
Application 5:  Using the PRIMER to Regulate the Speed of a DC Motor

Purpose:

To introduce the student to one method of regulating the speed of a
small DC 
motor.

Goals:

1.   Study formulas, data, and waveforms relating to a DC motor.

2.   Build an interface circuit that will allow the PRIMER to regulate 
     the speed of a particular DC motor.

3.   Build a motor holding fixture that will allow one motor to be 
     mechanically coupled to another.

4.   Load, run, and test a program that will allow the PRIMER via the 
     interface circuit to:

           A.   Regulate the speed of a particular DC motor.
           B.   Accept desired speed input via the on-board DIP        
         switches.
           C.   Display motor speed and pulse width via the on-board   
              7-segment displays and LEDs respectively.

Equipment, Components, and Materials:

Equipment (required):

Qty.  Description                           Source       Part Number
1     PRIMER                                EMAC         E600-00
1     Solderless Breadboard                 Radio Shack  276-175
1     PRIMER Interface Cable                EMAC         E600-15

Components and Materials:

Interface Circuit:

1     Transistor, 2N2222                    Digi-Key     PN2222A-ND
1     Transistor, 2N2907                    Digi-Key     PN2907A-ND
1     Resistor, 8.2K , ¼W, 5%, Carbon Film  Digi-Key     8.2KQ
1     Resistor, 1.8K , ¼W, 5%, Carbon Film  Digi-Key     1.8KQ
1     Resistor, 1K , ¼W, 5%, Carbon Film    Digi-Key     1.0KQ
1     Resistor, 390 , ¼W, 5%, Carbon Film   Digi-Key     390Q
1     Diode, 1N4005                         Digi-Key     1N4005GI
1     Capacitor, 2200 µF, 16V                Digi-Key     P1216

Motor Load Resistors:

1     Resistor, 1.0 , ½W, 5%, Carbon Film   Digi-Key     1.0H
1     Resistor, 3.3 , ½W, 5%, Carbon Film   Digi-Key     3.3H
1     Resistor, 8.2 , ½W, 5%, Carbon Film   Digi-Key     8.2H
1     Resistor, 33 , ½W, 5%, Carbon Film    Digi-Key     33H



Motor Holding Fixture: (optional)

Qty.  Description                           Source       Part Number
1     Aluminum or Plexiglas Flat, 3.9" x 2.9" x 1/16-1/8"     -    -
2     Aluminum or Plexiglas Flat, 1.8" x 0.5" x 1/16-1/8"     -    -
8     Aluminum Spacers, Round Threaded, 4-40 x 0.75" Digi-Key  J240
2     Perfboard, Glass epoxy, Pad per hole, 0.4" x 2.2"  -    -
2     Terminal Block, 2 position          Digi-Key  ED1631-ND
1     Tennis Racquet Grip Wrap (Motor Mounting Pads)SOFTGRIP  STG-X
      (or equivalant)
12    Pan Head Screws, 4-40 x 1/4"          Digi-Key     H142
4     Pan Head Screws, 4-40 x 1/2"          Digi-Key     H146
16    Lock Washers, #4                      Digi-Key     H236
2     Motor with Gear(1.5 to 4.5VDC, 65mA @ 4.5VDC,Radio Shack 273-237
          3 pole, permanent anisotropic magnet,
          1.5 oz.in. stall torque)

General:

20"ea.                                      Wire, Stranded, 22 Ga., 
                                            Red and Black Radio Shack 
                                            278-1218
20"   Wire, Wire Wrap, 30 Ga.               Radio Shack  278-503

Introduction:

In this lab, we would like to program the PRIMER to regulate the speed
of a DC motor.  The PRIMER will adjust motor speed by varying the
armature voltage applied to the motor.  This will be accomplished by
varying the amount of time a fixed voltage is applied to the armature
within a fixed time frame. This technique is called pulse width
modulation (PWM).  The time when voltage is applied to the motor will
be referred to as "motor on time" or pulse width (PW).  The time
remaining in the fixed time frame would be "motor off time." The
PRIMER will read the speed of the motor by using the on-board analog
to digital (A/D) converter to measure the voltage (back EMF) generated
by the motor during motor off time.  This voltage is directly
proportional to motor speed.  By comparing motor speed to the desired
speed, input via the on-board DIP switches, the PRIMER can correctly
adjust motor on time to keep motor speed constant.  Before we get to
the interface circuit and PRIMER program needed to regulate motor
speed, it might be helpful to look at some basic information relative
to DC motors in general and to the motor we will be regulating in
particular.

Motor Formulas:

          T  = 7.04K Ia                  
          
          Vg = K N          Where:     K  = A constant for a           
                                            particular motor.
                                          = Field flux.  
                    Vg                 Ia = Armature Current. 
          Ia = V - ----                Ra = Armature Resistance.   
                    Ra                 V  = Armature Voltage.     
                                       Vg = Back or Counter EMF. 
               V - IaRa                N  = Motor Speed.   



          N  = --------                T  = Motor Torque. 
                  K                     
                                
These formulas show that there is a linear relationship between
applied armature voltage V and motor speed N for a given load.  Since
back EMF, Vg,is directly related to motor speed there is also a linear
relationship between V and Vg.  The formulas also show that:

1.   Vg will always be less than V.
2.   Ia, and therefore torque are greatest at low motor speed and both 
     decrease as motor speed is increased.
3.   When an increased load is applied to a motor it must supply more  
    torque.  
     This in turn means that Ia must increase.  If Ia increases motor  
    speed 
     will decrease.  The only way to return the motor to its original  
    speed 
     is to increase the armature voltage V.

The motor we will use in this lab is a permanent magnet type. 
Permanent magnets provide the field flux  .  Magnetic fields setup by
current flowing in the armature windings cause the armature to rotate
inside the magnetic fields set up by the permanent magnets.  To
maintain armature rotation, the direction of the armature magnetic
fields must constantly change relative to the fixed direction of the
magnetic fields of the permanent magnets.  This function is provided
by brushes riding on a commutator attached to the motor shaft that
constantly changes the direction of current flow in the armature 
windings as the shaft rotates.  In this mode of operation, we supply 
electrical energy to the motor in the form of armature current and the
motor supplies mechanical energy in the form of shaft rotation.  If we
supply mechanical energy to the motor by rotating the shaft, the motor
will supply electrical energy in the form of armature current.  This
armature current results from the armature windings cutting across the
magnetic lines of force set up by the magnetic fields of the permanent
magnets.  This current as seen by an electrical load across the motor
terminals would be alternating (AC) if not for the rectifying action
of the commutator converting it to DC.  In this mode of operation, the
motor is acting as a generator and the resulting DC voltage measured
across the motor terminals is called counter or back EMF. The
amplitude of this voltage will depend on the electrical load attached
to the motor terminals but for a given load, changes in this back EMF
will be directly proportional to changes in the speed of the rotating
armature. 

Motor Waveforms:

If we use a pulse generator to apply pulse width modulation to the
circuit of Figure 1 and observe the resulting A/D signal on an
oscilloscope, we would see the waveforms of Figure 2. The three
regions of interest in the waveforms are marked as A, B, and C.  
The period of the PWM signal is A + B + C.  The motor on time is A and
the motor off time is B + C.  Region B in waveform B is a negative
voltage generated by the collapsing magnetic field in the armature
windings when armature current is cut off at the beginning of motor
off time.  If this voltage were not clamped by diode D1 to that coul
about -0.7V, it would be a very large negative voltage d potentially
damage the PRIMER A/D circuitry. Region C in Waveform B is the back
EMF generated by the armature rotating in the magnetic field of the



permanent magnets during motor off time.  If the pulse width of the
PWM signal is now increased we would see the waveforms of Figure 3. 
The motor speed will noticeably increase and the amplitude of the 
back EMF of Region C will be greater. Two things are of interest in
observing the motor waveforms that will have a bearing on our motor
controller program.

1.   The back EMF voltage is not "straight line smooth" as we would
like it to be, but rather is a varying signal riding on a DC level. 
The amplitude of the varying signal seems to increase with increasing
motor speed (increased pulse width).  We could filter this with our
circuitry but it would be difficult since we would not want to filter
the motor on time voltage.  This would introduce an unwanted error in
the back EMF. A better solution would be to digitally filter (average)
the back EMF by totalling 16 back EMF samples and then dividing the
total by 16.
 
2.   The point in the PWM period where we will begin to sample the
back EMF must be carefully chosen to avoid sampling the motor on time
voltage or the negative voltage transition.  A sample window must be
set up that will start late enough to assure back EMF will be present
during maximum PW, but not so late that the program can't finish
executing the required amount of code before the start of the next PWM
period. 

Motor Speed vs. Pulse Width and the Motor as an Integrator: 

If we applied increasing pulse widths to the circuit of Figure 1,
allowed the motor to accelerate up to speed and recorded the back EMF
for each pulse width for various motor loads and plotted the results
we would get a graph similar to the one in Figure 4. You might be
surprised to see that the relationship between applied pulse 
width and back EMF is not linear for many of the curves.  The curves
appear to go from logarithmic for an unloaded motor toward linear as
motor load is increased.  This seems to contradict the results we
would predict if we use the motor formulas we looked at earlier.
The reason for this is that we are asking the motor to integrate the
PWM signal into an armature voltage.  We would expect that:

This is a linear relationship but this relationship only holds up if
the acceleration (charge) and deceleration (discharge) times in the
motor (integrator) are close to equal.  The acceleration time (charge
time) will be much shorter than deceleration time at no motor load
because we are driving the armature up to speed and then allowing the
armature to decelerate at its own pace.  Deceleration is strictly load
dependent.  If there is no load on the motor the deceleration time is
long, (relative to acceleration time), the integrator discharge time
is long, and the curve is logarithmic.  As the motor load increases
(decreasing RL), the acceleration (charge) and deceleration
(discharge) times become more nearly equal, the motor begins to 
act more like a true integrator, the armature voltage to PW
relationship becomes linear, and the graph becomes linear. To state
the previous discussion another way, if the linear changes in PW 
were producing linear changes in armature voltage, the motor would be 
responding linearly.  Look at the graph in Figure 5. Notice the motor
speed response vs. pulse width increase is linear, independent of
motor load.  These plots were produced by integrating the PWM signal
externally and applying the resulting voltage via a power op-amp to 
the motor.  Now the motor is behaving as the formulas predict because



it is not required to integrate the PWM signal.  Since our program
will allow the PRIMER to measure motor speed with the A/D converter
and then adjust the pulse width to the value necessary to obtain the
desired speed, you might imagine that nonlinearity in the motor speed
curves is unimportant.  

Nonlinearity can make it more difficult for our program to control
motor speed.  Consider the curve for an unloaded motor (motors
uncoupled) in Figure 4.  Notice that a pulse width change of only 1
count, say from 6 to 7, can cause a speed change of more than 10. 
This means it will be difficult if not impossible for our program to
make fine adjustments in motor speed since it can only make
incremental (not fractional) changes to pulse width.  Now 
look at the curve in Figure 4 for a motor load of 8.1 ohms.  Now
incremental changes in pulse width result in incremental changes in
motor speed and as a result much finer adjustment of motor speed will
be possible.  So even though our program will do a fair job
controlling motor speed when the motor is operating on one of the non
linear curves, it will do a much better job controlling speed when the
motor is operating on a more linear curve.

Motor Interface Circuit Description and Assembly:

Capacitor C1 in Figure 6 provides energy during times of high armature 
current to prevent fluctuations of the 5V supply.  Resistor R1 sets
the base current of transistor Q1 when PWM is high.  Transistor Q1
provides base current for transistor Q2 when PWM is high.  Q2 base
current is set by resistors R2 and R3.  Resistor R2 prevents Q2
conduction as a result of Q1 leakage or low level transients.  Q2
provides armature current for motor M1 when PWM is high.  Diode D1
clamps the negative voltage spike generated by the collapsing magnetic
field of the armature at Q2 turn off.  Resistor R4 limits the current
into the A/D converter during the negative voltage spike. Two
advantages of using pulse width modulation applied directly to the
motor to control motor voltage are: 
     1.   Relatively simple interface circuitry.
     2.   There is much less power dissipation because the controlling 
          devices are switches (on or off).

The circuit in Figure 6 consists of easily available, inexpensive
components. The circuit can be constructed on a solderless breadboard
and wired to the PRIMER and motor using the PRIMER Interface Cable.
The PWM and A/D connections can be wire-wrapped from the PRIMER CN3
connector to wire-wrap posts or stiff wires pushed into the
breadboard.  The motor leads should be short lengths (10 in.max.) of
22 ga. wire soldered to the motor tabs (no polarity) and then tinned 
on the other end so they will push into the breadboard holes.

Motor Holding Fixture:

A convenient way of loading one motor is to have it drive another
motor which can in turn feed generated current through various load
resistors to increase the load on the driving motor.  If the motor you
are using has a gear attached to the shaft, two motors can be coupled
as illustrated in the motor fixture drawing.  If your motor does not
have a gear on the shaft, you can try coupling two motors with a short
length of plastic tubing that will slip onto and hold tightly to the
motor shafts.  With this scheme the motors will be mounted in-line
instead of offset in the motor fixture.  Other motor loading schemes



can be used such as using the motor to drive a propeller or placing a
friction load against the motor shaft (holding your finger against
the shaft at different degrees of pressure will do).  You can choose
your own method for mounting, coupling, and loading the motors but
remember to construct fixtures from non-ferrous material because of
the permanent magnets in the motors. 

Program Description:

Refer to flowcharts 1 and 2 for a discussion of the motor controller
program. The program divides the PWM period into 64 time slices or
t_slices.  Each t_slice is 160 µs long.  The t_slices are numbered from
0-63.  A variable called t_slice is incremented in an interrupt
handler on every 7.5 interrupt. Continuous pulses 160 µs apart from the
timer chip initiate each 7.5 interrupt. This interrupt handler also
manages the PWM output.  If pulse width is less than time slice, PWM
output (output port bit 0) is high, otherwise it's low. The scheduling
of events is illustrated below:
                                                                   
New
Event       Minimum                      Maximum Sample           
Period
              PW                           PW     Mark            
Starts
        |      |                            |       |          |     
|
       
---------------------------------------------------------------
        0      3                           50      52         63     
0
                                  Time Slice

The time between time slice 0 and sample mark is used to display speed
and pulse width.  These are displayed on the 7-segment LED display and
LEDs 7-1 respectively.  Notice there are upper and lower limits for
pulse width.  The time between maximum PW and sample mark is reserved
to allow the negative voltage spike to pass when PW is maximum.  The
time between sample mark and end of period is used to sample the back
EMF, average 16 samples, and calculate a new pulse width based on the
current speed and the desired speed (set with the PRIMER DIP
switches). The program consists of two programs, a background program
and a foreground program.  The background program executes every time
the microprocessor receives an interrupt pulse on the 7.5 interrupt
pin.  The timer chip is set by the initialization part of our program
to provide a pulse to the 7.5 interrupt pin every 160 µs.  The
background program has two functions. 
     1.   To increment the time slice each time it executes.  The only 
          exception to this is when time slice reaches a maximum count 
          of 63 at which time it is set back to zero.
     2.   To set the PWM signal (output port bit 0) high or low.  If   
        time slice is less than pulse width the output is high,        
   otherwise it is low.

The foreground program monitors time slice and waits till it's 0. 
Then it displays motor speed on the leftmost four 7-segment LED digits
and it displays pulse width in a bar graph fashion on LEDs 7-1 as
follows:

     Pulse Width         LEDs On



      0-7      ( 0% - 11%)    1
      8-15     (12% - 23%)    1, 2
     16-23     (24% - 36%)    1, 2, 3
     24-31     (37% - 48%)    1, 2, 3, 4
     32-39     (49% - 61%)    1, 2, 3, 4, 5
     40-47     (62% - 73%)    1, 2, 3, 4, 5, 6
     48-50     (74% - 78%)    1, 2, 3, 4, 5, 6, 7

The foreground program then waits for time slice to equal sample mark. 

Sample mark is set to accommodate the longest possible pulse width
plus time for the negative voltage transition (after motor current
cutoff) to expire. At sample mark the back EMF is sampled and added to
a total of 16 such samples.  If 16 samples have not yet been totaled
the program repeats by going back and waiting for time slice to equal
0. When 16 samples have been totaled, the total is divided by 16 to
produce an average speed (it is this average speed that will later be
displayed on the 7-segment display after time slice 0).  The average
speed is then subtracted from the speed set on the PRIMER DIP switches
to produce an error term. If the error is < -1, the pulse width is
decremented. If the error is > 1, the pulse width is incremented.
If the error is -1, 0, or 1, the pulse width is unchanged. The pulse
width is then range checked.  If the pulse width is less than minimum
(3), it is set to minimum.  If the pulse width is greater than maximum 
(50), it is set to maximum.  Otherwise the pulse width is unchanged.

The entire process then repeats by going back and again waiting for
time slice 0. To test the motor speed program wire the circuit of
Figure 6 and connect the PRIMER and drive motor M1 to the circuit as
previously described.  Couple the second motor M2 if available to the
drive motor M1.  Motor M2 if used should be unloaded (no RL across its
terminals). Set the PRIMER DIP switches for a speed of 20.  Load the
motor control program into the PRIMER and run the program.  The motor
will accelerate to speed and the PW and average speed will be
displayed as previously described. Load the drive motor by placing an
8.2 , ½W resistor across the terminals of motor M2 or by hand
friction.  The motor speed will decrease at first, as indicated by the
7-segment LED display.  Then the PW will increase, as indicated by the
7 LEDs, to bring the motor speed back to 20. Now remove the 8.2  load
resistor from motor M2 or the friction source. The speed of the drive
motor will increase suddenly and the PW will begin 

     to decrease to bring the motor speed back to 20.

Use the curves of Figure 4 and load resistors for various speeds set in on the
DIP switches to exercise the motor speed control program.  Notice from the curves
of Figure 4 that there are limits on the maximum speed attainable for various
motor loads.  If you try to request a motor speed greater than the motor can
provide for a given load, the program will simply increase the pulse width to
maximum to get the maximum speed possible. Note that the following program text
can be cut out and assembled. 

;---------------------------------------------------------------
; This program regulates the speed of a DC motor by....
; [1] Averaging 16 samples of back EMF during motor off time.
; [2] Generating an error term (DIP switch - average EMF).
; [3] Using the error term to adjust the pulse width.
; [4] Using the resulting pulse width to pulse width modulate 
;     (PWM) the motor. 



;
; WARNING:  Use a 9V supply with a current limit of 1000 mA or
;         more with this lab.  The standard 500mA supply will
;         be damaged if it is used with this lab.
;
MOS:         EQU    1000H          ;MOS SERVICES ADDRESS.
PWM_PORT:    EQU    11H            ;DIGITAL OUTPUT PORT.
DIP_SW:      EQU    12H            ;DIP SWITCH PORT.
SERV09:      EQU    09H            ;MOS SERVICE.ADCIN => L.
SERV13:      EQU    13H            ;MOS SERVICE.DE => 7-SEG DISPLAY.
PW_MIN:      EQU    03H            ;MINIMUM PW. T=160uS X PW_MIN
PW_MAX:      EQU    32H            ;MAXIMUM PW. T=160uS X PW_MAX
MAX_SLICE:   EQU    3FH            ;MAXIMUM NUMBER OF TIME SLICES.
                                   ;SETS PWM PERIOD.
                                   ;T=160uS X MAX_SLICE.
SMARK:       EQU    34H            ;TIME SLICE WHERE BACK EMF
                                   ;SAMPLE WILL BE TAKEN.
VEC7HLF:     EQU    0FFE9H         ;7.5 INTERRUPT VECTOR.
SCALELO:     EQU    35H            ;MODE/SCALER FOR TIMER,
SCALEHI:     EQU    11000000B      ;CONTINUOUS PULSES EVERY 160uS.
TIMERLO:     EQU    14H            ;TIMER PORT.
TIMERHI:     EQU    15H            ;TIMER PORT.
TIMCMD:      EQU    0CDH           ;TIMER CONTROL COMMAND.
CMDREG:      EQU    10H            ;TIMER CONTROL PORT.
INTMASK:     EQU    1AH            ;INTERRUPT MASK.

             ORG    0FF01H

             DI
             LXI    H,SLICER       ;POINT 7.5 INTERRUPT
             SHLD   VEC7HLF        ;VECTOR TO SLICER.
             MVI    A,SCALELO      ;SET UP TIMER FOR
             OUT    TIMERLO        ;CONTINUOUS PULSES
             MVI    A,SCALEHI      ;AT DESIRED INTERRUPT
             OUT    TIMERHI        ;RATE.
             MVI    A,TIMCMD
             OUT    CMDREG
             MVI    A,INTMASK
             SIM
             EI

PWM_MOTOR:
             LXI    H,0000H        ;REG H = TOTAL
             MVI    B,10H          ;REG B = SAMPLE COUNT.

CHKZERO:
             LDA    T_SLICE        ;TIME SLICE = 0 ?
             CPI    00H
             JNZ    CHKZERO        ;NO.GO CHECK SMARK.
             MVI    D,00H          ;DISPLAY SPEED.
             MOV    E,C            ;C = SPEED.
             PUSH   B
             MVI    C,SERV13
             CALL   MOS



             POP    B
             LDA    PULSE_WIDTH
             MOV    D,A            ;DISPLAY PW.
             MVI    E,0FFH         ;E = MASK.
             ORA    E              ;CLEAR CARRY.
ROT_MASK:
             RAL                   ;ROTATE 0 TO MASK.
             MOV    E,A            ;SAVE MASK.
             MOV    A,D            ;GET PW.
             SUI    08H            ;PW = PW - 8.
             MOV    D,A            ;SAVE RESULT TO D.
             MOV    A,E            ;GET MASK.
             JNC    ROT_MASK       ;PW STILL POS. ?
             DI                    ;DISABLE INTERRUPT.
             LDA    IMAGE          ;GET IMAGE.
             RAR                   ;SAVE BIT 0.
             MOV    A,E            ;GET MASK.
             RAL                   ;7 BITS MASK + BIT 0.
             STA    IMAGE          ;TO IMAGE.
             EI                    ;ENABLE INTERRUPT.
CHK_SMARK:
             LDA    T_SLICE
             CPI    SMARK          ;TIME SLICE = SMARK ?
             JNZ    CHK_SMARK      ;NO.WAIT TILL IT IS.
             XCHG                  ;DE = TOTAL.
             PUSH   B              ;SAMPLE BACK EMF.   
             MVI    C,SERV09
             CALL   MOS
             POP    B
             MVI    H,00H          ;HL = SAMPLE.
             DAD    D              ;HL = TOTAL + SAMPLE.
             DCR    B              ;DEC. SAMPLE COUNT.
             JNZ    CHKZERO        ;IF NOT 0, CHK 0 T_SLICE. 

DIV_MORE:    DAD    H              ;HL*16/256=HL/16, SO...
             DAD    H              ;...4 DAD H's MAKES HL*16...
             DAD    H              ;..AFTER THIS H=HL/256 (THINK ABOUT IT)
             DAD    H              ;SPEED=TOTAL / MAX SAMP (16).
             MOV    C,H            ;STORE SPEED.
             IN     DIP_SW         ;GET DESIRED SPEED.
             ANI    00111111B      ;DES.SPEED 6 BITS MAX.
             SUB    H              ;SWITCH-SPEED=ERROR.
             LXI    H,PULSE_WIDTH
             JM     DECPW_CHK      ;ERROR = -. DEC PW ?
             CPI    2              ;ERROR < 2 ?
             JC     PW_RANGE       ;YES. NO PW CHANGE.
             INR    M              ;NO. INC PW.
             JMP    PW_RANGE       ;RANGE CHECK PW.
DECPW_CHK:
             CPI    0FFH           ;ERROR = -1.
             JZ     PW_RANGE       ;YES. RANGE CHECK PW.
             DCR    M              ;NO. DEC PW.
PW_RANGE:
             MVI    A,PW_MIN       ;PW < MIN ?



             CMP    M
             JC     MAX_CHK        ;NO. CHECK MAX.
             MOV    M,A            ;YES. PW = MIN.
MAX_CHK:
             MVI    A,PW_MAX       ;PW > MAX ?
             CMP    M
             JNC    PWM_MOTOR      ;NO. PW OK.
             MOV    M,A            ;YES. PW = MAX.
             JMP    PWM_MOTOR      ;START AGAIN.

;---------------------------------------------------------------
;.......................SLICER..................................
;SLICER IS AN INTERRUPT HANDLER FOR THE 7.5 INTERRUPT.
;SLICER CONTROLS A TIME MARKER (T_SLICE) BY ADJUSTING IT FROM    
;0 TO MAX_SLICE IN EQUAL TIME INCREMENTS ON EACH 7.5 INTERRRUPT.
;SLICER ALSO CONTROLS THE WIDTH OF THE PULSE USED TO DRIVE THE   
;MOTOR BY COMPARING THE VALUE OF PULSE_WIDTH TO THAT OF T_SLICE
;TO DETERMINE IF THE PULSE SHOULD BE HIGH OR LOW.
;PULSE HIGH => T_SLICE < PULSE_WIDTH.                                 
;PULSE LOW  => T_SLICE >=PULSE_WIDTH.                                 
;---------------------------------------------------------------

SLICER:
             PUSH   PSW            ;SAVE REGISTERS.
             PUSH   H
             LXI    H,T_SLICE      ;H POINTS TO T_SLICE.
             INR    M              ;INCREMENT T_SLICE
             MVI    A,MAX_SLICE
             CMP    M              ;T_SLICE = MAX_SLICE ?
             JNZ    PWM            ;NO. T_SLICE OK.
             MVI    M,00H          ;YES. T_SLICE = 0.
PWM:
             MOV    A,M            ;A = T_SLICE.
             LXI    H,PULSE_WIDTH  ;M = PULSE WIDTH.
             CMP    M              ;T_SLICE < PULSE WIDTH ?
             LXI    H,IMAGE        ;M = IMAGE.
             MOV    A,M            ;GET IMAGE.
             RAR                   ;CY => BIT 7.
             RLC                   ;BIT 7 => BIT 0.
             MOV    M,A            ;STORE IMAGE.
             OUT    PWM_PORT       ;OUTPUT IMAGE.
             POP    H              ;RECOVER REGISTERS.
             POP    PSW
             EI
             RET                   ;RETURN

T_SLICE:     DB     00H
PULSE_WIDTH: DB     PW_MIN
IMAGE:       DS     01H
             END
;----------------------------------------------------------

OBJECT/MACHINE CODE

ADDRESS  DATA   INSTRUCTION
FF01     F3     DI
FF02     21     LXI   H, FF92
FF03     92
FF04     FF
FF05     22     SHLD  FFE9



FF06     E9
FF07     FF
FF08     3E     MVI   A, 35
FF09     35
FF0A     D3     OUT   14
FF0B     14
FF0C     3E     MVI   A, C0
FF0D     C0
FF0E     D3     OUT   15
FF0F     15
FF10     3E     MVI   A, CD
FF11     CD
FF12     D3     OUT   10
FF13     10
FF14     3E     MVI   A, 1A
FF15     1A
FF16     30     SIM
FF17     FB     EI
FF18     21     LXI   H, 0000
FF19     00
FF1A     00
FF1B     06     MVI   B, 10
FF1C     10
FF1D     3A     LDA   FFB2
FF1E     B2
FF1F     FF
FF20     FE     CPI   00
FF21     00
FF22     C2     JNZ   FF1D
FF23     1D
FF24     FF
FF25     16     MVI   D, 00
FF26     00
FF27     59     MOV   E,C
FF28     C5     PUSH  B
FF29     0E     MVI   C, 13
FF2A     13
FF2B     CD     CALL  1000
FF2C     00
FF2D     10
FF2E     C1     POP   B
FF2F     3A     LDA   FFB3
FF30     B3
FF31     FF
FF32     57     MOV   D,A
FF33     1E     MVI   E, FF
FF34     FF
FF35     B3     ORA   E
FF36     17     RAL
FF37     5F     MOV   E,A
FF38     7A     MOV   A,D
FF39     D6     SUI   08
FF3A     08
FF3B     57     MOV   D,A
FF3C     7B     MOV   A,E
FF3D     D2     JNC   FF36
FF3E     36
FF3F     FF
FF40     F3     DI
FF41     3A     LDA   FFB4



FF42     B4
FF43     FF
FF44     1F     RAR
FF45     7B     MOV   A,E
FF46     17     RAL
FF47     32     STA   FFB4
FF48     B4
FF49     FF
FF4A     FB     EI
FF4B     3A     LDA   FFB2
FF4C     B2
FF4D     FF
FF4E     FE     CPI   34
FF4F     34
FF50     C2     JNZ   FF4B
FF51     4B
FF52     FF
FF53     EB     XCHG
FF54     C5     PUSH  B
FF55     0E     MVI   C, 09
FF56     09
FF57     CD     CALL  1000
FF58     00
FF59     10
FF5A     C1     POP   B
FF5B     26     MVI   H, 00
FF5C     00
FF5D     19     DAD   D
FF5E     05     DCR   B
FF5F     C2     JNZ   FF1D
FF60     1D
FF61     FF
FF62     29     DAD   H
FF63     29     DAD   H
FF64     29     DAD   H
FF65     29     DAD   H
FF66     4C     MOV   C,H
FF67     DB     IN    12
FF68     12
FF69     E6     ANI   3F   
FF6A     3F              
FF6B     94     SUB   H 
FF6C     21     LXI    H,FFB3
FF6D     B3
FF6E     FF
FF6F     FA     JM     FF7B
FF70     7B
FF71     FF
FF72     FE     CPI    02
FF73     02
FF74     DA     JC     FF81
FF75     81
FF76     FF
FF77     34     INR    M
FF78     C3     JMP    FF81
FF79     81
FF7A     FF
FF7B     FE     CPI    FF
FF7C     FF
FF7D     CA     JZ     FF81



FF7E    81
FF7F    FF
FF80    35     DCR    M
FF81    3E     MVI    A,03
FF82    03
FF83    BE     CMP    M
FF84    DA     JC     FF88
FF85    88
FF86    FF
FF87    77     MOV    M,A
FF88    3E     MVI    A,32
FF89    32
FF8A    BE     CMP    M
FF8B    D2     JNC    FF18
FF8C    18
FF8D    FF
FF8E    77     MOV    M,A
FF8F    C3     JMP    FF18
FF90    18
FF91    FF
FF92    F5     PUSH   PSW
FF93    E5     PUSH   H
FF94    21     LXI    H,FFB2
FF95    B2
FF96    FF
FF97    34     INR    M
FF98    3E     MVI    A,3F
FF99    3F
FF9A    BE     CMP    M
FF9B    C2     JNZ    FFA0
FF9C    A0
FF9D    FF
FF9E    36     MVI    M,00
FF9F    00
FFA0    7E     MOV    A,M
FFA1    21     LXI    H,FFB3
FFA2    B3
FFA3    FF
FFA4    BE     CMP    M
FFA5    21     LXI    H,FFB4
FFA6    B4
FFA7    FF
FFA8    7E     MOV    A,M
FFA9    1F     RAR    
FFAA    07     RLC    
FFAB    77     MOV    M,A
FFAC    D3     OUT    11
FFAD    11
FFAE    E1     POP    H
FFAF    F1     POP    PSW
FFB0    FB     EI     
FFB1    C9     RET    
FFB2    00     (time slice)
FFB3    03     (pulse width)
FFB4    xx     (output port, undefined leave blank)
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