numbers "1234" when the subroutine was run. The numbers
were actually displayed, but as soon as they were, the MOS returned to data entry mode and they were overwritten. This
occurs any time you single step a service that uses the digital displays. Store a 0 at FF02 so after the first instruction is
executed, the C register will be loaded with 0 instead of 12h. This time when you run the program service 0 will be
executed instead of service 12.

For more examples of programs that use MOS services, see the next two lessons which use the ADCIN and PITCH
services. The last lesson uses the KEYIN and LEDHEX services.

67

LESSON 22: Using PITCH (service 10)

NEW INSTRUCTIONS

RRC op code = 0F
Shift the bits in the A register to the right and put the value shifted out of bit 0 in the carry flag and bit 7.
Only the carry flag is affected.

This program translates the value of the DIP switch to a 14 bit value that is stored in the DE register pair. The value is
passed to service 10 which produces a speaker frequency inversely proportional to the value of DE.

dips equ 12h ; port to read DIP switches
mos equ 1000h ; address of MOS services

org 0ff01
loop: in dips ; get the DIP switch value

rrc ; rotate the A register right
rrc ; 2 times since top two bits aren't used
mov e,a ; store in E temporarily
ani 00111111b ; mask 2 top bits to 0
mov d,a ; save in D
mov a,e ; get E again
ani 11000000b ; mask the lower 6 bits to 0
mov e,a ; save in E
mvi c,10h ; service 10
call mos ; generate a pitch according to DE
jmp loop ; do it again
end

ADDRESS DATA INSTRUCTION
FF01 DB IN 12
FF02 12
FF03 0F RRC
FF04 0F RRC
FF05 5F MOV E,A
FF06 E6 ANI 3FH
FF07 3F
FF08 57 MOV D,A
FF09 7B MOV A,E
FF0A E6 ANI 0C0H
FF0B C0
FF0C 5F MOV E,A
FF0D 0E MVI C,10H
FF0E 10
FF0F CD CALL 1000H
FF10 00
FF11 10
FF12 C3 JMP FF01
FF13 01
FF14 FF

1) Switch the 4 DIP switches on the left "on" and the 4 on the right, "off". When this is done, the data that is input
through the DIP switches will be 0F hex.

2) Press reset and load the program into memory and verify that it was loaded correctly.

3) Single step once and examine the A register to make sure it is 0F, if it isn't, do step 1 again.

In order for the DIP switches to give the broadest range of frequencies the 8 bit value of the DIP switches must be made
the most significant 8 bits of the 14 bit value required to generate the frequency. The chart below shows how this is done.
This chart shows the op codes that are used to convert the DIP switch value to a value stored in the DE register pair. To
the right of the op codes are the binary values that the A, D and E registers would be after the op code is executed. In the
chart, the "X"s tell you that the value has not been defined yet and that they are unknown values.

68

 OP CODE VALUES OF REGISTERS AFTER EXECUTION OF OP CODE
A D E

IN 12h 00001111b XXXXXXXXb XXXXXXXXb
RRC 10000111b XXXXXXXXb XXXXXXXXb
RRC 11000011b XXXXXXXXb XXXXXXXXb
MOV E,A 11000011b XXXXXXXXb 11000011b
ANI 00111111b 00000011b XXXXXXXXb 11000011b
MOV D,A 00000011b 00000011b 11000011b
MOV A,E 11000011b 00000011b 11000011b
ANI 11000000b 11000000b 00000011b 11000011b
MOV E,A 11000000b 00000011b 11000000b
:
:
:

Single step to address FF0D and you will see that the 8 bit value of the DIP switch is now the upper 8 bits of the 14 bit
number in DE. Note that the DE register pair is always 16 bits, but we refer to the number in it as a 14 bit number since
MOS service 10 ignores the upper two bits of the DE register.

 VALUE
DIP switches 00001111
DE register 0000001111000000

After DE is loaded with the value of the DIP switches, the C register is loaded with 10h which is the service number and
then a CALL 1000h is made which produces the speaker frequency. After the CALL there is a JMP to the start of the
program again and it will continue to repeat indefinitely.

Press the reset button and run the program. Move the DIP switches and you will hear the speaker frequency change.

69

LESSON 23: Using ADCIN (service 9)

NEW INSTRUCTIONS

STC op code = 37
Make the carry flag 1. Only the carry flag is affected

JZ <addr> op code = CA

If the Z flag is 1 start executing the instructions at the two byte address following the instruction, otherwise
start executing the instruction after this one. The first byte following the op code is the least significant
byte of the address, the second byte is the most significant byte of the address. No flags are affected.

This lesson is intended to be used by those with experience in basic electronics. Please proceed to the next lesson if you
do not have basic electronics training.

This program will read the analog to digital convertor and then divide the number by 8 and produce a bar graph on the
digital output LEDs that is proportional to the analog input voltage.
A variable voltage source, ranging from 0 to +5 volts, must be connected to the analog input of the external digital I/O
connector CN3 (this is above and to the left of the ADDRESS/REGISTER PAIR displays). This can be simply done with a
10K potentiometer by connecting the wiper to the analog input and one of the other two connections to +5V and the other
to ground. Connector CN3 provides +5 volts on pin 22, analog input on pin 20 and ground on pin 18.

Be sure there is no power to the PRIMER when connecting the potentiometer to the I/O connector. Also be sure that you
do not short any of the connections when connecting the potentiometer to CN3. It may be best to use a mating connector,
or to wire wrap the connections. Once the proper connections have been made and checked, apply power to the PRIMER
and load the following program.

leds equ 11h ; output port for digital output LEDs
mos equ 1000h ; MOS CALL address

org 0ff01h ; start address of program
start: mvi c,9 ; service 9

call mos ; get ADC
mov a,l ; put in A register
rrc ; rotate A right = divide by 2
rrc ; divide by 2
rrc ; divide by 2
ani 00011111b ; remove upper 3 bits
jz zerout ; if A = 0 then send it out
mov c,a ; c=number of LEDs to light up
mvi a,0 ; A=0

loop: stc ; set carry
rar ; and rotate it into A register
dcr c ; decrement the counter
jnz loop ; if c > 0, loop again

zerout: out leds ; send bar pattern to LEDs
jmp start ; do it all again
end

ADDRESS DATA INSTRUCTION
FF01 0E MVI C,9
FF02 09
FF03 CD CALL 1000h
FF04 00
FF05 10
FF06 7D MOV A,L
FF07 0F RRC
FF08 0F RRC
FF09 0F RRC
FF0A E6 ANI 01FH
FF0B 1F
FF0C CA JZ FF18
FF0D 18
FF0E FF
FF0F 4F MOV C,A

continued on next page...

70

FF10 3E MVI A,0
FF11 00
FF12 37 STC
FF13 1F RAR
FF14 0D DCR C
FF15 C2 JNZ LOOP
FF16 12
FF17 FF
FF18 D3 OUT 11
FF19 11
FF1A C3 JMP FF01
FF1B 01
FF1C FF

Press reset and run the program. You will see that the bar graph displayed on the digital output LEDs changes
proportionally with the input voltage.

71

LESSON 24: Using Compare Instructions

NEW INSTRUCTIONS

RLC op code = 07
Shift the bits in the A register to the left and put the value shifted out of bit 7 in the carry flag and bit 0.
Only the carry flag is affected.

CMP L op code = BD

Subtract the L register from the A register and set the condition flags accordingly without changing the A
register. The carry flag is 1 if A < L and the zero flag is 1 if A = L. The Z,S,P,CY and AC flags are
affected.

CPI <byte> op code = FE

Subtract the byte following the op code from the A register and set the condition flags accordingly without
changing the A register. The carry flag is 1 if A < byte and the zero flag is 1 if A = byte. The Z,S,P,CY
and AC flags are affected.

This program demonstrates the compare instructions CPI and CMP. Both compare instructions subtract a value from the A
register and set the flags accordingly, without changing the A register. If the value subtracted from the A register is equal to
the A register then the zero flag is made 1, if it is not equal then the zero flag is made 0. This program reads the value of
the keypad and changes the pattern displayed on the digital output LEDs depending on whether the key pressed was "3"
or "0". If any other key is pressed the display is not changed.

leds equ 11h ; port for discrete LEDs
keyin equ 0bh ; service number for keyin
mos equ 1000h ; address of MOS services

org 0ff01h ; start program at FF01
mvi b,11110111b ; bit pattern for 1 LED lit

loop: mov a,b ; A = bit pattern in B
out leds ; display bit pattern
mvi c,keyin ; c= keyin service number
call mos ; return a key value in L
mvi a,0 ; value for "0" key
cmp l ; compare A with L
jnz check3 ; jump if L<>A,(key isn't "0")
mov a,b ; A is the bit pattern
rlc ; rotate the bits in A left
mov b,a ; save pattern in B

check3: mov a,l ; A = key value from keyin service
cpi 3 ; compare A with "3" key value
jnz loop ; jump if A<>3 (key isn't "3")
mov a,b ; A is the bit pattern in B
rrc ; rotate A right
mov b,a ; put new bit pattern in B
jmp loop ; display new bit pattern
end

ADDRESS DATA INSTRUCTION
FF01 06 MVI B,F7
FF02 F7
FF03 78 MOV A,B
FF04 D3 OUT 11
FF05 11
FF06 0E MVI C,0B
FF07 0B
FF08 CD CALL 1000
FF09 00
FF0A 10
FF0B 3E MVI A,0
FF0C 00
FF0D BD CMP L
continued on next page...

72

FF0E C2 JNZ FF14
FF0F 14
FF10 FF
FF11 78 MOV A,B
FF12 07 RLC
FF13 47 MOV B,A
FF14 7D MOV A,L
FF15 FE CPI 3
FF16 03
FF17 C2 JNZ FF03
FF18 03
FF19 FF
FF1A 78 MOV A,B
FF1B 0F RRC
FF1C 47 MOV B,A
FF1D C3 JMP FF03
FF1E 03
FF1F FF

To see how the compare instructions work in a program, load the program into memory and verify that the data was
entered correctly then press the reset button and do the following:

CURRENT PC
FF01 Set a breakpoint at address FF0D and run the program. The program will pause until a key is pressed (

because of the keyin service), so press the "3" key. After that, the program will stop at the breakpoint
address which is the address of the CMP L instruction.

FF0D The keyin service should return the L register with the value 3 and the A register will be 0 because of the

MVI A,0 instruction that was executed before the breakpoint was encountered. Execute the CMP L
instruction by single stepping then examine the flag register. The A register is less than L and of course it
is not equal, so, according to the definition, the carry flag will be 1 and the zero flag will be 0.

FF0E Single step and the JNZ FF14 instruction will be executed and you will see that because the zero flag is 0,

the program counter will now point to address FF14. This skips the code that is to be done when the "0"
key is pressed and goes to address FF14.

FF14 The following instructions will check to see if the "3" key was pressed. Single step once to execute MOV

A,L and one more time to execute CPI 3. In this comparison L register is loaded into A and 3 is
compared to it. Since A is 3 the zero flag will be 1 and the carry flag will be 0. Examine the flag register to
verify this.

FF17 This is the address of the JNZ FF03 instruction. Single step once and the jump will not occur because the

zero flag is 1, instead, the program counter will point to the instruction following this one. The instructions
following JNZ FF03 rotate the value in the B register to the right when the "3" key is pressed.

FF1A Set a breakpoint at FF0D again then run from the current address. The keyin service will wait on a key to

be pressed, so press the "0" key and the program will stop at FF0D.

FF0D This is the address of the CMP L instruction again. The keyin service will return the L register with 0 which

is the value of the "0" key and the A register has been loaded with 0 by the MVI A,0 instruction. Execute
the CMP L instruction by single stepping and this time, since A equals L the Z flag will be 1 and the CY
flag will be 0.

FF0E Single step and JNZ FF14 instruction won't execute this time because the zero flag is 1, instead the

program counter will point to the instruction following this one.
FF11 The following instructions are executed when the "0" key is pressed. Single step to FF14 and the value in

the B register will be rotated to the left.

FF14 Single step and the L register will be copied to the A register. Single step again and the CPI 3 instruction

will be executed and since A is 0, the Z flag will be 0 and the CY flag will be 1.

FF17 The program counter now points to the JNZ FF03 instruction again and since the Z flag is 0 the NZ

conditional is true, so single stepping this will cause the program counter to jump to FF03.

73

FF03 Run the program full speed from here to see the way the pressing keys affects the digital output LEDs.

The previous program used compare instructions to check for equality of two values. The compare instructions can also
be used to tell whether a value is greater or less than another value. The following program compares the H and L register
and causes the digital output LEDs to show different patterns depending on the relative sizes of H and L. If H is greater
than L then the two left LEDs will shine, if L is greater than H then the right two LEDs will shine and if H = L then the middle
two LEDs will shine.

leds equ 11h ; output port for digital output LEDs

org 0ff01h
loop: mov a,h ; put H in A

cmp l ; set flags according to value of A & L
jc lgreat ;if CY=1 then L>A, so jump
jz equal ; if Z = 1 then A=L, so jump

; At this point in the program H is not less than L
; and it is not equal to L, so H is greater than L.

mvi a,00111111b ; pattern for H>L
jmp patout ; output the pattern

lgreat: mvi a,11111100b ; pattern for L>H
jmp patout ; output the pattern

equal: mvi a,11100111b ; pattern for H=L
patout: out leds ; display bit pattern

rst 7 ; end of program

ADDRESS DATA INSTRUCTION
FF01 7C MOV A,H
FF02 BD CMP L
FF03 DA JC FF0E
FF04 0E
FF05 FF
FF06 CA JZ FF13
FF07 13
FF08 FF
FF09 3E MVI A,3F
FF0A 3F
FF0B C3 JMP FF15
FF0C 15
FF0D FF
FF0E 3E MVI A,FC
FF0F FC
FF10 C3 JMP FF15
FF11 15
FF12 FF
FF13 3E MVI A,E7
FF14 E7
FF15 D3 OUT 11
FF16 11
FF17 FF RST 7

Load the program into memory and press the reset button then do the following:

74

CURRENT PC

FF01 Load HL with FFE0 so H will be greater than L then single step and H will be copied to the A register.

FF02 Single step and A will be compared with L and the flags will be set accordingly. According to the definition

of the CMP L instruction if A is greater than L then the zero flag and the carry flag will both be 0 (examine
the flag register to verify this).

FF03 Single step and the PC will then point to the instruction following the JC FF0E instruction. Remember that

because the carry flag is not 1 the JC FF0E instruction will not be executed.

FF06 Single step and the PC will point to the instruction following JZ FF13 because the zero flag must be 1

before the jump will occur.

FF09 Single step and the A register will be loaded with the value that will be displayed on the digital output

LEDs. Single step twice more and the program will jump to the OUT 11 instruction and it will display the
bit pattern in the A register.

FF17 This is the end of the program.
Press the reset button and load the HL register pair with 22C0 so the H register will be less than the L register and do the
following:

FF01 Single step twice to copy H to A and compare A with L. Examine the flag register and you will see that the

carry flag is 1 and the zero flag is 0 because A is less than L.

FF03 Single step and since the carry flag is 1 the JNC FF0E instruction will occur.

FF0E Single step three times and A will be loaded with the bit pattern that indicates that H is less than L, the

program will jump to the OUT 11 instruction which will display the bit pattern in the A register.

FF17 This is the end of the program

Press the reset button and Load the HL register pair with 1010 so H will be equal to L.

FF01 Single step twice to copy H to A and compare A with L again. Examine the flag register and you will see

that the carry flag is 0 because A isn't less than L and the zero flag is 1 because A equals L.

FF03 Single step the JC FF0E instruction and it won't be executed because the carry flag is 0.

FF06 Single step and the JZ FF15 instruction will be executed because the zero flag is 1.

FF13 Single step three times and A will be loaded with the bit pattern that indicates that H equals L, the program

will jump to the OUT 11 instruction which will display the bit pattern in the A register.

FF17 This is the end of the program.

75

LESSON 25: Using Interrupts

NEW INSTRUCTIONS

EI op code = FB
Enable interrupts after the next instruction is executed. No flags are affected.

DI op code = F3

Disable interrupts after the DI instruction has been executed. No flags are affected.

RIM op code = 20
(See Instruction Set Encyclopedia)

SIM op code = 30

(See Instruction Set Encyclopedia)

The 8085 has 5 pins, namely TRAP, RST 5.5, RST 6.5, RST 7.5 and INTR, dedicated to be sources of interrupts. The
program that follows illustrates using the RST 7.5 interrupt. If a 1 appears on the RST 7.5 pin and the interrupt has not
been disabled (disabling interrupts is explained later) then the program that is currently running will be "interrupted" and the
address of the instruction that would have been executed next is pushed on the stack. The microprocessor then jumps to
address 003C where there are MOS instructions which get an address from a reserved RAM location and then jump to that
address. This location which holds the address to which the microprocessor will jump is called a vector. The vector allows
the occurrence of an interrupt to run a specific program that can be located anywhere in RAM. Programs of this type are
called interrupt service routines (ISRs).

The ISR should always return the registers that it uses with the same values that they had when the interrupt occurred.
This can be done by PUSHing the registers and then POPing them before returning to the interrupted program. After
PUSHing the registers, the real purpose of the ISR can be accomplished which, in the case of this program, is to increment
a value that is in memory. Before exiting the ISR, all registers that were PUSHed, must be POPed, then an EI (enable
interrupt) instruction followed by a RET instruction must be executed. The EI instruction is needed because whenever an
interrupt occurs, the 8085 automatically performs a DI (disable interrupts). The RET instruction will return the program
counter to the section of code that was interrupted.

You can cause the 8085 to ignore (disable) all interrupts, except TRAP, through the DI instruction. This is used in the
following program to keep interrupts from occurring while a vector is made for the RST 7.5 interrupt, while the 8155 timer is
being set up and while the RST 7.5 interrupt mask is enabled through the SIM instruction.

The SIM instruction has two purposes: to control the SOD pin (this will not be used in this lesson), and to provide interrupt
control. Using this instruction allows the RST 7.5, RST 6.5 and RST 5.5 interrupts can be disabled individually. Before
using the SIM instruction to control interrupts the A register should be loaded with the following 8 bit binary value:

 00011xyz

 x is the mask bit for RST 7.5
 y is the mask bit for RST 6.5
 z is the mask bit for RST 5.5

A mask bit of 1 disables the corresponding interrupt. If the mask bit is 0, then the interrupt will be enabled if an EI has
already occurred, or as soon as an EI is executed.

The RST 7.5 interrupt pin is different than the other interrupt pins in that it has a flip flop connected to it. When a pulse
appears on the RST 7.5 pin, the flip flop is set. If the flip flop is set and the interrupt is enabled, or it becomes enabled, the
flip flop will be reset and the ISR will be executed. The ability of the flip flop to remember that an interrupt request has
occurred while interrupts were disabled helps the microprocessor avoid missing interrupt requests. When enabling the
RST 7.5 interrupt for the first time in a program you should clear this flip flop. This is done by making bit four of the A
register a 1 before executing the SIM instruction. In this program we will enable only the RST 7.5 interrupt and reset its flip
flop, so the binary value of 00011011 (1B hex) would be loaded into the accumulator before executing SIM.

The program below will set the RST 7.5 interrupt vector to jump to the ISR at FF20, initialize the 8155 timer to send a 20hz
square wave to the RST 7.5 pin and then enable the RST 7.5 interrupt. After that it will enter a loop which loads the A
register with the data at address FF2E and sends the data to the discrete LEDs. The ISR will interrupt this loop 20 times

76

per second and each time will increment the byte at address FF2E.

Type in the program and run it. You will see that the LEDs are displaying the increasing value of the data at address FF2B.
 Press the reset button and set a breakpoint at FF20, (the start of the ISR) then run the program. The execution will stop at
FF20, and if you look at the stack contents (S.C.) the value will be the address of the next instruction which the main loop
will execute. If the interrupt occurred during the LDA instruction then S.C. will be FF1B, if during the OUT instruction then
S.C. will be FF1D or if during the JMP instruction S.C. will be FF18. Single step once, then set the breakpoint to FF20
again and then run full speed again. After the program stops, check the value of S.C. it could be any of the three
addresses mentioned above.

vec7hlf equ 0ffe9h ; vector for 7.5 interrupt
leds equ 11h ; discrete LED port

; 8155 timer ports
timerlo equ 14h ; low byte of timer
timerhi equ 15h ; hi byte and mode of timer
cmdreg equ 10h ; command register

org 0ff01h
di ; disable interrupts
lxi h,ticsub ; hl = address of ISR
shld vec7hlf ; Store in vector
mvi a,0
out timerlo ; lo 8 bits of counter are 0
mvi a,7ch ; set 8155 square wave output mode
out timerhi ; with timer at 20hz
mvi a,0cdh
out cmdreg ; enable the timer
mvi a,11011b ; a 0 bit enables the interrupt
sim ; clear 7.5 interrupt mask
ei ; enable interrupts
; this is the main loop that will be interrupted
; by the ISR

loop: lda cntout ; counter to output to LEDs
out leds ; display value of A register
jmp loop ; jump to loop

; This ISR increments CNTOUT

ticsub: push psw ; save A and flags
lda cntout ; get counter value
inr a ; increment it
sta cntout ; save it back
pop psw ; restore A and Flags
ei ; Re-enable interrupts
ret ; continue from point of interruption

cntout ds 1 ; reserve 1 byte for the counter
end

ADDRESS DATA INSTRUCTION
FF01 F3 DI
FF02 21 LXI H,FF20
FF03 20
FF04 FF
FF05 22 SHLD FFE9
FF06 E9
FF07 FF
FF08 3E MVI A,0
FF09 00
FF0A D3 OUT 14
FF0B 14
FF0C 3E MVI A,7C
FF0D 7C
FF0E D3 OUT 15
FF0F 15
FF10 3E MVI A,CD
FF11 CD
FF12 D3 OUT 10
FF13 10
FF14 3E MVI A,1B
FF15 1B

continued on next page...

77

FF16 30 SIM
FF17 FB EI
FF18 3A LDA FF2B
FF19 2B
FF1A FF
FF1B D3 OUT 11
FF1C 11
FF1D C3 JMP FF18
FF1E 18
FF1F FF
FF20 F5 PUSH PSW
FF21 3A LDA FF2B
FF22 2B
FF23 FF
FF24 3C INR A
FF25 32 STA FF2B
FF26 2B
FF27 FF

 FF28 F1 POP PSW
FF29 FB EI
FF2A C9 RET
FF2B 00 (not an op code, but the counter value)

78

LESSON 26: Writing Your Own Programs

NEW INSTRUCTIONS

LXI D,<word> op code = 11
Load the DE register pair with the word (a word = 2 bytes) that follows the op code. The byte following the
op code goes in the E register and the byte after that goes into the D register. No flags are affected.

Now that you have a basic knowledge of most of the 8085 instructions, it is possible for you to write your own programs.
The first step is to decide what you want the program to do. If what you want it to do is similar to what one of the programs
in the previous lessons does, you can just modify the program in the lesson to suit your needs. You can also combine
programs from different lessons to make a program.

Suppose you decide to make a calculator program which adds the hex digits that you type on the keypad and then shows
the total on the display when a key other than a hex digit is typed. To start write the program in your own words, in english.
 This is called "pseudo-code". A pseudo-code version of the program is as follows:

1. make the total 0
2. read the keypad
3. if the key pressed wasn't a hex digit, go to step 6
4. add the key to the total
5. go to step 2
6. display the total
7. go to step 1

Now convert the above program to assembly language.

1. The first step requires that the total be made 0. You must decide which register or register pair will hold the total.

The DE register pair would work well for this. To make the DE register 0 you can use the instruction LXI D,0.

2. The next step is to read the keypad. This was done in lesson 23 and involved two assembly language instructions:

MVI C,KEYIN and CALL MOS.

3. Step three checks to see if the number that was typed isn't a hex digit. An easy way to do this is to see if the

number is greater than F hex and this can be done with a compare instruction. Remember that in a compare
instruction, if the number being compared to the A register is bigger, the carry flag is set. Since the keyin service
returns the number of the key in the L register it is necessary to load the A register with 0F hex which is the value
that you want to compare it with. To load the A register with 0F and compare it to the L register you must use the
two following assembly language instructions: MVI A,0Fh and CMP L. In order to jump to step 6 when L is greater
than 0F hex (in which case the carry flag is set) a JC DSPLAY instruction can be used. The DSPLAY label is used
because we don't know the address of the display code yet.

4. There are several different ways to add the key value that is in L to the total that is in DE. One of the most efficient

ways is to load the H register with 0 and add DE to the HL register then exchange the DE register with the HL
register so the total will be in DE again. This can be done with the following assembly language instructions: MVI
H,0 , DAD D, and XCHG.

5. Step 5 can be translated easily to a jump instruction. We will give the jump address the label "RDKEY" since it

jumps to the instructions that read the keys. Therefore the assembly language for this instruction will be JMP
RDKEY.

6. To display the total that is in the DE register you can use the ledhex service (service 12), which displays the hex

value in the DE register pair to the "ADDRESS/REGISTER PAIR" displays. So the assembly language
instructions for this will be: MVI C,LEDHEX and CALL MOS.

7. The last step can be easily translated to the assembly language instruction JMP START, where START is a label

pointing to the first instruction.

Make a listing of the assembly language instructions that were given above. Start the listing with an ORG instruction
followed by the EQU instructions necessary to define the values of "mos", "keyin" and "ledhex" and put the labels "start"
and "rdkey" in the label field before their appropriate instructions. Also add comments to each line to enhance readability
and put an END instruction at the end. It should look like the following:

79

org 0ff01h
mos equ 1000h ; start address of MOS subroutines
keyin equ 0bh ; service # of keyin
ledhex equ 12h ; service # of ledhex
start: lxi d,0 ; clear the total in DE
rdkey: mvi c,keyin ; C = keyin service number

call mos ; load L with key from keypad
mvi a,0fh ; max value of keys
cmp l ; compare to key from keypad
jc dsplay ; display the value if L>F
mvi h,0 ; clear the H register
dad d ; add total to HL
xchg ; put HL in DE
jmp rdkey ; get another key

dsplay: mvi c,ledhex ; c = keyin service number
call mos ; display total in DE
jmp start ; go to start again
end

To change the assembly language program to machine language, get some ruled paper and on the top line put the
headings:

ADDRESS DATA INSTRUCTION

On the first line under the address heading, put the hex address of the start of the program (in this case FF01). The
instruction LXI D,0 will go under the heading "INSTRUCTION" and the op code for the instruction (11) will go under the
heading
"data". According to the instruction's definition, the data that will be loaded in the DE register pair will follow the op code in
the next two memory addresses. Since the data that is to be loaded into DE is 00, put on the next line the address FF02
and put 00 under the "DATA" heading. Do the same on the next line except put FF03 under the "ADDRESS" heading. You
see that each line represents a memory address just as in the machine language listings in the previous lessons. Your list
should look like this so far.

ADDRESS DATA INSTRUCTION
FF01 11 LXI D,0
FF02 00
FF03 00

To convert the rest of the program to machine language it will probably be easier to get the op codes from appendix C than
to search for them in the previous lessons. The op code for the instruction MVI C,KEYIN can be found in the first
mnemonic column and its op code (0E) can be found in the column to the left of it. You will notice that the mnemonic in the
table is MVI C,D8. The D8 is not hex number D8, it means that the 8085 expects 8 bits (a byte) of data to follow the op
code. In the case of the instruction we are now translating, the data following the op code is the value assigned to "keyin"
by instruction EQU, which is 0B hex.

In the same mnemonic column, below MVI C,D8 is the instruction LXI D,D16 which we already translated to machine
language. The D16 means that the 8085 will expect 16 bits (two bytes) to follow the op code of the instruction. Also within
the table you will see instructions that have the abbreviation "Adr" in them (like JMP Adr). These instructions also expect
two bytes of data to follow the op code, but in this case the data represents an address. The byte following the op code is
the least significant byte of the address and the one after that is the most significant byte. If you encounter "Adr" as part of
an instruction, most of the time it is necessary to wait until the program is almost completely translated before you can
know the values to use for "Adr". Go ahead and put addresses in the address field, but leave the data field blank until later.
 Below is a listing of the machine language version of the program with the unknown "Adr"s left blank.

ADDRESS DATA INSTRUCTION
FF01 11 LXI D,0
FF02 00
FF03 00
FF04 0E MVI C,0B
FF05 0B
FF06 CD CALL 1000
FF07 00
FF08 10
FF09 3E MVI A,0F
FF0A 0F
FF0B BD CMP L

continued on next page...

80

FF0C DA JC
FF0D
FF0E
FF0F 26 MVI H,0
FF10 00
FF11 19 DAD D
FF12 EB XCHG
FF13 C3 JMP
FF14
FF15
FF16 0E MVI C,12
FF17 12
FF18 CD CALL 1000
FF19 00
FF1A 10
FF1B C3 JMP
FF1C
FF1D

To find the values to fill in for "Adr" in the jump instructions listed above, you must determine the values of the labels used
by the instructions. The label "start" points to the first instruction in the program at address FF01, the label "rdkey" points to
the second instruction of the program at address FF04 and the label "dsplay" points to the instruction at address FF16. Fill
in the addresses for each label and you will have the following completed listing:

ADDRESS DATA INSTRUCTION
FF01 11 LXI D,0
FF02 00
FF03 00
FF04 0E MVI C,0B
FF05 0B
FF06 CD CALL 1000
FF07 00
FF08 10
FF09 3E MVI A,0F
FF0A 0F
FF0B BD CMP L
FF0C DA JC FF16
FF0D 16
FF0E FF
FF0F 26 MVI H,0
FF10 00
FF11 19 DAD D
FF12 EB XCHG
FF13 C3 JMP FF04
FF14 04
FF15 FF
FF16 0E MVI C,12
FF17 12
FF18 CD CALL 1000
FF19 00
FF1A 10
FF1B C3 JMP FF01
FF1C 01
FF1D FF

Load the program into memory and press the reset button and run it. Press one or a combination of hex keys and they will
be added together (the keys are not displayed as you type them). The current data on the display will continue to show
until you press a non-digit key and then the total will be displayed. When you first run the program "Func." will be displayed
until you press a non-digit key.

Be aware of the memory limitations when you are writing a program. If you do not have one of the PRIMER Upgrade
Options, the available memory is from FF01 to FFD3 (211 bytes). If you are using the stack in your program, remember
that 2 bytes are used with each PUSH or CALL and when an interrupt occurs. This further reduces the amount of available
memory.

After you become more skilled in writing programs you may be able to skip the pseudo-code stage, or even the assembly
language stage without making many mistakes. When you write your own program, don't be discouraged if it doesn't work,
the first version of a program rarely works. You may need to use single stepping to find out why the program isn't working

81

the way you expected. You will find as you are starting out, most of your programming problems will be caused by an
incomplete knowledge of the way an instruction works. For this reason it is helpful to review the instruction definitions in
the previous lessons or read supplemental textbooks. For example, a common mistake is to expect the execution of a
DCX instruction (decrement register pair) to set the condition flags. The definition of this instruction says that no flags are
affected. So if this instruction was used in a conditional loop to control how many times the loop occurred, the loop may go
on infinitely.

If you have access to a PC compatible, you may want to build your own 8085 programming environment which will speed
up programming greatly. This environment requires the following: a simple text editor, an 8085 assembler that generates
Intel hex files, a terminal emulator with file upload capability, and finally a PRIMER with a Standard or Deluxe Upgrade
option (or at least a serial port) and MOS version 2.5 or greater. In this environment you write your program with the text
editor and generate the hex file by assembling the program. Pressing "Func." then "3" will then enable the PRIMER's serial
port to receive a hex file. After this, the displays will show "rEC.." indicating that the PRIMER is ready to receive the data.
After an ending record is received, (a record in which the fourth pair of digits following the colon is 01), the PRIMER will
return to entry mode. If any errors occur while receiving the hex file "Err.." will be displayed followed by a hex number. The
bits in this number, after it is converted to binary indicate the following errors:

BIT# ERROR
0 (not used)
1 checksum error
2 non-hex character encountered
3 escape character encountered
4-7 (not used)

Pressing a key after the error message will put the PRIMER back into entry mode. Receiving a hex file may be aborted any
time by resetting the PRIMER or by sending an escape character (1Bh) to the PRIMER's serial port. Sending an escape
character will result in an "Err..08".

The program is loaded in the PRIMER's memory by using the terminal emulator's upload (or send) option to send the hex
file to the PRIMER. In this environment the program is quickly and accurately loaded, eliminating the tedious process of
hand assembling the program and typing it in at the PRIMER's keypad.

If you have the Standard or Deluxe Upgrade option, another programming aid is EMOS which is an operating system in
which all interaction is through the serial port and is intended to be used with a data terminal or a terminal emulator running
on a PC. It is an enhanced MOS with features such as dump, fill, or move memory, view register contents, read input
ports, write output ports, hex and decimal addition and subtraction, program tracing, single stepping, and it has a built in
disassembler.

 82

APPENDIX A: Jumper Descriptions and I/O addresses

Jumper Descriptions

JUMPER DESCRIPTION
JP1 This allows the selection of one of the following baud rates: 300, 600, 1200,

4800, 9600 and 19,200.

OJ1 This is used to select the sources for the 8085's RST 5.5 and RST 6.5

interrupt inputs. The RST 5.5 interrupt pin is connected to the
Display/Keypad controller interrupt request line when there is a connector
between pins 4 and 5, or, if a connector is between pins 3 and 4, it is
connected to the 8251 receiver ready line. The RST 6.5 interrupt pin is
connected to the 8251 receiver ready line when there is a connector between
pins 2 and 3. Putting a connector between pins 1 and 2 connects RST 6.5 to
+5v. This jumper can also be used to connect RST 5.5 and RST 6.5 to external
interrupt sources. Pin 2 of the jumper is connected to RST 6.5 and pin 4 is
connected to RST 5.5.

0J2 This jumper is not implemented on the latest PCB revisions.

0J3 This selects one of the two memory maps which are as follows:

POSITION 'A' MEMORY MAP

SLOT 0 0000 TO 3FFF
SLOT 1 4000 TO BFFF
8155 RAM C000 TO FFFF (only 256 bytes available)

POSITION 'B' MEMORY MAP

SLOT 0 0000 TO 7FFF
SLOT 1 8000 TO FFFF
8155 RAM (not accessible)

I/O Addresses

REFERENCE I/O ADDRESS DESCRIPTION

8251 DATA REGISTER 80 H DATA INPUT/OUTPUT

8251 CONTROL REGISTER 81 H CONFIGURATION

8155 CONTROL REGISTER 10 H CONFIGURATION

PORT A 11 H OUTPUT PORT

PORT B 12 H INPUT PORT

PORT C 13 H ANALOG OUTPUT PORT

TIMER LOW 14 H LOW ORDER TIMING BYTE

TIMER HIGH 15 H HIGH ORDER TIMING BYTE & CONTROL

EXPANSION I/O C0 - FF H EXPANSION CONNECTOR

83

APPENDIX B: The PRIMER Keypad Description

The PRIMER Trainer has twenty keys for input, with some keys having a second function which can be invoked using the
"FUNC." key. Each key produces an audible tone when pressed, providing feedback for the user.

KEY DESCRIPTION

0-F Numeric keys. When a numeric key (0-F HEX) is pressed, the numeric value appears at the right side of a
data field display and the number that was there before will be shifted left. To correct an entry error just
repeat, using the correct number key and the error will be overwritten.

Step This key causes the microprocessor to execute one instruction (single step) at the current program

counter address (the value of the P.C. register). Single stepping is a valuable debugging tool that allows
the user to examine registers and memory after each instruction executes. The Step key executes the
instruction at the program counter address and then returns to the Monitor Operating System and waits for
another user command. When you single step a CALL instruction that is calling a subroutine in ROM
(such as a service call), the processor will execute the subroutine at full speed and stop at the instruction
immediately following the CALL instruction.

Dec. This key decrements the program counter and shows the program counter in the left four displays and the
 data at the program counter address in the right two displays.

Enter

 &
Inc. When the monitor is in the data entry mode, pressing this key stores the data that is on the two far right

displays into the program counter address then increments the program counter and displays the new
program counter address in the left four displays and the data at that address in the two far right displays.
This key is also used to store new values for the registers, the breakpoint and the stack content (see the
section below about second function keys). If the register, breakpoint or stack content information
displayed has been changed but you don't want to enter it, then simply press the "Func." key twice and the
original information is maintained. This key can also be used to just view data in memory.

Func. This selects the second function of the keys that have two functions. When this key is pressed "Func."

appears on the display, and if a key is pressed which has a second function, that function will be
performed. This key may be pressed two times in a row to exit the current mode and return to the data
entry mode.

(Below are the second functions of the keys with two functions)

B.P. This key displays the current software breakpoint address. If 0000 is displayed, then no breakpoint has
been established. The displayed value may be changed by entering the desired breakpoint address in
hex using the numeric keys and then pressing the "Enter & Inc." key. When the program reaches the
breakpoint the software breakpoint address is automatically reset to 0000. NOTE: Obviously, if the
program execution never reaches the breakpoint address, the program will not stop at the breakpoint
address. If the breakpoint address points to a byte other than the op code in a two or three byte
instruction, the program will not stop at the breakpoint address. Also any address specified that
references addresses in EPROM (addresses below 8000 hex) will not stop execution, even if the op code
at that address is executed.

S.C. This displays the 16 bits that are at the top of the stack, or in other words, the data that will be removed

from the stack with the next POP, RET or XTHL instruction. The two displays on the far left represent the
data at SP + 1 (stack pointer address + 1) and next pair to the right represent the data at SP. The
displayed value may be changed by entering the desired hex number using the numeric keys and then
pressing the "Enter & Inc." key.

A.F. This key displays the contents of the A register (Accumulator) and the condition Flags. The A register and

the flags are displayed as four hex digits in the four displays starting at the left. The digit pair on the left of
the four displays show the value of the A register and the pair on the right show the value of the condition
Flags. The displayed value may be changed by entering the desired hex number using the numeric keys
and then pressing the "Enter & Inc." key. The condition Flags are defined bit by bit as follows:

84

BIT 0 CARRY FLAG (if this bit is 1 it indicates a carry)
BIT 1 not used
BIT 2 PARITY FLAG (if this bit is 1 it indicates an even number of bits, odd parity)
BIT 3 not used
BIT 4 AUX. CARRY FLAG (if this bit is 1 it indicates a carry from bit 3 to bit 4 in the A

register)
BIT 5 not used
BIT 6 ZERO FLAG (if this bit is 1 it indicates a zero result)
BIT 7 SIGN FLAG (if this bit is 1 it indicates bit 7 of the A register is a 1)

For example, if the display reads: 0044 A.F.
This indicates the contents of the A register is 0 and the ZERO and PARITY Flags are both set.

B.C. This key displays the contents of the BC register pair. The BC register pair is displayed as four hex digits.

Starting from the left display, the first pair of displays represent the contents of the B register and the
second pair represent the contents of the C register. The displayed value may be changed by entering the
desired hex number using the numeric keys and then pressing the "Enter & Inc." key.

D.E. This key displays the contents of the DE register pair. The DE register pair is displayed as four hex digits.

 Starting from the left display, the first pair of displays represent the contents of the D register and the
second pair represent the contents of the E register. The displayed value may be changed by entering the
desired hex number using the numeric keys and then pressing the "Enter & Inc." key.

H.L. This key displays the contents of the HL register pair. The HL register pair is displayed as four hex digits.

Starting from the left display, the first pair of displays represent the contents of the H register and the
second pair represents the contents of the L register. The displayed value may be changed by entering
the desired hex number using the numeric keys and then pressing the "Enter & Inc." key.

S.P. This key displays the contents of the stack pointer. The stack pointer is a 16 bit register, displayed as four

hex digits. The displayed value may be changed by entering the desired hex number using the numeric
keys and then pressing the "Enter & Inc." key.

P.C. This key displays the contents of the program counter. The program counter is a 16 bit register, displayed

as four hex digits. The displayed value may be changed by entering the desired hex number using the
numeric keys and then pressing the "Enter & Inc." key.

Run This key causes the microprocessor to execute a program at full speed starting at the current program

counter (PC) address. The program will continue to execute until an optional software breakpoint is
encountered or until a RST 7 (FF hex) instruction is executed.

1 This key invokes the PRIMER diagnostics. See "Getting Started" for more details.

2 This executes the MOS service selected by the value in the C register, only affecting the registers that

pass data back from the service. No instructions need to be stored in memory and the PC register is not
affected. For more details see "Using MOS Services".

3 This enables a PRIMER with a Deluxe or Standard Upgrade Option to receive an Intel hex file through its

serial port. See the end of the lesson "Writing Your Own Programs" for more information.

4 This invokes the EPROM programmer menu driven interface. This requires the optional EPROM
PROGRAMMER BOARD, the standard or deluxe upgrade option and a connection to a dumb terminal or
terminal emulation package running on a PC. Documentation on this interface is included when you
purchase the EPROM PROGRAMMER BOARD.

 85

APPENDIX C: 8085A CPU Instructions In Operation Code Sequence

The information in this appendix may be found in “The MCS-80/85 Family User’s Manual” which contains more details
about interfacing and programming the 8080 and 8085 microprocessors. This and other Intel Literature may be obtained
from:
 Intel Corporation
 Literature Department
 3065 Bowers Avenue
 Santa Clara, CA 95051

 86

Abbreviations used in this table:

D8 constant or logical/arithmetic expression that evaluates to an 8-bit quantity
D16 constant or logical/arithmetic expression that evaluates to an 16-bit quantity
Adr 16-bit address.

All mnemonics copyrighted © Intel Corportation 1976

OP
CODE MNEMONIC
00 NOP
01 LXI B,D16
02 STAX B
03 INX B
04 INR B
05 DCR B
06 MVI B,D8
07 RLC
08 -
09 DAD B
0A LDAX B
0B DCX B
0C INR C
0D DCR C
0E MVI C,D8
0F RRC
10 -
11 LXI D,D16
12 STAX D
13 INX D
14 INR D
15 DCR D
16 MVI D,D8
17 RAL
18 -
19 DAD D
1A LDAX D
1B DCX D
1C INR E
1D DCR E
1E MVI E,D8
1F RAR
20 RIM
21 LXI H,D16
22 SHLD Adr
23 INX H
24 INR H
25 DCR H
26 MVI H,D8
27 DAA
28 -
29 DAD H
2A LHLD Adr
2B DCX H
2C INR L
2D DCR L
2E MVI L,D8
2F CMA
30 SIM
31 LXI SP,D16
32 STA Adr
33 INX SP
34 INR M
35 DCR M
36 MVI M,D8
37 STC
38 -
39 DAD SP
3A LDA Adr
3B DCX SP
3C INR A
3D DCR A
3E MVI A,D8
3F CMC

OP
CODE MNEMONIC
40 MOV B,B
41 MOV B,C
42 MOV B,D
43 MOV B,E
44 MOV B,H
45 MOV B,L
46 MOV B,M
47 MOV B,A
48 MOV C,B
49 MOV C,C
4A MOV C,D
4B MOV C,E
4C MOV C,H
4D MOV C,L
4E MOV C,M
4F MOV C,A
50 MOV D,B
51 MOV D,C
52 MOV D,D
53 MOV D,E
54 MOV D,H
55 MOV D,L
56 MOV D,M
57 MOV D,A
58 MOV E,B
59 MOV E,C
5A MOV E,D
5B MOV E,E
5C MOV E,H
5D MOV E,L
5E MOV E,M
5F MOV E,A
60 MOV H,B
61 MOV H,C
62 MOV H,D
63 MOV H,E
64 MOV H,H
65 MOV H,L
66 MOV H,M
67 MOV H,A
68 MOV L,B
69 MOV L,C
6A MOV L,D
6B MOV L,E
6C MOV L,H
6D MOV L,L
6E MOV L,M
6F MOV L,A
70 MOV M,B
71 MOV M,C
72 MOV M,D
73 MOV M,E
74 MOV M,H
75 MOV M,L
76 HLT
77 MOV M,A
78 MOV A,B
79 MOV A,C
7A MOV A,D
7B MOV A,E
7C MOV A,H
7D MOV A,L
7E MOV A,M
7F MOV A,A

OP
CODE MNEMONIC
80 ADD B
81 ADD C
82 ADD D
83 ADD E
84 ADD H
85 ADD L
86 ADD M
87 ADD A
88 ADC B
89 ADC C
8A ADC D
8B ADC E
8C ADC H
8D ADC L
8E ADC M
8F ADC A
90 SUB B
91 SUB C
92 SUB D
93 SUB E
94 SUB H
95 SUB L
96 SUB M
97 SUB A
98 SBB B
99 SBB C
9A SBB D
9B SBB E
9C SBB H
9D SBB L
9E SBB M
9F SBB A
A0 ANA B
A1 ANA C
A2 ANA D
A3 ANA E
A4 ANA H
A5 ANA L
A6 ANA M
A7 ANA A
A8 XRA B
A9 XRA C
AA XRA D
AB XRA E
AC XRA H
AD XRA L
AE XRA M
AF XRA A
B0 ORA B
B1 ORA C
B2 ORA D
B3 ORA E
B4 ORA H
B5 ORA L
B6 ORA M
B7 ORA A
B8 CMP B
B9 CMP C
BA CMP D
BB CMP E
BC CMP H
BD CMP L
BE CMP M
BF CMP A

OP
CODE MNEMONIC
C0 RNZ
C1 POP B
C2 JNZ Adr
C3 JMP Adr
C4 CNZ Adr
C5 PUSH B
C6 ADI D8
C7 RST 0
C8 RZ
C9 RET
CA JZ Adr
CB -
CC CZ Adr
CD CALL Adr
CE ACI D8
CF RST 1
D0 RNC
D1 POP D
D2 JNC Adr
D3 OUT D8
D4 CNC Adr
D5 PUSH D
D6 SUI D8
D7 RST 2
D8 RC
D9 -
DA JC Adr
DB IN D8
DC CC Adr
DD -
DE SBI D8
DF RST 3
E0 RPO
E1 POP H
E2 JPO Adr
E3 XTHL
E4 CPO Adr
E5 PUSH H
E6 ANI D8
E7 RST 4
E8 RPE
E9 PCHL
EA JPE Adr
EB XCHG
EC CPE Adr
ED -
EE XRI D8
EF RST 5
F0 RP
F1 POP PSW
F2 JP Adr
F3 DI
F4 CP Adr
F5 PUSH PSW
F6 ORI D8
F7 RST 6
F8 RM
F9 SPHL
FA JM Adr
FB EI
FC CM Adr
FD -
FE CPI D8
FF RST 7

 87

 APPENDIX D: MOS Services

for
MOS version 2.7

and
EMOS version 2.0

88

SERVICE 0 DEMO Demonstration; this service routine sends a pitch of increasing frequency to the speaker
while flashing the output LEDs at an increasing rate.

 INPUT REGISTER C: 0
 OUTPUT NONE

SERVICE 1 CONIN Console input; this service waits for a key from the terminal keyboard to be pressed. This

service requires the optional serial port.
 INPUT REGISTER C: 1

OUTPUT REGISTER L: ASCII character returned from keyboard.

SERVICE 2 CONSTAT Console input status; this service returns a 0FFH if a key was pressed otherwise a 00H.

This service is used in conjunction with a PC/Terminal device connected to the serial
port. This service requires the optional serial port.

 INPUT REGISTER C: 2
OUTPUT REGISTER L: Console status.

SERVICE 3 CONOUT Console output; this service outputs a ASCII character to the terminal CRT. This service

is used in conjunction with a PC/Terminal device connected to the serial port. This
service requires the optional serial port.

INPUT REGISTER C: 3
REGISTER E: ASCII character.

OUTPUT NONE

SERVICE 4 PSTRING Print string; this service prints to the terminal display the string of ASCII characters

starting at the address in the DE register pair until a "$" is encountered. The "$" delimiter
is not printed. This service is used in conjunction with a PC/Terminal device connected
to the serial port. This service requires the optional serial port.

INPUT REGISTER C: 4
REGISTER PAIR DE: Starting character string address.

OUTPUT REGISTER PAIR DE: Address of character after the "$" character.

SERVICE 5 UPRINT Unsigned print; this service prints to the terminal display a 16 bit number, in decimal

without use of sign. This service is used in conjunction with a PC/Terminal device
connected to the serial port. This service requires the optional serial port.

INPUT REGISTER C: 5
REGISTER PAIR DE: 16 bit unsigned number to print.

OUTPUT NONE

SERVICE 6 SPRINT Signed print; this service prints a 16 bit number to the terminal display, in decimal with

use of sign (2's complement). This service is used in conjunction with a PC/Terminal
device connected to the serial port. This service requires the optional serial port.

INPUT REGISTER C: 6
REGISTER PAIR DE: 16 bit signed number to print.

OUTPUT NONE

SERVICE 7 MULT Multiply; this service multiplies two 16 bit numbers. The HL register is returned as the

most significant word and the DE register is returned as the least significant word.
INPUT REGISTER C: 7

REGISTER PAIR DE: 16 bit multiplicand.
REGISTER PAIR HL: 16 bit multiplier.

OUTPUT REGISTER PAIR HL: Most significant word of product.
OUTPUT REGISTER PAIR DE: Least significant word of product.

SERVICE 8 DIV Unsigned division; this service divides HL by DE (HL/DE). The quotient is returned in HL

and the remainder in DE.
INPUT REGISTER C: 8

REGISTER PAIR HL: 16 bit dividend.
REGISTER PAIR DE: 16 bit divisor.

OUTPUT REGISTER PAIR HL: 16 bit quotient.
REGISTER PAIR DE: 16 bit remainder.

89

SERVICE 9 ADCIN Analog to Digital input; this service returns a 6 bit value from the analog to digital

convertor.
INPUT REGISTER C: 9
OUTPUT REGISTER L: 6 bit analog conversion.

SERVICE A DIPSWIN DIP switch input; this service reads the current switch positions of the 8 position DIP

switch.
INPUT REGISTER C: 0A
OUTPUT REGISTER L: DIP switch value.

SERVICE B KEYIN Read the keypad; this service waits for a key to be pressed and returns the value in the L

register.
INPUT REGISTER C: 0B
OUTPUT REGISTER L: Key value. Keys "0-F" return 00-0F respectively and the "Step", "Func.",

"Dec.", and "Enter" keys return 14-17 respectively.

SERVICE C PTAOUT Port A output; this service writes to the digital output port A.

INPUT REGISTER C: C
REGISTER E: 8 bit value to write to port A.

OUTPUT NONE

SERVICE D HEXPRINT Hex print; This service prints to the terminal display, the hex value of the DE register pair.

Four hex digits are printed. This service is used in conjunction with a PC/Terminal device
connected to the serial port. This service requires the optional serial port.

INPUT REGISTER C: 0D
REGISTER PAIR DE: 16 bit number to print.

OUTPUT NONE

SERVICE E DACOUT Digital to Analog Converter output; This service routine outputs a 6 bit number in the E

register to the Digital to Analog converter.
INPUT REGISTER C: 0E

REGISTER E: 6 bit value to output to DAC.
OUTPUT NONE

SERVICE 10 PITCH Pitch output; This service sends the 14 bit count (the upper two bits are ignored) in the

DE register to the speaker timer. The larger the number the lower the pitch. If the DE
register pair = 0, then the speaker tone is turned off.

INPUT REGISTER C: 10
REGISTER PAIR DE: 14 bit pitch value.

OUTPUT NONE

SERVICE 11 LEDOUT LED Display output; This service routine displays the pattern of LED segments according

to the binary value of the E register to the LED digit specified by the D register. The
digits are numbered 5 to 0 from right to left.

If a bit is 1 in any of the 8 bits in the E register it will cause the corresponding segment to shine. Below
are the segments labeled with their corresponding bit numbers.

 4
 ═════
1║ 2 ║5
 ═════
0║ ║6
 ═════ * 3
 7

INPUT REGISTER C: 11

REGISTER E: Pattern of segments to display.
REGISTER D: Display number (numbered 5 to 0 from left to right).

OUTPUT NONE

90

SERVICE 12 LEDHEX LED Hexadecimal output; This service routine displays the number in the DE register pair
in hex, in the four displays on the left.

INPUT REGISTER C: 12
REGISTER PAIR DE: 16 bit number to be displayed in HEX.

OUTPUT NONE

SERVICE 13 LEDDEC LED Decimal output; This service displays a number in the DE register pair in decimal, in

the four displays on the left. The maximum decimal value displayed is 9999.
INPUT REGISTER C: 13

REGISTER PAIR DE: number to be displayed in Decimal.
OUTPUT NONE

SERVICE 14 DELAY Delay according to the value of the HL register pair. The larger the value, the longer the

delay
INPUT REGISTER C: 14

REGISTER PAIR HL: Amount of delay.
OUTPUT NONE

SERVICE 15 PTBIN Return the complement of input port B. This is similar to the DIPSWIN service.

INPUT REGISTER C: 15
OUTPUT REGISTER L: Complement of data input to port B

SERVICE 16 KEYSTAT Return the status of the keypad in the HL register pair. If a key has been pressed H will

be 1 and L will contain the value of the key, otherwise HL will be 0. Keys "0-F" return 00-
0F hex respectively and the "Step", "Func.", "Dec.", and "Enter" keys return 14-17 hex
respectively.

INPUT REGISTER C:16
OUTPUT REGISTER PAIR HL: Keypad status

SERVICE 17 DIGOUT Show the hex digit in E on the display in D. The value for E must be less than 10 hex.

The value in D should be a number from 0 to 5, with 0 denoting the rightmost display and
5 the leftmost.

INPUT REGISTER C:17
REGISTER E: Hex digit to show
REGISTER D: Display to put digit

OUTPUT NONE

SERVICE 18 WRSCL Write 8 bytes of memory, starting from the address in DE, to the optional real time clock.

The clock provides timekeeping information in BCD including hundredths of seconds,
seconds, minutes, hours, day, date, month and year information. The date at the end of
the month is automatically adjusted for months with less than 31 days, including
correction for leap years. The real time clock operates in either 24-hour or 12-hour
format with an AM/PM indicator. The data pointed to by DE will be stored in the real time
clock as follows:

|BIT 7|BIT 6|BIT 5|BIT 4|BIT 3|BIT 2|BIT 1|BIT 0| RANGE
DE | 0.1 SEC | 0.01 SEC | 00-99
DE+1 | 10 SEC | SECONDS | 00-59
DE+2 | 0 | 10 MIN | MINUTES | 00-59

(AM/PM mode)
| 1 | 0 |AM/PM|10 HR| HOURS | 01-12

DE+3
(24 hour mode)
| 0 | 0 | 10 HOUR | HOURS | 00-23

DE+4 | 0 | 0 |STOP | 0 | DAY | 01-07
DE+5 | 0 | 0 | 10 DATE | DATE | 01-31
DE+6 | 0 | 0 | 0 |10MTH| MONTH | 01-12
DE+7 | 10 YEAR | YEAR | 00-99

If bit 7 of address DE + 3 is 0 the clock will be in 24 hour mode after WRSCLK is
executed. If it is 1 then AM/PM mode is selected and bit 5 of address DE + 3 will select

91

AM or PM (PM is selected if bit 5 is 1). When changing from AM/PM mode to 24 hour
mode and vice-versa you must change the hours to match the selected mode. Once the
hours are correct, the real time clock will maintain the correct hour for the selected mode.
If bit 5 of address DE + 4 is set to 1 and WRSCL is executed, the real time clock will be
stopped. The clock may be restarted by resetting the bit to 0 and executing WRSCL.

INPUT REGISTER C: 18

REGISTER PAIR DE:
Address of the first of 8 bytes to be written to the real time clock.

OUTPUT NONE

SERVICE 19 RDSCL Read 8 bytes of data from the optional real time clock and store them in the 8

consecutive bytes starting at the address in the DE register pair. The 8 bytes are
formatted the same as the data passed to WRSCL.

INPUT REGISTER C: 19
REGISTER PAIR DE:
Starting address to store the 8 bytes read from the real time clock.

OUTPUT NONE

SERVICE 1A LEDSTR LED String output; This service routine allows you to individually turn off, or on, any of the

segments on one or more of the numeric displays. The HL register pair will point to a
section of data for display bit patterns. The bit patterns stored here control the displays
the same as the service LEDOUT (service 11). For example, the following program will
send a pattern to displays 4, 3 and 2 , leaving the others unchanged.

LEDSTR EQU 1AH
MOS EQU 1000H ; address of MOS services

org 0ff01h
mvi c,LEDSTR ; select LEDSTR service
mvi e,3 ; change 3 digits
mvi d,4 ; starting at display 4, going right
lxi h,bitpat ; point to table of bit patterns
call MOS

loop: jmp loop ; loop here so we can see displays
bitpat: db 00010000b,00000100b,10000000b

MACHINE LANGUAGE

ADDRESS DATA INSTRUCTION
 FF01 0E MVI C,1A

 FF02 1A
 FF03 1E MVI E,3
 FF04 03
 FF05 16 MVI D,4
 FF06 04
 FF07 21 LXI H,FF10
 FF08 10
 FF09 FF
 FF0A CD CALL 1000
 FF0B 00
 FF0C 10
 FF0D C3 JMP FF03
 FF0E 03
 FF0F FF
 FF10 10 BIT PATTERN DATA
 FF11 04
 FF12 80

INPUT REGISTER C: 1A
REGISTER E: Number of displays to change (1 to 6)
REGISTER D: Starting display (numbered 5-0 from left to right).
REGISTER PAIR HL: Address of string of bit pattern data to be shown on the displays

OUTPUT NONE

SERVICE 1B DDATA Display the hex byte in E on the DATA/OP displays

INPUT REGISTER C: 1B
OUTPUT NONE

92

The following five services support the optional EPROM programmer board (E020-8). This board allows you to program
EPROMs of a variety of types and voltages. The smallest EPROM supported is a 2764 (8K x 8) and largest EPROM
supported is 27512 (64K x 8). Each EPROM type is given an identification number. The 6 EPROM type numbers
supported are as follows:

TYPE #1 27512 (64K x 8) EPROM WHICH PROGRAMS AT 12.5 VOLTS.
TYPE #2 27256 (32K x 8) EPROM WHICH PROGRAMS AT 12.5 VOLTS.
TYPE #3 27128 (16K x 8) EPROM WHICH PROGRAMS AT 12.5 VOLTS.
TYPE #4 27128 (16K x 8) EPROM WHICH PROGRAMS AT 21.0 VOLTS.
TYPE #5 2764 (8K x 8) EPROM WHICH PROGRAMS AT 12.5 VOLTS.
TYPE #6 2764 (8K x 8) EPROM WHICH PROGRAMS AT 21.0 VOLTS.

If an illegal type number is passed to one of the following services, the A register will return the value 4, with other registers
unaffected.

There are 5 MOS services which support EMAC's EPROM programmer .

SERVICE 1C READ
 Copies a number of bytes starting at an EPROM memory address and stores them in system memory.

SERVICE 1D VERIFY

 VERIFY determines whether the data in the EPROM in the programmer matches a range of data in
system memory.

SERVICE 1E BURN This writes a number of bytes from system memory to EPROM.

The above commands require that you load the 8085 registers as follows:

H High order byte of system memory address
L High order byte of EPROM address

(NOTE: The low order bytes of the system memory and EPROM addresses default to 0)
DE Number of bytes
B EPROM type (as in the table above)
C Service number

When VERIFY or BURN, have finished executing with no errors, the A register will be 0 and the other registers
(except the flag register) will be unaffected. If A is not 0, an error has occurred. and the registers will be returned
with the following information.

BC Address that error occurred in system memory
H Value of data at address BC in system memory

DE Address that error occurred in the EPROM in the programmer
L Value of data at address DE in the EPROM in the programmer

SERVICE 1F ERASECHK

ERASECHK tells whether an EPROM is erased. This command requires you to load the registers as follows:
DE Starting address from which to examine EPROM. It examines from this address down to 0.
B EPROM type (as in the table above)
C Service number 1Fh

The A register will be returned with 0 if the EPROM is erased.

SERVICE 20 ZAP

ZAP allows you to put your own application program into a 32k EPROM. BURN also allows this, but ZAP will
automatically examine the EPROM to see if it is erased, put in the initialization and MOS services code and verify
that the data was written correctly. This command requires you to load the registers as follows:

H High byte of starting address of user program (low byte defaults to 01)

93

DE Number of bytes in program (this should be no bigger than 50FEH)
C Service number 20h

If ZAP has finished executing with no errors, the A register will be 0 and the other registers (except the flag
register) will be unaffected. If an error has occured, the A register will indicate the following:

A=1 Error during EPROM write (registers returned with same values as BURN error)
A=2 Error during verification (registers returned with same values as VERIFY error)
A=3 EPROM not erased (registers returned with same values as ERASECHK error)

To make an EPROM-based application:

1) Load and test your program. To make it easier to relocate your program to 2F01h, you should start at

address XF01h, where X denotes a hex digit which would result in a valid RAM address. Address FF01h
could be used, for example.

2) Rewrite the program to execute at address 2F01h. If you have an assembler, this will be easy.

Otherwise you must look for all JMP's and CALL's that need to be changed. Remember that if your
program refers to data tables, these should be relocated to EPROM, and all RAM variables should remain
at the same address. Also, remember that all registers, except the stack pointer and program counter
must be initialized by the user.

3) Put a blank 32k EPROM (type 2 EPROM) in the programmer, aligning pin 1 of the chip to pin 1 of the

socket, then latch the socket

4) Load DE with the length of the program, H with the upper byte of the starting address of the program and
C with 20h (for service 20). Press "func." then "2" to make MOS service call.

 5) Remove power from the trainer and carefully replace its EPROM with the EPROM that was just

programmed, making sure pin 1 of the EPROM goes to pin 1 of the socket. 0J2 must be in position B for
a 32k EPROM. Place the unused EPROM in a static safe area.

 6) Power up your unit and the program should begin to run. If it doesn't work, make sure you have followed

these procedures carefully, especially step 2.

To insure desired results:
When inserting or removing EPROMS, make sure the EPROM burner power LED is off.
When performing an ERASECHK, VERIFY or BURN command make sure the EPROM type was correctly entered.

SERVICE 21 DECPNT LED Decimal Point output. This service allows you to individually turn on or off the 6

decimal points on the numeric LED display based upon bits 5 to 0 of the D register. In
the D register, bit 5 corresponds to the far left digit and bit 0 to the far right digit. A 0 bit
will turn off the corresponding decimal point and a 1 will turn it on.

INPUT REGISTER C: 21H

 REGISTER D: bit pattern to light or unlight appropriate decimal points.
 OUTPUT NONE

SERVICE 22 BIN2BCD Binary to Binary Coded Decimal. This service converts the 16 bit number in register pair

DE to binary coded decimal with the low nibble in register E being the least significant
digit

INPUT REGISTER C: 22H

 REGISTER PAIR DE: The number to be converted to BCD
OUTPUT REGISTER PAIR DE: The BCD number.

94

SERVICE 23 BCD2BIN Binary Coded Decimal to Binary. This service converts a 4 digit BCD number in register
pair DE to binary.

 INPUT REGISTER C: 23H

REGISTER PAIR DE: 4 digit BCD number
OUTPUT REGISTER PAIR DE: converted number in binary

SERVICE 24 KPINPUT Keypad Input. This service allows the user to input from the keypad a hexadecimal

number with up to 4 digits. The number will be returned in the DE register pair. The
numbers can be displayed on the LED display by loading D with 1 before the service is
called. The LED display will be turned off if D = 0. The service will not return until the
"ENT" key is pressed. Once ENTER is pressed, the last 4 digits entered will be loaded in
DE with the last digit being the Least significant. If 4 digits are not entered, a 0 will be
assumed for the leading digits.

 INPUT REGISTER C: 24H

 REGISTER D: 1 for LED display on, 0 for LED display off.
OUTPUT REGISTER PAIR DE: 4 digit number from keypad

	INTRODUCTION TO THE PRIMER TRAINER5INTRODUCTION TO COMPUTERS7Computer Math7Computer Logic9A BRIEF OVERVIEW OF THE PRIMER HARDWARE10MEMORY10INPUT/OUTPUT10REGISTERS10TECHNICAL CIRCUITRY DESCRIPTION12Schematic Sheet 2: Microprocessor and Expansion Bus12Sche
	
	
	MEMORY
	DATA/FUNCTION KEYS
	COMMUNICATION PORT
	EXPANSION PORT
	EXTERNAL I/O PORT

	Introduction to Computers
	Computer Math
	Computer Logic

	A Brief Overview of the PRIMER Hardware
	MEMORY
	INPUT/OUTPUT
	REGISTERS

	Technical Circuitry Description
	Schematic Sheet 2: Microprocessor and Expansion Bus
	Schematic Sheet 3: I/O Decoding and Memory
	Schematic Sheet 4: Display and Keypad Circuitry
	Schematic Sheet 5: Digital I/O and Timer
	Schematic Sheet 6: Optional Serial Communication Port
	Schematic Sheet 7: Analog I/O
	Schematic Sheet 8: Power Supply, Speaker and Miscellaneous

	Hardware Features
	Languages Used By the PRIMER
	8085 Machine Language
	Assembly Language

	Getting Started
	LESSON 1: Using the Monitor Operating System
	LOADING A PROGRAM INTO MEMORY
	VIEWING AND CHANGING REGISTER CONTENTS
	ADDRESS/REGISTER PAIR DISPLAYS
	SOME TIPS ABOUT CHANGING REGISTERS

	LESSON 2 : Running Your First Program
	LESSON 3: Loading Registers and Transferring Data Between Registers
	LESSON 4: Eight-Bit Addition
	LESSON 5: Eight-Bit Subtraction
	LESSON 6: Sixteen-Bit Subtraction
	LESSON 7: Sixteen-Bit Addition
	LESSON 8: Sixteen-Bit Subtraction Using Two's Complement Addition
	LESSON 9: Binary Coded Decimal Sixteen-Bit Addition
	LESSON 10: Multiplication
	LESSON 11: Division
	LESSON 12: Using Logic Instructions
	LESSON 13: Using Conditionals
	LESSON 14: Using Register Indirect Addressing
	LESSON 15: Using Register Indirect Addressing to Perform 24-Bit Addition
	LESSON 16: Using Register Indirect Addressing to Move Data
	LESSON 17: Using Variables
	LESSON 18: The Stack and Related Instructions
	LESSON 19: Using the XTHL Instruction.
	LESSON 20: Subroutines
	LESSON 21: Using Monitor Operating System Subroutines
	LESSON 22: Using PITCH (service 10)
	LESSON 23: Using ADCIN (service 9)
	LESSON 24: Using Compare Instructions
	LESSON 25: Using Interrupts
	LESSON 26: Writing Your Own Programs
	APPENDIX A: Jumper Descriptions and I/O addresses
	APPENDIX B: The PRIMER Keypad Description
	APPENDIX C: 8085A CPU Instructions In Operation Code Sequence
	APPENDIX D: MOS Services
	
	
	
	EMOS version 2.0

