Application 8: Capacitance Meter

Purpose: This application shows how to use the PRIMER as a capacitance meter.

Discussion:
This application is an example of how the PRIMER can be used as a useful piece of electronic test equipment. The Capacitance Meter application can be used to accurately measure capacitors ranging from . 01 to 220 uF.

The parts required are minimal. Items needed are:

1) 10 K ohm mutiturn potentiometer
2) 10 K ohm $1 / 4$ watt resistor
3) one capacitor of a known value in the range of 1 to 100 uF (calibration cap)
4) several capacitors, for testing, in the range of .01uF to 300 uF 5) breadboard

The circuit is very simple.
 Follow the schematic below to assemble the circuit.

CIRCUIT DESCRIPTION

The PRIMER uses the on-board D/A converter, the comparator, OUTPUT1, and the timer within the 8155 to measure capacitance. The capacitor is connected in series with R1. The open end of the capacitor is then tied to OUTPUT1 and the open end of $R 1$ is tied to ground. The D/A output of the PRIMER is tied to the non-inverting side if the op-amp comparator while the capacitor-R1 connection is tied to the inverting side. When the program first starts, the D / A is set slightly above ground potential and OUTPUT1 is set LOW. The capacitor now discharges through R1. The program waits for the comparator to go HIGH which indicates the capacitor voltage has fallen below the D/A voltage which guarantees a fully discharged cap. The program then starts the timer and sets OUTPUT1 HI which starts the capacitor charging. The timer is driven by a 307.2 Khz input Clock. The timer works by loading a "count" value into a register within the timer. The timer then decrements this value every time the input clock completes a cycle. When the value reaches 0 , the timer generates an output pulse then reloads the register with the "count" value and the process starts all over again. By increasing the value in the "count" register the pulse rate can be slowed down and vise-versa. The Capacitor Meter program uses the timer as the time-base by counting how many pulses are generated by the timer while the capacitor is charging. The larger the cap, the longer the charge time, therefore the more pulses will be generated. The voltage across the resistor is near VCC when OUTPUT1 first goes HIGH, then ramps down as the capacitor charges. When the voltage falls below the D/A voltage the comparator output goes $H I G H$, stopping the timer. The current pulse count is then converted to decimal and displayed on the LED display.

CALIBRATION

The Capacitor Meter program works by measuring the time required to charge the capacitor through a resistor. The time-base is generated by the timer within the 8155. The Capacitor Meter program has 2 user selectable timer scales to choose from. The Lo scale can measure capacitor values up to 9.999 uF while the HI scale can measure values up to 999.9 uF. Two scales were chosen to provide good resolution to small caps but also have the ability to measure large caps. The scale is determined by the "count" value loaded into the 8155 timer. A value of 10 is loaded in the "count" register for low scale and a value of 1000 for the high scale. Once the capacitor is charged the pulse count is displayed on the LED display in decimal. A decimal point is then placed on the LED display in the "10's" place for high scale and in the "1000's" place for low scale. So the actual value written to the display for a luF capacitor measured in low scale would be "1000". Once the decimal point is added it looks like "1.000". Because the Capacitor Meter uses a fixed time base to calculate capacitance, the resistor value must be determined to calibrate the Capacitor Meter.

The equation for capacitor charge time of an RC circuit is:

$$
T=5 \star R * C
$$

Where:
$\mathrm{T}=$ Time in Seconds

$$
\begin{aligned}
& \mathrm{R}=\text { Resistance in Ohms } \\
& \mathrm{C}=\text { Capacitance in Farads }
\end{aligned}
$$

Solving for R gives:

$$
\mathrm{R}=\mathrm{T} / 5 \mathrm{C}
$$

The equation above is used to determine the approximate resistance value for the Capacitor Meter program.

Thus we can calculate the actual resistance value:
$(1 / 307.2 \mathrm{Khz}) * 10000 / 5 * 1 \mathrm{uF}=6400$ Ohms
This is the value for the total resistance. Keep in mind that the PRIMER has an in-circuit resistor with a value of 100 K ohms in parallel with the calibration resistor. The actual resistance value will be slightly above the theoretical value because the program does not charge the capacitor 100%. Other factors such as ESR (Equivalent Series Resistance) cause errors to grow quit large as capacitor values increase into the hundreds of uF's range. The value calculated is a good starting point but some final tweaking will be required.

USING THE PROGRAM

Following is the assembly language listing of the Capacitor Meter program:

CAPACITOR METER			
P IN	EQU	12H	; ADDRESS OF PORT A
P OUT	EQU	11H	; ADDRESS OF PORT B
P 8155	EQU	10 H	; ADDRESS OF 8155 CONTROL REGISTER
P CNTLO	EQU	14H	; ADDRESS OF LO BYTE OF COUNTER
P CNTHI	EQU	15H	; ADDRESS OF HI BYTE OF COUNTER
TMRSTRT	EQU	OCDH	; START TIMER COMMAND
TMRSTOP	EQU	8DH	; STOP TIMER COMMAND
ADCVAL	EQU	01H	; VALUE OF 1 TO D/A
TMRMODE	EQU	OCOH	; SINGLE PULSE AND RELOAD
DSPORT	EQU	40 H	; ADDRESS OF LED DISPLAY DATA
DSPCMD	EQU	41H	; ADDRESS OF LED DISPLAY COMMAND REGISTER
MOS	EQU	1000 H	; MOS SERVICE
ORG	OFFO1H		;ORIGIN OF MEM IN 8155
START:			
MVI	E, ADCVAL		; SET D/A TO LOW V
MVI	C, OEH		; SERVICE OE (DACOUT)
CAL工	MOS		; MOS SERVICE
MVI	A, TMRSTOP		; STOP TIMER
OUT	P 8155		
LXI	D, OOOOH		; CLR D, E (PUT O'S IN LED DISPLAY)
MVI	C, 13H		; CALL LEDDEC ROUTINE IN MOS

Application 8-3

	CALI	MOS	;
	MVI	A, 80H	; "WRITE COMMAND" FOR DIGIT 0
	OUT	DSPCMD	
	MVI	A, 00010111 B	;WRITE "F" TO DIGIT 0
	OUT	DSPORT	
	MVI	A, 81H	; WRITE COMMAND" FOR DIGIT 1
	OUT	DSPCMD	
	MVI	A, 11000001B	;WRITE "u" TO DIGIT 1
	OUT	DSPORT	
WAIT:			
	IN	12H	; GET SWO SETTING
	ANI	01	; MASK OFF OTHER SWCHS
	MVI	C, 5	; DECIMAL DIG 5
	MOV	B, A	
	CALL	DECPNT	; PLACES THE DECIMAL POINT
	XRI	00000001 B	; COMPLIMENT SW SETTING
	MOV	B, A	
	MVI	C, 3	
	CALI	DECPNT	
	MOV	B, A	; SAVE SWITCH VAL
	MVI	C, 16H	; CALL SWITCH STAT
	CALL	MOS	
	MOV	A, H	
	RAR		; IF KEY WAS PRESSED,
	JNC	WAIT	; THEN GO !
	MOV	A, B	;IF DIPSWITCH1 IS ON
	RAR		
	JNC	HI	; THEN GOTO HI
LO:	MVI	A, 0E8H	; LOAD TIMER W/ 1000 D
	OUT	P CNTLO	
	MVI	A, 0C3H	
	OUT	P CNTHI	
	JMP	GO	
HI:	MVI	A, OAH	; LOAD TIMER W/ 10 D
	OUT	P CNTLO	
	MVI	$\mathrm{A}, \mathrm{OCOH}$	
	OUT	P CNTHI	
GO:	XRA	A	; CLEAR ACC
	OUT	11H	; SET PORT A LO
POLE		RIM	; POLE TO MAKE SURE CAP IS DISCHARGED ; CHECK IF SID HAS GONE HIGH ;IF NOT POLE
	RAL		
	JNC	POLE 1	
	MVI	A, OFFH	; SET OUTPUT1 HIGH
	OUT	11H	

```
    MVI A,TMRSTRT ;START TIMER
    OUT P 8155
LUP: MVI A,1FH ;CLEAR 7.5 INT
    SIM ;SET INTERUPT MASK
POLE2:
    RIM ;LOAD ACC WITH INT FLG STATUS
    RAL ;CHECK IF SID HAS GONE HIGH
    JC EXIT ;IF SO THEN EXIT
    RAL POLE2 
    INX D ;INCREMENT D AND E
    JMP LUP ;GOTO LUP
EXIT: MVI C,13H ;CALL LEDDEC ROUTINE IN MOS
    CALI MOS
    MOV A,B
    MVI C,3
    CALI DECPNT ; PLACES THE DECIMAL POINT
    XRI 00000001B ;COMPLIMENT SW SETTING
    MOV B,A
    MVI C,5
    CALL DECPNT
STP: MVI C,16H ;CALL KEYPAD STAT
    CALL MOS
    MOV A,H
    RAR ;IF A BUTTON WAS NOT PRESSED,
    JNC STP ;THEN POLE
    JMP START ;ELSE TEST ANOTHER CAP
;*****************************************************
; DECPNT: IN: LOAD C W/ DIGIT #, LOAD B WITH A 1 OR 0
        B=1 DEC PNT ON, B=O DEC PNT OFF
    OUT: NOTHING
DECPNT:
    PUSH PSW
    MOV A,B
    RAL ;MOVE BIT O TO BIT 3 LOCATION
    RAL
    RAL
    ANI 00001000B
    MOV B,A
    MVI A,60H
    ADD C ;COMMAND TO READ DIGIT
    OUT DSPCMD
    IN DSPORT ;GET SEGMENT VALUES
    STA TEMP ;SAVE A REG
    MVI A,8OH ; COMMAND TO WRITE DIGIT
    ADD C
    OUT DSPCMD
```

LDA	TEMP	;RECALI A VALUE
ANI	III10111B	;TURN OFF DECIMAL POINT
ORA	B	;TURN ON IF SUPOSED TO IS ON
OUT	DSPORT	;WRITE A TO DIGIT

Load the following program into memory:

ADDRESS	DATA	INSTRUCTION		ADDRESS	DATA	INSTRUCTION	
FFO1	1E	MVI	E, 01	FF14	3E	MVI	A, 80
FF02	01			FF15	80		
FF03	OE	MVI	C, OE	FF16	D3	OUT	41
FFO4	OE			FF17	41		
FF05	CD	CALI	1000	FF18	3E	MVI	A, 17
FF06	00			FF19	17		
FF07	10			FF1A	D3	OUT	40
FF08	3E	MVI	A, 8D	FF1B	40		
FF09	8D			FF1C	3E	MVI	A, 81
FFOA	D3	OUT	10	FF1D	81		
FFOB	10			FF1E	D3	OUT	41
FFOC	11	LXI	D, 0000	FF1F	41		
FFOD	00			FF20	3E	MVI	A, C1
FFOE	00			FF21	C1		
FFOF	OE	MVI	C, 13	FF22	D3	OUT	40
FF10	13			FF23	40		
FF11	CD	CALI	1000	FF24	DB	IN	12
FF12	00			FF25	12		
FF13	10						

ADDRESS	DATA	INSTRUCTION	
FF26	E6	ANI	01
FF27	01		
FF28	0E	MVI	C,05
FF29	05		
FF2A	47	MOV	B,A
FF2B	CD	CALI	FF99
FF2C	99		
FF2D	FF		
FF2E	EE	XRI	01
FF2F	01		
FF30	47	MOV	B,A
FF31	OE	MVI	C,03
FF32	03		
FF33	CD	CALI	FF99
FF34	99		
FF35	FF		
FF36	47	MOV	B,A
FF37	0E	MVI	C,16
FF38	16		
FF39	CD	CALI	1000
FF3A	00		

FF3B	10			FF74	FF		
FF3C	7 C	MOV	A, H	FF75	13	INX	D
FF3D	1F	RAR		FF76	C3	JMP	FF69
FF3E	D2	JNC	FF24	FF77	69		
FF3F	24			FF78	FF		
FF40	FF			FF79	OE	MVI	C, 13
FF41	78	MOV	A, B	FF7A	13		
FF42	1F	RAR		FF7B	CD	CALL	1000
FF43	D2	JNC	FF51	FF7C	00		
FF44	51			FF7D	10		
FF45	FF			FF7E	78	MOV	A, B
FF46	3E	MVI	A, E8	FF7F	OE	MVI	C, 03
FF47	E8			FF80	03		
FF48	D3	OUT	14	FF81	CD	CALI	FF99
FF49	14			FF82	99		
FF4A	3E	MVI	A, C3	FF83	FF		
FF4B	C3			FF84	EE	XRI	01
FF4C	D3	OUT	15	FF85	01		
FF4D	15			FF86	47	MOV	B, A
FF4E	C3	JMP	FF59	FF87	OE	MVI	C, 05
FF4F	59			FF88	05		
FF50	FF			FF89	CD	CALL	FF99
FF51	3E	MVI	A, OA	FF8A	99		
FF52	OA			FF8B	FF		
FF53	D3	OUT	14	FF8C	OE	MVI	C, 16
FF54	14			FF8D	16		
FF55	3E	MVI	A, CO	FF8E	CD	CALL	1000
FF56	C0			FF8F	00		
FF57	D3	OUT	15	FF90	10		
FF58	15			FF91	7 C	MOV	A, H
FF59	AF	XRA	A	FF92	1 F	RAR	
FF5A	D3	OUT	11	FF93	D2	JNC	FF8C
FF5B	11			FF94	8C		
FF5C	20	RIM		FF95	FF		
FF5D	17	RAL		FF96	C3	JMP	FFO1
FF5E	D2	JNC	FF5C	FF97	01		
FF5F	5C			FF98	FF		
FF60	FF			FF99	F5	PUSH	PSW
FF61	3E	MVI	A, FF	FF9A	78	MOV	A, B
FF62	FF			FF9B	17	RAL	
ADDRESS	DATA	INST	CTION	FF9C	17	RAL	
FF63	D3	OUT	11	FF9D	17	RAL	
FF64	11			FF9E	E6	ANI	08
FF65	3E	MVI	A, CD	FF9F	08		
FF66	CD			ADDRESS	DATA	INSTR	CTION
FF67	D3	OUT	10	FFAO	47	MOV	B, A
FF68	10			FFA1	3E	MVI	A, 60
FF69	3E	MVI	A, 1F	FFA2	60		
FF6A	1F			FFA3	81	ADD	C
FF6B	30	SIM		FFA4	D3	OUT	41
FF6C	20	RIM		FFA5	41		
FF6D	17	RAL		FFA6	DB	IN	40
FF6E	DA	JC	FF79	FFA7	40		
FF6F	79			FFA8	32	STA	FFBA
FF70	FF			FFA9	BA		
FF71	17	RAL		FFAA	FF		
FF72	D2	JNC	FF6C	FFAB	3E	MVI	A, 80
FF73	6C			FFAC	80		

FFAD	81	ADD	C
FFAE	D3	OUT	41
FFAF	41		
FFB0	$3 A$	LDA	FFBA
FFB1	BA		
FFB2	FF		
FFB3	E6	ANI	F7
FFB4	F7		
FFB5	B0	ORA	B
FFB6	D3	OUT	40
FFB7	40		
FFB8	F1	POP	PSW
FFB9	C9	RET	

After loading the program, set the pot for midscale and install the calibration cap. Press FUNC. then RUN (to enter run mode). The display should read "0000 uF" with a decimal point in the "10's" place or in the "1000's" place. Change DIPSWITCH 0 to change the decimal point position. With the decimal point in the "10's" place, the Capacitor Meter program can measure capacitor values up to 999.9 uF. With the decimal point in the "1000's" place, values up to 9.999 uF can be measured. Once the scale is chosen, press any key on the keypad to test the cap. A value will be returned to the display which represents capacitance. Press another key to start the program over again. Adjust the pot and continue to test the calibration capacitor until an accurate reading is realized. Test several caps and record the results. Accuracies greater than 99% are possible.

NOTE- The most accurate results will be obtained when the PRIMER is powered up and the temperature allowed to stabilize over a period of 15 to 30 minutes.

