
APPLICATION 7-1

Application 7: Controlling an LCD Module

Purpose: To demonstrate writing characters and cursor positioning on an
LCD Module display.

Discussion:

There are many LCD Module display manufacturers and most use the same 14 pin
dual row header interface and the same controller chip, the HD44780. These
modules display characters only, not graphics (with the exception that you
can simulate graphics by dynamically defining your own characters). You may
find these displays in surplus catalogs, or parts catalogs such as DIGI-KEY.
Some example parts are:

DIGI-KEY Part. Description (Call 1-800-DIGI-KEY)
OP116-ND
OPTREX 16x1 standard
LCD dot matrix
module
VT216-ND
Varitronix Ltd 16x2
standard LCD dot
matrix module

The HD44780
controller has two
registers: one for
data and one for
commands. The data
register allows you
to write characters
to the display,
define your own
characters and read
display memory. The
command register
allows writing of
several commands
relating to display
control and
initialization and
also reading the
controller's status
and address counter. In the interest of simplicity we will write to the
controller registers in this application.

The controller can transfer data in 8 or 4 bit mode, so we will use it in 4
bit mode since we have only 8 output ports and we need at least 4 to
transfer data (DB4 to DB7) and 2 for the control lines (RS and E).

;
; LCD DRIVER CODE
;
OPORT EQU 11H ;OUTPUT PORT
IPORT EQU 12H ;INPUT PORT
KEYIN EQU 0BH ;SERVICE FOR READING KEYPAD
MOS EQU 1000H ;MOS CALL ADDRESS

;
; OPORT BITS ARE DEFINED AS FOLLOWS:
; 7 6 5 4 3 2 1 0
; DB7 DB6 DB5 DB4 E RS (not used)

APPLICATION 7-2

;

ORG 0FF01H
MVI A,11110011B ; RS, E, = 0.
OUT OPORT

; RESET CODE
CALL DELAY
CALL DELAY
MVI A,30H
CALL DLNOUT
CALL DLNOUT
CALL DLNOUT

; INIT CODE
MVI A,00100000B ;SET 4 BIT MODE
CALL DLNOUT

MVI A,00101000B ;SET 4 BIT, 2 LINE, 5 BY 7 DOTS
CALL OUTCMD
MVI A,00001000B ;DISPLAY OFF
CALL OUTCMD
MVI A,00000001B ;DISPLAY ON
CALL OUTCMD
MVI A,00001110B ;TURN ON DISPLAY, CURSOR, AND BLINK.
CALL OUTCMD
MVI A,00000110B ;ENTRY MODE SET. INC. W/CURSOR MOVEMENT
CALL OUTCMD

LXI H,TSTSTR
CALL SHWSTR

LOOP: NOP
NOP
NOP
NOP
NOP ;THESE ARE PLACE HOLDERS

MVI C,KEYIN
CALL MOS ;GET A KEY
MVI A,'0'
ADD L ;CONVERT 0 TO 9 IN L TO ASCII
CALL OUTDTA ;DISPLAY THE CHAR
JMP LOOP

TSTSTR: DB 'The Primer.',0

;
; Show the string pointed to by HL. When 0 is encountered the program exits
; returning HL pointing to the byte after the 0.
;
SHWSTR: MOV A,M ;READ STRING

INX H ;CHANGE POINTER
ORA A ;SEE IF A=0
RZ ;EXIT IF END OF STRING
CALL OUTDTA ;DISPLAY CHARACTER
JMP SHWSTR

;
; Send A to the LCD with RS=1, high nibble first and low second.
;
OUTDTA: MVI E,0100B ;SET RS
 JMP OBYT1
;
; Send A to the LCD with RS=0, high nibble first and low second.
;
OUTCMD: MVI E,0 ;RS=0
OBYT1: MOV B,A ;SAVE IN B

ANI 0F0H ;MASK OFF LOW NIBBLE

APPLICATION 7-3

ORA E ;MAYBE MODIFY RS
CALL DLNOUT ;SEND IT
MOV A,B
ADD A
ADD A
ADD A
ADD A ;LOWER IS MOVED TO UPPER, PADDING 0'S
ORA E ;MAYBE MODIFY RS
CALL DLNOUT
RET

;
; This delays and falls through to OUTNIB
;
DLNOUT: CALL DELAY

;
; Send data in A to the LCD. Assumes bits 0 to 3 have been properly set.
;
OUTNIB: PUSH PSW

ANI 11110111B ;CLEAR E
OUT OPORT ;SEND NIBBLE
ORI 1000B ;SET E BIT
OUT OPORT
ANI 11110111B ;CLEAR E BIT
OUT OPORT
POP PSW
RET

;
; 5ms time delay for 8085 is 24 t states
;
DELAY: PUSH PSW ;approx 5ms for 3.072 MHZ clock
 PUSH H
 LXI H,641
DLAY2: DCX H ;6 T STATES
 MOV A,H ;4 T STATES
 ORA L ;4 T STATES
 JNZ DLAY2 ;10 T STATES
 POP H
 POP PSW
 RET

Program Description:

According to the schematic, the output port controls the LCD and the port
bits are connected as follows:

output port bits: 7 6 5 4 3 2 1 0
LCD header pins: DB7 DB6 DB5 DB4 E RS (not used)

The routine OUTNIB assumes the upper nibble of A has the value you want to
output and bit 2 (RS) is set to 0 for a command or 1 for data. This value
is output first with bit 3 (E) low, then high, then low again. The E input
when brought high momentarily causes the data input to RS and DB4 through
DB7 to be accepted by the LCD controller. DLNOUT works the same except a 5mS
delay (provided by DELAY) occurs before executing OUTNIB.

DELAY is called because the method we used to interface to the LCD Module
prevents us from reading the LCD module. This in turn prevents us from
reading the busy flag which tells us the LCD controller is busy executing a
command and cannot receive another yet. DELAY gets us around this problem
because it takes longer to execute than any of the LCD controller's
instructions insuring that the LCD will not be busy by the time it is
finished. In the initialization section some longer delays are needed, so
DELAY is called repeatedly.

Application 7-4

OUTCMD and OUTDTA use the same core routine but they select RS of 0 and 1
respectively. This core routine takes the byte in A and breaks it into two
nibbles and sends them to DLNOUT (high nibble first).

The main routine does the hardware reset for the HD44780, followed by the
display mode setup. Then SHWSTR sends the ASCII string pointed to by HL to
the display via OUTDTA, and then the MOS subroutine KEYIN is called to get a
key from the keypad and the key is translated to ASCII and sent to the
display (via OUTDTA) and then it loops back to get another key.

Connect Primer connector CN3 to the LCD according to the schematic and then
enter the following program. When you run the program "The Primer._" should
be shown on the display and when you press one of keys "0" to "9" they will
be shown on the display, with each new character displayed to the right of
the previous.

Eventually if you press the keys enough times you will eventually run out of
display area. The characters are now being stored in an area that is not
being displayed. If you have a 2 line display and you send enough
characters, they will start showing up on the second line and after more are
sent they will eventually show up on the first line.

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION FF2C CD CALL FF68
FF01 3E MVI A,F3 FF2D 68
FF02 F3 FF2E FF
FF03 D3 OUT 11 FF2F 3E MVI A,06
FF04 11 FF30 06
FF05 CD CALL FF8D FF31 CD CALL FF68
FF06 8D FF32 68
FF07 FF FF33 FF
FF08 CD CALL FF8D FF34 21 LXI H,FF4D
FF09 8D FF35 4D
FF0A FF FF36 FF
FF0B 3E MVI A,30 FF37 CD CALL FF59
FF0C 30 FF38 59
FF0D CD CALL FF7B FF39 FF
FF0E 7B FF3A 00 NOP
FF0F FF FF3B 00 NOP
FF10 CD CALL FF7B FF3C 00 NOP
FF11 7B FF3D 00 NOP
FF12 FF FF3E 00 NOP
FF13 CD CALL FF7B FF3F 0E MVI C,0B
FF14 7B FF40 0B
FF15 FF
FF16 3E MVI A,20 ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF17 20 FF41 CD CALL 1000
FF18 CD CALL FF7B FF42 00
FF19 7B FF43 10
FF1A FF FF44 3E MVI A,30
FF1B 3E MVI A,28 FF45 30
FF1C 28 FF46 85 ADD L
FF1D CD CALL FF68 FF47 CD CALL FF63
FF1E 68 FF48 63
FF1F FF FF49 FF
FF20 3E MVI A,08 FF4A C3 JMP FF3A
FF21 08 FF4B 3A
FF22 CD CALL FF68 FF4C FF
FF23 68 FF4D 54 "T"
FF24 FF FF4E 68 "h"
FF25 3E MVI A,01 FF4F 65 "e"
FF26 01 FF50 20 " "
FF27 CD CALL FF68 FF51 50 "P"
FF28 68 FF52 72 "r"
FF29 FF FF53 69 "i"
FF2A 3E MVI A,0E FF54 6D "m"
FF2B 0E FF55 65 "e"

Application 7-5

FF56 72 "r" FF9A C9 RET
FF57 2E "."
FF58 00 (end marker)
FF59 7E MOV A,M
FF5A 23 INX H
FF5B B7 ORA A
FF5C C8 RZ
FF5D CD CALL FF63
FF5E 63
FF5F FF
FF60 C3 JMP FF59
FF61 59
FF62 FF
FF63 1E MVI E,04
FF64 04
FF65 C3 JMP FF6A
FF66 6A
FF67 FF
FF68 1E MVI E,00
FF69 00
FF6A 47 MOV B,A
FF6B E6 ANI F0
FF6C F0
FF6D B3 ORA E
FF6E CD CALL FF7B
FF6F 7B
FF70 FF
FF71 78 MOV A,B
FF72 87 ADD A
FF73 87 ADD A
FF74 87 ADD A
FF75 87 ADD A
FF76 B3 ORA E
FF77 CD CALL FF7B
FF78 7B
FF79 FF
FF7A C9 RET
FF7B CD CALL FF8D
FF7C 8D
FF7D FF
FF7E F5 PUSH PSW
FF7F E6 ANI F7
FF80 F7
ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF81 D3 OUT 11
FF82 11
FF83 F6 ORI 08
FF84 08
FF85 D3 OUT 11
FF86 11
FF87 E6 ANI F7
FF88 F7
FF89 D3 OUT 11
FF8A 11
FF8B F1 POP PSW
FF8C C9 RET
FF8D F5 PUSH PSW
FF8E E5 PUSH H
FF8F 21 LXI H,0281
FF90 81
FF91 02
FF92 2B DCX H
FF93 7C MOV A,H
FF94 B5 ORA L
FF95 C2 JNZ FF92
FF96 92
FF97 FF
FF98 E1 POP H
FF99 F1 POP PSW

Application 7-6

In the next example we will modify the program to use the Set DD RAM Address
command which will in effect allow us to control the cursor position.
Modify the following addresses and run the program. You will see that each
key typed will show up on the screen in the same place even though it is
still automatically incrementing the cursor position. This is because the
address is set for that cursor position after the cursor has been
incremented.

You may want to experiment with different cursor positions. If you have a 2
line display, you can move the cursor to line 2 by sending 10000000b + 40h
(C0h) to OUTCMD, where 10000000b is the command for Set DD RAM Address and
40h is the offset for line 2.

ADDRESSADDRESS DATADATA DESCRIPTIONDESCRIPTION
FF3A 3E MVI A,8B
FF3B 8B
FF3C CD CALL FF68
FF3D 68
FF3E FF

