1 ZODIAC DATA TYPES AND MESSAGE FORMATS

This document describes the formats of the two types of messages that can be communicated across the serial data interface for the zodiac Global Positioning System(GPS) receiver engine. The structure and contents of each binary message is described in Section 2. The structure and contents of each National Marine Electronics Association (NMEA) message is described in Section 3.

1.1 Binary Message Format And Word Structure

1.1.1 Binary Message Format. The

input/output binary data stream format is a low byte/high byte pattern. Each byte is output with its Least Significant Bit (LSB) first, followed by its higher order bits, ending with the Most Significant Bits (MSB) of the data byte.

The binary message format is nearly identical to that used by the previous Nav Core/Micro Tracker series of receivers, except that all floating point integer numbers with explicit or implied scale factors.

Each binary message consits of a header portion and a data portion, each with its own checksum. Each message will have a header, but some message may not have data. Message

acknowledgements are in the form of a header, and message requests are made using headers as well. Table I -1 shows the data types used to define the elements of the binary interface messages.

1.1.2 Word Structure. An integer is defined as 16 bits. While offsets are incorporated in the message description tables, the most convenient specification of memory layout in application implementation is likely to be a structure definition.

If the item is a fixed point quantity, the value of the LSB of the integer is given. To convert a fixed point item to a floating point variable, the integer representation is floated and multiplied by the resolution. When converting to float,

Table I-1. Binary Message Data Types

TYPE	ABBREVIATION	WORDS(Note1)	BITS	MAXIMUM RANGE
Bit (Note 2)	Bit	N/A	0 to 15	0 to 1
Character (Note 3)	C	N/A	8	ASCII 0 to 255
Integer	I	1	16	-32768 to +32767
Double Integer	DI	2	32	-2147483648 to +2147483647
Triple Integer	TI	3	48	-140737488355328 to
				+140737488355327
Unsigned Integer	UI	1	16	0 to 65535
Unsigned Double	UDI	2	32	0 to 4294967295
Integer				
Unsigned Triple	UTI	3	48	0 to 281474976710656
Integer				

Note1:

The term "word" is used throughout this document to specify a quantity which occupies 16 bits of storage.

Data items using bit storage are specified with a format of w.b, where w is the word number and b is the bit number (0-15,0 LSB) within the word. Multiple-bit items (bit fields) are indicated by a range of 'word.bit' values (e.g., 8.4-8.7).

Note3:

Although the AAMP2 processor and C compiler use 16-bit character representations, this data interface will use the more common 8-bit representation. The Zodiac receiver software will pack/unpack the character data internally as needed.

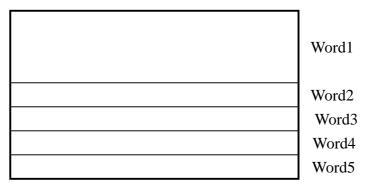


Figure 1-1. Binary Message Header Format

consideration must be given to the range and resolution of the item to ensure that the type of float selected for the conversion has an adequate mantissa length to preserve the accuracy of the data item. Triple word items may require scaling portions of the variable separately and then adding them in floating point form.

Composite words may have independent definitions for each bit field in the word. Flag bits are either zero (false) or one (true). All bits that are designated as reserved within the bit descriptions of binary data have undefined values for outputs and must be set to zero for inputs.

1.2 Binary Message Header

The binary message header format has been modified slightly from the NavCore V format to accommodate message logging requests. The format of the new message header is shown in Figure 1-1.

1.2.1Message Header Word 1. Each input/output message starts with a synchronization word of the form 0xFF81_{HEX} with DEL(255 decimal) occupying the first eight bits followed by the Start Of Header (SOH) (129 decimal) occupying the second eight bits of the synchronization word.

1.2.2 Message Header Word 2. Word2 contains the numeric message ID. For example, Word 2 for Message ID 1000 would be:

	High byte	Low	Byte
0000	0011	1110	1000
MSB	LSB	MSB	LSB

Or 0x03E8 HEX.

1.2.3 Message Header Word 3. Word 3 contains the word count for the data portion of the message. The word count does not include the data checksum word. A zero data word count indicates a "header-only" message.

the message header is a 16-bit field allocated to protocol and message related flags. These flag bits extend control over ACK/NAK requests and implement message logging requests. The zeroes represented in the word 4 field shown in Figure 1-1 are reserved bits and should be set to zero within this word..

The ACK/NAK control mechanism gives the user the ability to request either ACK or NAK, or both, independently for each message request. The user sets the request (R) bit and either the acknowledge (A) bit or negative acknowledge (N) bit, or both, to select the proper acknowledge behavior. With this approach, the user can configure requests only to be NAKed, alerting the user when a problem arises without incurring the overhead necessary to continuously process ACKs.

The lower six bits of the flags word can be used as an additional input identifier. This identifier is not explicitly processed by the receiver; it is echoed back, in the same location, as part of the header in ACK/NCK responses. This feature allows the user to uniquely distinguish which input message an acknowledgement corresponds to when multiple

Trigger (on time, on update)	Word6
Interval(sec)	Word7
Offset(set)	Word8
Data Checksum	Word9

Figure 1-2. Standard Log Request Message Format (Data Portion)

input message with the same message ID were processed during a particular period of time. The flags word now supports message logging requests. The connect (C) and disconnect (D) bits are used to enable and disable, respectively, message outputs, and can be used either independently or in conjunction with the log request bits. A header-only message, with a Message ID and the connect bit set, enables the specified message with existing timing characteristics. Likewise, a header-only message, with Message ID and the disconnect bit set, disables the specified message. A message with both connect and disconnect bit is ignored. Note that enabling and disabling a message does not modify its timing characteristics (trigger, interval, or offset). A log request with the connect bit set will set up the message's timing characteristics and then enable the message. Similarly, for a combined log and disable request, the message will be disabled after the timing characteristics are set. To disable all messages, set the message ID to FFFF_{HEX}(all bits set) and set the disconnect (D) bit.

Setting the query (Q) request bit will output the message specified by the message ID one time during the next output interval. Standard log requests will be accepted if the log (L) bit is set and if the required data parameters are present in the data portion of the request message.

1.2.5 Message Header Word 5. Word 5 of the message header is the data checksum, used to validate the header portion of the message. It is computed by summing (modulo 2 ¹⁶) all words (including the word containing DEL and SOH) contained in the header and then performing a two's

complement on the sum.

The computation of the header checksum may be expressed mathematically as:

$$SUM = Mod \ 2^{16} \quad \Sigma^4_{i=1} Word(i)$$

If sum = -32768, Header checksum = SUM; else Header Checksum = -SUM

Where:

- a. Unary negation is computed as the two's complement of a 16-bit data word.
- b. Mod 2¹⁶ indicates the least 16 bits of an arithmetic process. That is carry bits from bit position 16 are ignored.
- c. The summation is the algebraic binary sum of the words indicated by the subscript i.
- d. The –32768 sum value must be treated as a special case since it cannot be negated.

1.2.6 Log Request Messages. Figure 1-2 shows the format of the data portion of standard log request messages. The ranges for words 6, 7, and 8 of these messages are as follows:

Trigger 0 = on time, 1 = on update

Interval 0 to 65535 seconds (an interval of zero produces a query as if the query bit [Q] in word 4 of the message header has been set).

Offset 0 to 60 seconds (an offset of zero specifies an initial output relative to the current time. An offset of 60 specifies an initial output relative to the next even minute [zero seconds into the next minute]).

When the Trigger field is set to "on time" (integer value 0), the first output will occur at the next Offset seconds into the minute, and will repeat every Interval seconds thereafter. When the trigger field is

set to "on update," the specified message will be output only when the data is updated (e.g., when satellite almanac is collected).

1.3 Binary Message Data _

The data portion of a binary message, if it exists, can be variable in length, as specified by the data word count found in the header. The Data Checksum follows the data and is not included in the data word count.

The Data Checksum is a 16-bit word used to validate the data portion of the message. It is transmitted as the last word of any message containing data (Figure 1-2 or Figure 1-3). When the Word Count field is zero, the Data Checksum does not exist. It is computed by summing (modulo 2¹⁶) all words it the data portion of the message and then complementing that sum. The mathematical expression for the Data Checksum is:

$$SUM = Mod \ 2^{16} \ \Sigma^{5+N}_{i=6} \ Word \ (i)$$

If sum = -32768, Data Checksum = SUM; else Data Checksum = -SUM

where:

- a. Unary negation is computed as the two's complement of a 16-bit data word.
- b. Mod 2¹⁶ indicates the least 16 bits of an arithmetic process. That is, carry bits from bit position 16 are ignored.
- c. The summation is the algebraic binary sum of the words indicated by the subscript (i).
- d. The –32768 sum value must be treated as a special case since it cannot be negated.

Data elements identified as "Reserved" must be set to zero for input messages and are undefined for output messages. All data storage which is not explicitly defined should be handled as if it were marked "Reserved."

Unless otherwise stated, the resolution of each numeric data item is one integer unit, as specified by that item in the "Units" field.

2 ZODIAC BINARY DATA MESSAGES

This section describes the binary data messages of the Zodiac GPS receiver. All of the output and input binary messages are listed in Table II-1 together with their corresponding message IDs. Power-up default messages are also identified.

Binary mode is selected according to the logic described in the hardware interface section of the Zodiac GPS Receiver Family Designer's Guide. Binary messages are transmitted and received across the host port serial I/O interface (RS-232) with the following default communications parameters:

9600 bps8 data bitsno parity1 stop bit

All of the output binary messages are described in detail in section 2.1 All of the input binary messages are described in detail in section 2.2

Table II-1 Zodiac Binary Data Messages

Output Message name	Message ID	Input Message Name	Message ID
Geodetic Position Status Output (*)	1000	Geodetic Position and Velocity	1200
		Initialization	
ECEF Position Status Output	1001	User-Defined Datum Definition	1210
Channel Summary (*)	1002	Map Datum Select	1211
Visible Satellites	1003	Satellite Elevation Mask Control	1212
Differential GPS Status	1005	Satellite Candidate Select	1213
Channel Measurement	1007	Differential GPS Control	1214
Receiver ID (**)	1011	Cold Start Control	1216
User-Settings Output	1012	Solution Validity Criteria	1217
Built - In Test Results	1100	Antenna Type Select	1218
Measurement Time Mark	1102	User-Entered Altitude Input	1219
UTC Time Mark Pulse Output	1108	Application Platform Control	1220
Serial Port Communication	1130	Nav Configuration	1221
Parameters in Use			
EEPROM Update	1135	Perform Built- In Test Command	1300
EEPROM Status	1136	Restart Command	1303
		Serial Port Communications Parameters	1330
		Message Protocol Control	1331
		Raw DGPS RTCM SC-104 Data	1351
(*) Ena	ble by default	at power-up	
(**)	Once at power	r-up/reset	

2.1 Output Message Descriptions

2.1.1 Geodetic Position Status Output (Message

1000). This message outputs the receiver's estimate of position, ground speed, course over ground, climb rate, and map datum. A solution status indicates whether or not the solution is valid (based on the solution validity criteria) and also the type of solution. The number of measurements used to compute the solution is also included.

The Polar Navigation flag is used to indicate that

the solution estimate is too close to the North or South Pole to estimate longitude. When this flag is true, the longitude and true course outputs are invalid and are not updated. Users operating near the poles should use the ECEF Position Status Output message.

The contents of the Geodetic Position Status Output Message are described in Table II-2.

Table II-2 Message 1000: Geodetic Position Status Output Message (1 of 3)

Message ID	: 1000				
Rate:	Variable; defaults to 1 Hz				
Message Le	ength: 55 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec	0 to	
0		T	ticks	4294967295	
8	Sequence Number (Note 2)	1		0 to 32767	
9	Satellite Measurement Sequence Number (Note 3)	I		0 to 32767	
Navigation	Solution Validity (10.0-10.15)				
10.0	Solution Invalid-Altitude Used (Note 4)	Bit		1 = true	
10.1	Solution Invalid-No Differential GPS (Note 4)	Bit		1 = true	
10.2	Solution Invalid-Not Enough Satellites in Track (Note 4)	Bit		1 = true	
10.3	Solution Invalid-Exceeded Maximum EHPE (Note 4)	Bit		1 = true	
10.4	Solution Invalid-Exceeded Maximum EVPE(Note 4)	Bit		1 = true	
10.5-10.15	Reserved				
Navigation	Solution Type (11.0-11.15)				
11.0	Solution type-Propagated Solution (Note 5)	Bit		1=propagated	
11.1	Solution Type-Altitude Used	Bit		1=altitude	
11.2	Solution Type-Differential	Bit		1=differential	
11.3-11.15	Reserved				

Table II-2. Message 1000: Geodetic Position Status Output Message (2 of 3)

Word No:	Name:	Type:	Units:	Range:	Res
12	Number of Measurements Used in Solution	UI		0 to 12	
13	Polar Navigation	Bit		1 = true	
14	GPS Week Number	UI	weeks	0 to 32767	
15-16	GPS Seconds From Epoch	UDI	second	0 to 604799	
17-18	GPS Nanoseconds From Epoch	UDI	nanosec	0 to 999999999	
19	UTC Day	UI	days	1 to 31	
20	UTC Month	UI	months	1 to 12	
21	UTC Year	UI	year	1980 to 2079	
22	UTC Hours	UI	hours	0 to 23	
23	UTC Minutes	UI	minutes	0 to 59	
24	UTC Seconds	UI	seconds	0 to 59	
25-26	UTC Nanoseconds From Epoch	UDI	nanosec	0 to 999999999	
27-28	Latitude	DI	radians	± 0 to $\pi/2$	10-8
29-30	Longitude	DI	radians	± 0 to π	10-8
31-32	Height	DI	meters	± 0 to 50000	10-2
33	Geoidal Separation	I	meters	± 0 to 200	10-2
34-35	Ground Speed	UDI	meters/sec	0 to 1000	10-2
36	True Course	UI	radians	0 to 2 π	10 ⁻³
37	Magnetic Variation	I	radians	± 0 to $\pi/4$	10-4
38	Climb Rate	I	meters/sec	±300	10-2
39	Map Datum (Note 6)	UI		0 to 188 and 300 to 304	

Table II-2. Message 1000: Geodetic Position Status Output Message (3 of 3)

Word No:	Name:	Type:	Units:	Range:	Res
40-41	Expected Horizontal Position Error (Note 7)	UDI	meters	0 to 320000000	10-2
42-43	Expected Vertical Position Error (Note 7)	UDI	meters	0 to 250000	10-2
44-45	Expected Time Error (Note 7)	UDI	meters	0 to 300000000	10-2
46	Expected Horizontal Velocity Error (Note 7)	UI	meters/sec	0 to 10000	10-2
47-48	Clock Bias (Note 7)	DI	meters	± 0 to 9000000	10-2
49-50	Clock Bias Standard Deviation (Note 7)	DI	meters	± 0 to 9000000	10-2
51-52	Clock Drift (Note 7)	DI	m/sec	± 0 to 1000	10-2
53-54	Clock Drift Standard Deviation (Note 7)	DI	m/sec	± 0 to 1000	10-2
55	Data Checksum				

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

The satellite measurement sequence number relates the position solution data to a particular set of satellite

measurements found in binary messages 1002 and 1007 (Channel Summary Message and Channel Measurement Message, respectively).

Note 4:

The value of this data item was Initially set using the Solution Validity Criteria Message (Message 1217).

Note 5:

Bit zero of word 11 does not refer to a solution propagated by the navigation software. This bit is used to indicate

if the solution was propagated by the serial I/O manager to generate a 1 Hz output message when no new navigation state data was available. This is an error condition potentially caused by a shortage of throughput in one cycle. It is unlikely to occur and is self-correcting. Normal state propagation which occurs within the navigation software with or without measurements available for processing does not cause this bit to be set.

Note 6:

The table in Appendix A contains map datum codes from 0 to 188. Codes 300 to 304 are user-defined **Note 7**:

The data displayed by this field is not valid until the receiver is in navigation mode.

of ECEF position and velocity, and map datum. A solution status indicates whether or not the solution is valid (based on the solution validity criteria) and also the type of solution. The number of

measurements used to compute the solution is also included.

The contents of the ECEF Position Status Output Message are described in Table II-3.

Table II-3. Message 1001: ECEF Position Status Output Message (1 of 2)

Message ID	1001				
Rate:	Variable				
Message Le	ength: 54 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I	ticks	0 to 32767	
9	Satellite Measurement Sequence Number (Note 3)	I		0 to 32767	
Navigation	Solution Validity (10.0-10.15)				•
10.0	Solution Invalid-Altitude Used (Note 4)	Bit		1 = true	
10.1	Solution Invalid-No Differential GPS (Note 4)	Bit		1 = true	
10.2	Solution Invalid-Not Enough Satellites in Track(Note 4)	Bit		1 = true	
10.3	Solution Invalid-Exceeded Maximum EHPE (Note 4)	Bit		1 = true	
10.4	Solution Invalid-Exceeded Maximum EVPE(Note 4)	Bit		1 = true	
10.5-10.15	Reserved	Bit			
Navigation	Solution Type (11.0-11.15)				
11.0	Solution type-Propagated Solution (Note 5)	Bit		1=propagated	
11.1	Solution Type-Altitude Used	Bit		1=altused	
11.2	Solution Type-Differential	Bit		1=differential	
11.3-11.15					
12	Number of Measurements Used in Solution	UI		0 to 12	
13	GPS Week Number	UI	weeks	0 to 32767	
14-15	GPS Seconds Into week	UDI	seconds	0 to 604799	
16-17	GPS Nanoseconds From Epoch	UDI	nanosec	0 to 999999999	
18	UTC Day	UI	days	1 to 31	
19	UTC Month	UI	months	1 to 12	
20	UTC Year	UI	year	1980 to 2079	
21	UTC Hours	UI	hours	0 to 23	
22	UTC Minutes	UI	minutes	0 to 59	

Word No:	Name:	Type:	Units:	Range:	Res
23	UTC Seconds	UI	seconds	0 to 59	
24-25	UTC Nanoseconds From Epoch	UDI	nanosec	0 to 999999999	
26-27	ECEF Position – X (Note 7)	DI	meters	± 0 to 9000000	10-2
28-29	ECEF Position – Y (Note 7)	DI	meters	± 0 to 9000000	10-2
30-31	ECEF Position – Z (Note 7)	DI	meters	± 0 to 9000000	10-2
32-33	ECEF Velocity – X (Note 7)	DI	meters/sec	± 0 to 1000	10-2
34-35	ECEF Velocity – Y (Note 7)	DI	meters/sec	± 0 to 1000	10-2
36-37	ECEF Velocity – Z (Note 7)	DI	meters/sec	± 0 to 1000	10-2
38	Map Datum (Note 6)	UI		0 to 188 and	
				300 to 304	
39-40	Expected Horizontal Position Error (Note 7)	UDI	meters	0 to 1000	10-2
41-42	Expected Vertical Position Error (Note 7)	UDI	meters	0 to 1000	10-2
43-44	Expected Time Error (Note 7)	UDI	meters	0 to 1000	10-2
45	Expected Horizontal Velocity Error (Note 7)	UI	meters/sec	0 to 300	10-2
46-47	Clock Bias (Note7)	DI	meters	± 0 to 9000000	10-2
48-49	Clock Bias Standard Deviation (Note 7)	DI	meters	± 0 to 9000000	10-2
50-51	Clock Drift (Note 7)	DI	m/sec	± 0 to 1000	10-2
52-53	Clock Drift Standard Deviation (Note 7)	DI	m/sec	± 0 to 1000	10-2
54	Data Checksum				

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

The satellite measurement sequence number relates the position solution data to a particular set of Satellite measurements found in binary messages 1002 and 1007 (Channel Summary Message and Channel Measurement Message, respectively).

Note 4:

The value of this data item was initially set using the Solution Validity Criteria Message (Message 1217).

Note 5:

Bit zero of word 11 does not refer to a solution propagated by the navigation software. This bit is used to indicate if the solution was propagated by the serial I/O manager to generate a 1 Hz output message when no new navigation state data was available. This is an error condition potentially caused by a shortage of throughput in one cycle. It is unlikely to occur and is self-correcting. Normal state propagation which occurs within the navigation software with or without measurements available for processing does not cause this bit to be set.

Note 6:

The table in Appendix A contains map datum codes from 0 to 188. Codes 300 to 304 are user-defined **Note 7**:

The data displayed by this field is not valid until the receiver is in navigation mode.

the Channel Summary Message are described in Table II-4..

Table II-4. Message 1002: Channel Summary message

Message I	D: 1002				
Rate:	Variable; defaults to 1 Hz				
Message I	Length: 55 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
9	Satellite Measurement Sequence Number (Note 3)	I		0 to 32767	
10	GPS Week Number	UI	weeks	0 to 32767	
11-12	GPS Seconds Into week	UDI	seconds	0 to 604799	
13-14	GPS Nanoseconds From Epoch	UDI	nanosec	0 to 999999999	
Chann	el Summary Data				
15.0+(3*n	Measurement Used (Note 4)	Bit		1=used	
)	Ephemeris Available	Bit		1=available	
15.2+(3*n	Measurement Valid	Bit		1=valid	
15.3+(3*n	DGPS Corrections Available	Bit		1=available	
16+(3*n)	Satellite PRN	UI		0 to 32	
$17+(3^*n)$	C/No	UI	dBHz	0 to 60	
51	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary messages 1002 and 1007 (Channel Summary Message and Channel Measurement Message, respectively).

Note 4:

n = 0 to 11

receiver and their corresponding elevations and azimuths. The best possible DOP_s, calculated from this visible list, are also provided. The contents of

the Visible Satellites Message are described in Table II-5

Table II-5 Message 1003: Visible Satellites Message

Message ID	1003				
Rate:	Variable; defaults on update				
Message Le	ength: 51 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
9	Best Possible GDOP	I		0 to 99	10-2
10	Best Possible PDOP	I		0 to 99	10-2
11	Best Possible HDOP	I		0 to 99	10-2
12	Best Possible VDOP	I		0 to 99	10-2
13	Best Possible TDOP	I		0 to 99	10-2
14	Number of Visible Satellites	UI		1 to 12	
	VISIBLE SATELLITE SET (No	ote 3)			
15.0+(3* j)	Satellite PRN (Note 4)	UI		0 to 32	
$16.0+(3^*j)$	Satellite Azimuth	I	radians	$\pm \pi$	10-4
17.0+(3*j)	Satellite Elevation	I	radians	\pm π /2	10-4
51	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

Only the satellite sets for the number of satellites reported in word 14 of this message are valid.

Note 4:

J =the number of visible satellites -1 when the number of visible satellites is greater than zero.

derived from the last set of differential corrections processed by the receiver. The contents of the

Differential GPS Status Message are described in Table II-6.

Table II-6 Message 1005: Differential GPS Status Message (1 to 2)

Message 1	D : 1005				
Rate:	Variable				
Message 1	Length: 25 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
Status (9.0)-9.15)			•	
9.0	Station Health	Bit		1 = station bad	
9.1	User Disabled	Bit		1 = user disabled	
9.2-9.15	Reserved				
10	Station ID	UI		0 to 1023	
11	Age of Last Correction	UI	seconds	0 to 999	
12	Number of Available Corrections	UI		0 to 12	
	CORRECTION STATUS PE	ER SATEL	LITE (Note	,	
j.0-j.5	Satellite PRN (Note 4)	UI		1 to 32	
j.6	Local Ephemeris	Bit		1 = ephemeris not available	
j.7	RTCM corrections	Bit		1 = corrections not available	
j.8	RTCM UDRE	Bit		1 = UDRE too high	
j.9	Satellite Health	Bit		1 = satellite data indicates bad health	

Word No:	Name:	Type:	Units:	Range:	Res
j.10	RTCM Satellite Health	Bit		1 = RTCM	
				source	
				declares	
				satellite bad	
j.11	Corrections Stale	Bit		1 = received	
				stale	
				corrections	
j.12	IODE Mismatch	Bit		1 = IODE	
				mismatch	
j.13-j.15	Reserved				
25	Data checksum				

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the Processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for Output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has Been Updated or changed since the last message output

Note 3:

Only the correction status words for the number of available corrections reported in word 12 of this message are valid.

Note 4:

The word number, j, ranges from 13 to 24.

for each of the receiver's 12 channels. The contents of the Channel Measurement Message are described

in Table II-7.

Table II-7 Message 1007: Channel Measurement message

Message ID	1 007				
Rate:	Variable				
Message Le	ength: 154 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
9	Satellite Measurement Sequence Number (Note 3)	I		0 to 32767	
	CHANNEL MEASUREMENT	Γ DATA			
10+12*j	Pseudo range (Note 4)	TI	meters	$\pm 1.4^{14}$	10^{-3}
13+12*j	Pseudo range Rate	DI	meters/sec	± 21474836	10 ⁻³
15+12*j	Carrier Phase	TI	meters	$\pm 1.4^{14}$	10 ⁻³
18+12*j	Carrier Phase Bias	TI	meter	$\pm 1.4^{14}$	10 ⁻³
21+12*j	Phase Bias Count	UI		0 to 65535	
154	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

The satellite measurement sequence number relates the position solution data to a particular set of satellite measurements found in binary messages 1002 and 1007 (Channel Summary Message and Channel Message, respectively).

Note 4:

i = 0 to 11

completed its initialization. It can be used to determine when the receiver is ready to accept serial input. Manual requests for this message are also honored. This message consists of five 20-byte

(two characters per word), null-padded ASCII data fields. The contents of the Receiver ID Message are described in Table II-8.

Table II-8. Message 1011: Receiver ID Message

Message ID	1011					
Rate:	Variable (see above)					
Message Length: 59 Words						
Word No.:	Name:	Type:	Units:	Range:	Res	
1-4	Message Header					
5	Header Checksum					
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295		
8	Sequence Number (Note 2)	I		0 to 32767		
9-18	Number of Channels	С				
19-28	Software Version	С				
29-38	Software Data	С				
39-48	Options List (Note 3)	С				
49-58	Reserved	С				
59	Data Checksum					

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the Processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

The options list is a bit-encoded configuration word represented as an ASCII four-digit hexadecimal number

bit0	minimize ROM usage
bit1	minimize RAM usage
bits 2-15	reserved

many of the user-definable parameters, which were set either to default values or to values or to values supplied by the user in input messages. The contents of the User-Settings Output Message are described in Table II-9.

Table II-9. Message 1012: User-Settings Output Message (1 of 2)

Message ID	1012				
Rate:	Variable				
Message Le	ength: 22 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec	0 to	
			ticks	2147483647	
8	Sequence Number (Note 2)	I		0 to 32767	
Operationa	l Status (9.0-9.15)				
9.0	Power Management Enabled	Bit		1=enabled	
9.1	Cold Start Disabled	Bit		1=disabled	
9.2	DGPS Disabled	Bit		1=disabled	
9.3	Held Altitude Disabled	Bit		1=disabled	
9.4	Ground Track Smoothing Disabled	Bit		1=disabled	
9.5	Position Pinning Disabled	Bit		1=disabled	
9.6-9.7	Reserved				
9.8	Active Antenna Present	Bit		1=present	
9.9-9.15	Reserved				
10	Cold Start Time-out	UI	seconds	0 to 32767	
11	DGPS Correction Time-out	UI	seconds	0 to 32767	
12	Elevation Mask	I	radians	0 to $\pm \pi/2$	10 ⁻³
	SELECTED CANDID	ATES:			l
13.0-14.15	Selected Candidate (Note 3)	Bit		1=include	
	, , ,			candidate	
	SOLUTION VALIDITY CRITI	ERIA (15	- 20)		•
15.0	Attitude Not Used	Bit		1=required	
15.1	Differential GPS	Bit		1=required	
15.2-15.15	Reserved			_	
16	Number of Satellites in Track	UI		0 to 2	

Table II-9 Message 1012: User Settings Output Message (2 of 2)

Word No:	Name:	Type:	Units:	Range:	Res
17-18	Minimum Expected Horizontal Error	UDI	meters	0 to 1000	10 ⁻²
19-20	Minimum Expected Vertical Error	UDI	meters	0 to 1000	10-2
21	Application Platform	UI		0=defaut	
				1=static	
				2=pedstrian	
				3=marine	
				(lakes)	
				4=marine(sea	
				level)	
				5=land (auto)	
				6=air	
22	Data Checksum				

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

The selected candidate list is a 32-bit flag, each bit representing candidate selection status for one satellite (i.e,bit 0=SV1 status, bit =SV2 status ...bit 31=SV32 status).

2.1.9 Built-In Test (BIT) Results (Message 1100).

This message provides detailed test results or the last BIT is commanded since power-up. It is output automatically after the completion of a commanded

BIT, but may also be queried manually as needed.Non-zero device failure status indicates failure. The contents of the Built-In Test (BIT) Results Message are described in Table II-10.

Table II-10. Message 1100: Built-In Test Results Message

Message II): 1100				
Rate:	Variable				
Message Lo	ength: 20 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec	0 to	
			ticks	4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
9	ROM Failure (Note 3)	UI			
10	RAM Failure (Note 3)	UI			
11	EEPROM Failure (Note 3)	UI			
12	Dual Port RAM Failure (Note 3)	UI			
13	Digital Signal Processor (DSP) Failure (Note 3)	UI			
14	Real – Time Clock (RTC) Failure (Note 3)	UI			
15	Serial Port 1Receive Error Count	UI		0 to 65535	
16	Serial Port 2 Receive Error Count	UI		0 to 65535	
17	Serial Port 1 Receive Byte Count	UI		0 to 65535	
18	Serial Port 2 Receive Byte Count	UI		0 to 65535	
19	Software Version	UI		0.00 to 655.35	0.01
20	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

A value of zero indicates a test has passed. A non-zero value indicates a device failure. Missing devices will be reported as failures. Therefore, the OEM's BIT pass/fail should ignore words for components that are not in the are not in the system under test. Note that the Dual Port RAM Failure test is currently not implemented. Therefore, word 12 will report a value of zero.

2.1.10 Measurement Time Mark (Message 1102).

This message provides raw measurement and

associated data. The contents of the Measurement Time Mark Message are described in Table II-11.

Table II-11. Message 1102 : Measurement Time Mark Message ($\bf 1$ of $\bf 3$)

Message 1	D: 1102				
Rate:	Variable				
Message 1	Length: 253 Words				
Word No.	: Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
9-12	GPS Measurement Time:				
	Integer portion (Note 3)	DI	seconds	0 to 604799.98	
	Fractional portion (Note 4)	DI	seconds	0 to ± 0.02	2 ⁻²⁹ /50
GPS Time	Status (13.0-13.15)				
13.0	Reserved				
13.1	Reserved				
13.2	Hand-Over Word Decoded Flag (Note 5)	BIT		1=Hand-Over Word decoded	
13.3-13.1	5 Reserved				
14-24	Reserved				
	PER CHANNEL	OUTPUT	'		
n	Data Word Subframe Index (Note 6)	UI		0 to 9	1
Channel S	tatus Word One :				
(n+1).0	Weak Signal (Note 7)	Bit		0 to 1	
(n+1).1	High $\triangle \theta$ (Note 8)	Bit		0 to 1	
(n+1).2	Parity Error(s) (Note 9)	Bit		0 to 1	
(n+1).3	Reserved				
(n+1).4	Reserved				
(n+1).5	Bit Sync Flag	Bit		1=bit sync unknown	
(n+1).6	Frame Sync Flag	Bit		1=frame sync unknown	
(n+1).7	Z Count Flag	Bit		1=z count unknown	

Table II-11. Message 1102: Measurement Time Mark Message (2 of 3)

Word No.:	Name:	Type:	Units:	Range:	Res
(n+1).8 to	Reserved				
(n+1).15					
	tus Word Two:			1	
` ′	Pre-Detection Interval(PDI)	UI		1 to 20	
(n+2).4					
(n+2).5 to	Reserved				
(n+2).15					
	SATELLITE MEA	SUREME	<u>NTS</u>	1	
n+3	Satellite Pseudorandom Noise Number	I		0 to 32	1
	(PRN) (Note10)				- 8
n+4	C/No (Note 11)	I	dBHz	0 to ± 128	2-8
n+5	Code Phase Measurement (Note 12)	UTI	seconds	0 to 0.16	$2^{-45}/5$
n+8	Carrier Phase Measurement (Note 13)	UTI	seconds	0 to 0.16	$2^{-45}/5$
n+11	Carrier Velocity Measurement	DI	sec/sec	0 to $\pm 2^{-14}$	2 ⁻⁴⁵
n+13	Code Phase Standard Deviation	UI	seconds	0 to 0.0025	$2^{-19}/50$
n+14	Carrier Phase Standard Deviation	UI	seconds	0 to 0.0025	$2^{-19}/50$
Channel D	ata Word One (Note 14):				
` /	SV Data Word One (Note 15)				
(n+15).29					
(n+15).30	Validity			0=Invalid	
				(unused)	
				1=Valid(used)	
(n+15).31	Parity Error (Note 16)			0=Correct	
				1=Error	
	ata Word Two (Note 14):		ľ	1	
` /	SV Data Word Two (Note 15)				
(n+17).29					
(n+17).30	Validity			0=Invalid	
				(unused)	
4 4-1 -				1=Valid(used)	
(n+17).31	Parity Error (Note 16)			0=Correct	
2.72				1=Error	
253	Data Checksum				

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

The GPS time associated with the valid satellite measurement data. The integer portion is the GPS second count from the start of week.

Table II-11. Message 1102: Measurement Time Mark Message (3 of 3)

Note 4:

The fractional portion of the solution measurement time is the offset from the GPS second count.

Note 5:

The Measurement Engine has decoded and applied at least one Hand-Over Word.

Note 6:

Indication of the position of subframe data word one within the GPS satellite's 50 bps telemetry data stream. For example, a value of 0 indicates that subframe data word one represents the first word of a particular telemetry data subframe. The data word subframe index is repeated once for each channel n = 25+(j*19), where j=0 to 11

Note 7:

1 = the signal strength fell below a threshold.

Note 8:

1=a carrier phase change exceeded a threshold.

Note 9:

1= carrier cycle slips may have affected this measurement or the previous measurement.

Note 10:

PRN equal to 0 is used to indicate an unused channel.

Note 11:

C/No observed for this measurement interval.

Note 12:

Code phase (pseudorange) at the measurement epoch. The physical range value in meters is obtained by scaling by $c(2^{-45}/50)$, where c is the WGS-84 value of the speed of light. The factor of 50 results from the 50 Hz accumulation of code phase.

Note 13:

Continuously integrated carrier phase at the measurement epoch.

Note 14:

If channel data word one is unused, so is channel data word two. Channel data word one is indexed into the telemetry subframe by the Data word Frame Index.

Note 15:

30-bit subframe data word from the 50 bps satellite telemetry data stream.

Note 16:

Parity is computed based on the six parity bits found at the end of each 30-bit subframe data word. Parity is computed based on the parity algorithm given in the Global Positioning System Standard Positioning Service Signal Specification (November 5,1993)

2.1.11 UTC Time Mark Pulse Output (Message

1108). This message provides the UTC seconds into week associated with the UTC synchronized Time Mark pulse. This message is output approximately

400 milliseconds before the Time Mark pulse strobe signal. The contents of the UTC Time Mark Pulse Output Message are described below.

Table II-2 Message 1108: UTC Time Mark Pulse Output Message

Message ID	1 108				
Rate:	1Hz				
Message Le	ength: 20 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
	UTC TIM	ΙĖ	•		
9-13	Reserved				
14-15	UTC Seconds Of Week	UDI		0 to 604799	1 sec
16	GPS to UTC Time Offset (integer part)	I		0 to 604799	1 sec
17-18	GPS to UTC Time Offset (fractional part)	UDI		0to999999999	1 nse
	UTC TIME VALIDIT	Y (19.0-19	9.15)		
19.0	Time Mark Validity	Bit		1=True	
19.1	GPS/UTC Sync	Bit		0=GPS	
				1=UTC	
19.2-19.15	Reserved				
20	Data Checksum				

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

2.1.12 Serial Port Communication Parameters In

Use (Message 1130). This message contains the communication parameters for the receiver's two

serial ports. The contents of the Serial Port Communication Parameters in Use Message are described in Table II-13.

Table II-13. Message 1130: Serial Port Communication Parameters In Use Message $(1 \ of \ 2)$

Message ID): 1130				
Rate:	Variable				
Message Le	ength: 21 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
Port 1 Com	munication Parameters (9.0-11)	<u> </u>		•	
9	Port 1 Character Width	Bit		0=7 bits 1=8 bits	
10	Port 1 Stop Bits	Bit		0=1 1=2	
11	Port 1 Parity	Bit		0= no parity 1= odd parity 2= even parity	
12	Port 1 bps Rate (Note 3)	Bit		0=custom 1=300 2=600 3=1200 4=2400 5=4800 6=9600 7=19200 8=38400 9=57600 10=76800 11=115200	
13	Port 1 Pre-Scale (Note 3)	UI		0 to 255	
14	Port 1 Post-Scale (Note 3)	UI		0 to 7	

Table II-13. Message 1130: Serial Port Communication Parameters In use Message (2 of 2)

Word No.:	Name:	Type:	Units:	Range:	Res
Port 2 Con	nmunication Parameters (12.0 – 14		•		•
15	Port 2 Character Width	Bit		0=7 bits	
				1=8 bits	
16	Port 2 Stop Bits	Bit		0=1	
				1=2	
17	Port 2 Parity	Bit		0= no parity	
				1= odd parity	
				2= even parity	
18	Port 2 bps Rate (Note 3)	Bit		0=custom	
				1=300	
				2=600	
				3=1200	
				4=2400	
				5=4800	
				6=9600	
				7=19200	
				8=38400	
				9=57600	
				10=76800	
				11=115200	
19	Port 2 Pre-Scale (Note 3)	UI		0 to 255	
20	Port 2 Post-Scale (Note 3)	UI		0 to 7	
21	Data Checksum				

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

When a custom bits-per-second (bps) rate is selected, the bps rate is equal to: CPU clock /(16 x pre-scale x 2^{post-scale})

2.1.13 EEPROM Update (Message 1135). This message provides dynamic status notification for EEPROM writes. It contains the data block ID for the last set of data which was written to EEPROM. This message is most useful when configured for

output on update (the default), as it will provide a notification of all stored configuration changes as they occur. The contents of the EEPROM Update Message are described in Table II-14.

Table II 14. Message 1135 : EEPROM Update Message

Rate:	Variable; default on update				
Message Le	ength: 10 Words				
Word No.:	Name:	Type:	Units:	Range:	Res
1-4	Message Header				
5	Header Checksum				
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295	
8	Sequence Number (Note 2)	I		0 to 32767	
9.0-9.7	Data ID (Note 3)	Bit		0 to 25	
9.8-9.15	Satellite PRN (Note 4)	Bit		0 to 32	
10	Data Checksum				

Note 1:

Maccaga ID:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

0= Status
1= Position
2= UTC/lono
3= Frequency standard cubic parameters
4= Host port communication configuration
5= Auxiliary port communication configuration

6= Memory options

7= Solution validity criteria

8= Power management selections

9= Selected datum 10= Platform class 11= Cold start control 12= Elevation mask angle 13 = Satellite candidate list 14= Antenna selection

15= User entered altitude

16= DGPS control

17= Host port protocol selection 18= Auxiliary port protocol selection

19= Host port enabled messages

20= Reserved (auxiliary port enabled messages)

21= User datums

22= Frequency/Temperature table

23= Almanac

24= Frequency standard calibration data

25= Nav configuration data

Note 4:

This field is only valid when the Data ID = 23 (Almanac).

2.1.14 EEPROM Status (Message 1136). This

message provides failure and storage status information for the EEPROM. Bits set in the failure words represent write failures during attempts to update the corresponding blocks of data. Bits set in

the status words indicate that those data blocks have been updated at least once in the EEPROM. The contents of the EEPROM Status Message are described in Table II-15.

Table II-15 Message 1136 : EEPROM Status Message

Message II): 1136							
Rate:	Variable	•						
Message Length: 18 Words								
Word No.:	Name:	Type:	Units:	Range:	Res			
1-4	Message Header							
5	Header Checksum							
6-7	Set Time (Note 1)	UDI	10msec ticks	0 to 4294967295				
8	Sequence Number (Note 2)	I		0 to 32767				
9.0	Device Not Present	Bit		1 = not present				
9.1-9.15	Reserved							
10-11	Almanac Failure (Note 3)	Bit						
12-13	Failure (Note 4)	Bit		0 to 31				
14-15	Almanac Status (Note 3)	Bit						
16-17	Status (Note 4)	Bit		0 to 31				
18	Data Checksum							

Note 1:

Set time is an internal 10 millisecond (T10) count since power-on initialization enabled the processor interrupts. It is not used to derive GPS time, but only serves to provide a sequence of events knowledge. The set time or T10 count references the receiver's internal time at which the message was created for output. The T10 range is approximately 71 weeks.

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output

Note 3:

The Almanac Failure and Almanac Status words are 32-bit bit maps where the LSB = PRN 1 and the MSB = PRN 32.

Note 4:

The Failure and Status words are bit maps with values as follows:

0 = Status14= Antenna selection 1= Position 15= User entered altitude 2= UTC/lono 16= DGPS control 3= Frequency standard cubic parameters 17= Host port protocol selection 4= Host port communication configuration 18= Auxiliary port protocol selection 5= Auxiliary port communication configuration 19= Host port enabled messages 6= Memory options 20= Reserved(auxiliary port enabled messages) 7= Solution validity criteria 21= User datums 8= Power management selections 22= Frequency/Temperature table 23= Reserved 9= Selected datum 24= Frequency standard calibration data 10= Platform class 25= Nav configuration data 11= Cold start control 26-30= Reserved 12= Elevation mask angle 13 = Satellite candidate list 31= Data is being updated

2.2 Input Message Descriptions

2.2.1 Geodetic Position and Velocity Initialization (Message 1200). This message allows the user to initialize the receiver with the specified geodetic position, ground speed, course over ground, and climb rate. The course may be either true or magnetic, as indicated by the Magnetic Course field.

Table Ⅱ-16. Message 1200:Geodetic Position and Velocity Initialization Message (1 of 2)

Message I	D: 1200				
Rate:	As required-maxin	num rate is	1Hz		
Message I	ength: 27 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	1		0 to 32767	
Initializat	ion Control (7.0-7.15)				
7.0	Force Time	Bit		0=normal 1=forced	
7.1	GPS Time Valid	Bit		1=valid	
7.2	UTC Time Valid	Bit		1=valid	
7.3	Lat / Lon Valid	Bit		1=valid	
7.4	Altitude Valid	Bit		1=valid	
7.5	Speed / Course Valid	Bit		1=valid	
7.6	Magnetic Course	Bit		1=magnetic	
7.7	Climb Rate Valid	Bit		1=valid	
7.8-7.15	Reserved				
8	GPS Week Number	UI	Weeks	0 to 32767	
9-10	GPS Seconds Into Week	UDI	Seconds	0 to 604799	
11	UTC Day	UI	days	1 to 31	

Table
☐ -16. Message 1200:Geodetic Position and Velocity Initialization Message (2 of 2)

12	UTC Month	UI	months	1 to 12	
13	UTC Year	UI	year	1980 to2079	
14	UTC Hours	UI	hours	0 to 23	
15	UTC Minutes	UI	minutes	0 to 59	
16	UTC Seconds	UI	seconds	0 to 59	
17-18	Latitude	DI	radians	± 0 to $\pi/2$	10 ⁻⁹
19-20	Longitude	DI	radians	± 0 to π	10 ⁻⁹
21-22	Altitude	DI	meters	± 0 to 50000	10^{-2}
23-24	Ground Speed	DI	meters/sec	0 to 1000	10^{-2}
25	Course	UI	radians	0 to 2 π	10^{-3}
26	Climb Rate	I	meters/sec	±300	10-2
27	Data Checksum				

2.2.2 User-Defined Datum Definition (Message

1210). This message allows the user to define a datum to be used by the receiver to transform its position solution. Up to five user-defined datums may be stored. Storage of these parameters requires EEPROM. The contents of the User-Defined Datum

Definition Message are described in Table II -17.Note that datum definition does not imply datum use. Message 1211 is used to specify the "Datum In Use" for the navigation function. Also, any Message 1210 that contains an undefined datum code is ignored.

Table Ⅱ-17. Message 1210:User-Defined Datum Definition Message

Message ID: 1210								
Rate: As required-maximum rate is 1Hz								
Message I	Message Length: 20 words							
Word No:	Name:	Type:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6	Sequence Number (Note 1)	I		0 to 32767				
7	User Datum ID	UI		300-304				
8-9	Semi-Major Axis-Integer Part	UDI	Meters	6300000 to 640000				
10	Semi-Major Axis-Fractional Part	UI	Meters	0 to 9999	10 ⁻⁴			
11	Inverse Flattening-Integer Part	UI		280 to 320				
12-13	Inverse Flattening-Fractional Part	UDI		0 to 999999999	10 ⁻⁹			
14-15	WGS-84 Datum Offset-dX	DI	Meters	0 to ± 9000000	10 ⁻²			
16-17	WGS-84 Datum Offset-dY	DI	Meters	0 to ± 9000000	10 ⁻²			
18-19	WGS-84 Datum Offset-dZ	DI	meters	0 to ±9000000	10 ⁻²			
20	Data Checksum							

Note 1:

2.2.3 Map Datum Select (Message 1211). This

message allows the user to select a datum to be used by the receiver to transform its position solution. The contents of the Map Datum Select Message are described in Table II -18.

Table **II-18.** Message 1211:Map Datum Select Message

Message I	D: 1211						
Rate:	Rate: As required-maximum rate 1Hz						
Message I	Message Length: 8 words						
Word No:	Name:	Type:	Units:	Range:	Resolution:		
1-4	Message Header						
5	Header Checksum						
6	Sequence Number (Note 1)	I		0 to 32767			
7	Datum ID(Note 2)	UI		0 to 188 and			
				300 to 304			
8	Data Checksum						

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 2:

The table in Appendix C contains map datum codes from 0 to 188.Codes 300 to 304 are user-defined.

2.2.4 Satellite Elevation Mask Control (Message

1212). This message allows the user to set the elevation mask angle used by the receiver to select visible satellites. Storage of the Elevation Mask

Angle parameter requires EEPROM. The contents of the Satellite Elevation Mask Control Message are described in Table II -19.

Table □-19. Message 1212:Satellite Elevation Mask Control Message

Message I	D: 1212							
Rate:	As required-maxin	num rate 1	Hz					
Message I	Message Length: 8 words							
Word No:	Name:	Type:	Units:	Range:	Resolution:			
1-4	Message Header							
5	Header Checksum							
6	Sequence Number (Note 1)	I		0 to 32767				
7	Elevation Mask Angle	UI	Radians	0 to $\pm \pi/2$	10 ⁻³			
8	Data Checksum							

Note 1:

2.2.5 Satellite Candidate Select (Message 1213).

This message allows the user to construct the list of satellites which will be considered for selection by the receiver. The contents of the Satellite Candidate Select Message are described in Table \amalg -20.

Table II -20. Message 1213:Satellite Candidate Select Message

Message I	D: 1213				
Rate:	As required-maxin	num rate 1	Hz		
Message I					
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
7.0	Satellite PRN#1	Bit		1=included	
•					
•					
•					
7.15	Satellite PRN#16	Bit		1=included	
8.0	Satellite PRN#17	Bit		1=included	
•					
•					
•					
8.15	Satellite PRN#32	Bit		1=included	
9.0	Non-Volatile Storage Select	Bit		1=store in non-volatile memory	
9.1-9.15	Reserved				
10	Data Checksum				

Note 1:

2.2.6 Differential GPS Control(Message

1214). This message allows the user to control the behavior of the receiver's differential capability.

Storage of this message's parameters requires EEPROM. The contents of the Differential GPS Control Message are described in Table II -21.

Table II -21. Message 1214:Differential GPS Control Message

Message I	D: 1214				
Rate:	As required-maximu	ım rate 1Hz			
Message I	Length: 9 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
7.0	DGPS Disable	Bit		1=disable	
7.1	Correction Data Base Reset	Bit		1=reset	
7.2-7.15	Reserved				
8	Correction Time-out	UI		0 to 32767	
9	Data Checksum				

Note 1:

2.2.7 Cold Start Control (Message 1216). This

message allows the user to disable the Cold Start acquisition mode of the receiver. Normal operation is to leave cold start enabled. However, in certain enclosed situations (e.g., parking garages, houses,

office buildings, etc.), faster acquisitions may be achieved with cold start disabled. Storage of the Cold Start Disable parameter requires EEPROM. The contents of the Cold Start Control Message are described in Table II -22.

Table Ⅱ-22. Message 1216:Cold Start Control Message

Message I	D: 1216				
Rate:	As required-maximu	ım rate 1Hz			
Message I	ength: 9 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
7.0	Cold Start Disable	Bit		1=disable	
7.1-7.15	Reserved				
8	Cold Start Time-out	UI	sec	0 to 32767	
9	Data Checksum				

Note 1:

2.2.8 Solution Validity Criteria (Message

1217). The receiver will always output the best position solution it can attain, depending on the number and quality of available measurements. The Solution Validity Criteria Message allows the user to define the criteria for setting the position validity

status specified in the position output messages. The status will be set to 'invalid' if any of the specified requirements are not met. Storage of this message's parameters requires EEPROM. The contents of the Solution Validity Criteria Message are described in Table \amalg -23.

Table **II-23**. Message 1217:Solution Validity Criteria Message

Message I	D: 1217				
Rate:	As required-maximum rate is 1Hz				
Message I	Length: 13 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
7.0	Altitude Not Used	Bit		1=required	
7.1	Differential GPS	Bit		1=required	
7.2-7.15	Reserved				
8	Minimum Number of Satellites Used	UI		0 to 12	
9-10	Maximum Expected Horizontal Position Error	UDI	meters	0 to 1000	10 ⁻²
11-12	Maximum Expected Vertical Position Error	UDI	meters	0 to 1000	10 ⁻²
13	Data Checksum				

Note 1:

2.2.9 Antenna Type Select (Message 1218). This message allows the user to specify the type of antenna which is being used with the receiver. Selecting 'Active Antenna Present' will raise the floor on the receiver's expected signal level to reduce sideband correlations. Deselecting it

indicates use of a passive antenna, allowing the receiver to be more sensitive to low signal levels and preventing it from searching "hot" signals. Storage for the Active Antenna Present parameter requires EEPROM. The contents of the Antenna Type Select Message are described in Table II -24.

Table
☐ -24. Message 1218:Antenna Type Select Message

Message I	D: 1218				
Rate:	As required-maximum rate 1Hz				
Message I	ength: 8 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
7.0	Antenna Type	Bit		0=passive	
				1=active	
7.1-7.15	Reserved				
8	Data Checksum				

Note 1:

2.2.10 User-Entered Altitude Input (Message

1219). This message allows the user to enter an altitude to be used for altitude hold during 2-D navigation. If the Force Use field is not set, the receiver may ignore the altitude input if it thinks it has a better estimate. Setting the Clear field will clear out the last estimate of altitude which the receiver uses for altitude hold. Setting the MSL Select field allows entry of mean-sea-level altitude.

A standard deviation can be specified to indicate the uncertainty associated with the entered altitude. The receiver will weight the altitude measurement according to this uncertainty. As a special case, a zero standard deviation indicates that the quality of the altitude is not known. The contents of the User-Entered Altitude Input Message are described in Table II -25.

Table **II-25**. Message 1219:User-Entered Altitude Input Message

Message I	D: 1219				
Rate:	As required-maximum rate is 1H	Z			
Message I	Length: 12 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
Altitude I	nput Control (7.0-7.15)				
7.0	Force Use	Bit		1=force	
7.1	MSL Select	Bit		1=MSL	
7.2	Store (RAM)(Note 2)	Bit		1=store	
7.3	Store (EEPROM)(Note 2)	Bit		1=store	
7.4	Clear(RAM)	Bit		1=clear	
7.5	Clear(EEPROM)	Bit		1=clear	
7.6-7.15	Reserved				
8-9	Altitude	DI	meters	± 0 to 50000	10 ⁻²
10	Altitude Standard Deviation	UDI	meters	0 to 10000	10 ⁻²
11	Data Checksum				

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 2:

For an altitude sensor that is supplying data in real-time, the OEM must ensure that bits 7.2 and 7.3 are set to zero so the altitude value will not be stored continuously. In memory(RAM or EEPROM).

2.2.11 Application Platform Control (Message

1220). This message allows the user to adjust the receiver's dynamics based on the type of application in which the receiver is being used.

Storage for the Platform parameter requires EEPROM. The contents of the Application Platform Control Message are described in Table II -26.

Table II-26. Message 1220:Application Platform Control Message

Message	ID: 1220				
Rate:	As required-maximum ra	ate is 1Hz			
Message	Length: 8 words				
Word No	o: Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
7	Platform	UI		0=default	
				1=static	
				2=pedestrian	
				3=marine	
				(lakes)	
				4=marine	
				(sea level)	
				5=land(auto)	
				6=air	
8	Data Checksum				

Note 1:

2.2.12 Nav Configuration (Message 1221). This message allows the user to control various features in the navigation processing. The held altitude disable bit controls the use of stored GPS-based altitude to aid the receiver when the vertical geometry deteriorates. The ground track smoothing bit controls the use of satellite range bias estimates to minimize the position shifts resulting from SA

and constellation changes. The position pinning bit controls the use of a horizontal speed test to pin the position reported by the receiver and eliminate the wander associated with SA when static. Ground track smoothing and position pinning are not used when DGPS corrections are in use. The contents of the Nav Configuration Message are described in Table II -27.

Table II -27. Message 1221:Nav Configuration Message

Message 1	ID: 1221				
Rate:	As required-maximum rate i	is 1Hz			
Message 1	Length: 15 words				
Word No	: Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
Nav Conf	iguration Word(7.0-7.15)				
7.0	Held Altitude Disable	Bit		0=Enabled	
	(default = enabled)			1=Disabled	
7.1	Ground Track Smoothing Disable	Bit		0=Enabled	
	(default = enabled)			1=Disabled	
7.2	Position Pinning Disable	Bit		0=Enabled	
	(default = enable)			1=Disabled	
7.3	Measurement Filtering	Bit		0=Enabled	
				1=Disabled	
7.4-7.15	Reserved (must be zeroed out)	Bit			
8-14	Reserved (must be zeroed out)	UI			
15	Data Checksum				

Note 1:

2.2.13 Perform Built-In Test Command (Message

1300). This message instructs the receiver to immediately execute its Built-In Test (BIT). Results of the BIT are available in the Built-In Test Results

message. Note that this message contains no data. The contents of the Perform Built-In Test Command Message are described in Table II -28.

Table Ⅱ-28. Message 1300:Perform Built-In Test Command Message

Message I	D: 1300				
Rate:	As required-maximum rate approximately 0.1Hz				
Message L	ength: 8 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
7	Reserved				
8	Data Checksum				

Note 1:

2.2.14 Restart Command (Message 1303). This

message commands a full restart each time it is

received. The contents of the Restart Command Message are described in Table \amalg -29.

Table **II-29.** Message 1303:Restart Command Message

Message I	D: 1303				
Rate:	As required-maximum rate ap	proximately (0.2Hz		
Message L	Length: 8 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
Invalidation	on Control (7.0-7.15)				
7.0	Invalidate RAM (Note 2)	Bit		0 to 1	
7.1	Invalidate EEPROM (Note 3)	Bit		0 to 1	
7.2	Invalidate RTC (Note 4)	Bit		0 to 1	
7.3-7.14	Reserved				
7.15	Force Cold Start (Note 5)	Bit		0 to 1	
8	Data Checksum				

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 2:

1 = invalidate all RAM address space before restart.

Note 3:

1 = invalidate all data in the EEPROM device(if present) before restart.

Note 4:

1 = invalidate all data in the RTC device(if present) before restart.

Note 5:

Force a cold start reset by clearing RAM and ignoring but not clearing the stored position in EEPROM. This provides cold start testing with the valid time. If cold start testing without time is desired, then the invalidate RTC bit(7.2) should also be set.

2.2.15 Serial Port Communication Parameters

(Message 1330). This message allows the user to set the communication parameters for the receiver's

two serial ports. The contents of the Serial Port Communication Parameters Message are described in Table $\rm II$ -30.

Table □ -30. Message 1330:Serial Port Communication Parameters Message(1 of 2)

Message 1	ID: 1330				
Rate:	As required-maximum rate	e 1Hz			
Message 1	Length: 20 words				
Word No	: Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
	PORT CONTR	OL/VALIDI	TY DATA		
7.0	Port1 Data Valid	Bit		1 = data valid	
7.1	Port2 Data Valid	Bit		1 = data valid	
7.2-7.15	Reserved				
8	Port1 Character Width	UI		0 = 7 bits	
				1 = 8 bits	
9	Port1 Stop Bits	UI		0 = 1	
				1 = 2	
10	Port1 Parity	UI		0 = no parity	
				1 = odd parity	
				2 = even parity	
11	Port1 Bits Per Second(bps) Rate	UI		0 = custom	
				1 = 300	
				2 = 600	
				3 = 1200	
				4 = 2400	
				5 = 4800	
				6 = 6900	
				7 = 19200	
12	Port1 Pre-Scale (Note2)	UI		0 to 255	
13	Port1 Post-Scale (Note2)	UI		0 to 7	
14	Port2 Character Width	Bit		0 = 7 bits	
				1 = 8 bits	
15	Port2 Stop Bits	Bit		0 = 1	
				1 = 2	

Table □ -30. Message 1330:Serial Port Communication Parameters Message(2 of 2)

16	Port2 Parity	Bit	0 = no parity 1 = odd parity
			2 = even parity
17	Port2 bps Rate	Bit	0 = custom
			1 = 300
			2 = 600
			3 = 1200
			4 = 2400
			5 = 4800
			6 = 6900
			7 = 19200
18	Port2 Pre-Scale(Note 2)	UI	0 to 255
19	Port2 Post-Scale(Note 2)	UI	0 to 7
20	Data Checksum		

Note 1:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 2:

Pre-scale and post-scale parameters are used to establish custom bps rates. The bps rate is equal to: CPU clock / $(16 \times pre-scale \times 2^{post-scale})$

2.2.16 Message Protocol Control (Message 1331).

This message allows the user to set the message format protocol which will be used to communicate information to and from the receiver through the host serial I/O port. Currently, the available

protocols are binary (with fixed-point numbers) and NMEA-0183. Storage for the Protocol Type parameter requires EEPROM. The contents of the Message Protocol Control Message are described in Table II -31.

Table **II-31**. Message 1331:Message Protocol Control Message

Message I	D: 1331				
Rate:	As required-maximum rate 1Hz				
Message I	Length: 9 words				
Word No:	Name:	Type:	Units:	Range:	Resolution:
1-4	Message Header				
5	Header Checksum				
6	Sequence Number (Note 1)	I		0 to 32767	
7	Reserved	I			
8	Protocol Type	I		1 = NMEA	
9	Data Checksum				

Note 1:

2.2.17 Raw DGPS RTCM SC-104 Data (Message

1351). This input message contains DGPS RTCM SC-104 data. The message is provided for backwards compatibility with the earlier Micro

Tracker GPS receiver and may be used in lieu of the auxiliary port data. The contents of the Raw DGPS RTCM SC-104 Data Message are described in Table II -32.

Table **II-32**. Message 1351:Raw DGPS RTCM SC-104 Data Message

Message I	D: 1351					
Rate:	As required. The maximum allowable rate is once every 100 ms (Note 1)					
Message I	Length: Varies with message					
Word No:	Name:	Type:	Units:	Range:	Resolution:	
1-4	Message Header					
5	Header Checksum					
6	Sequence Number (Note 1)	I		0 to 32767		
7 to n-1	1 Any valid RTCM-104 raw data in multiples of 16 bits, not to exceed 32 16-bit words (Note					
		3)				
n	Data Checksum(Note 1)					

Note 1:

n must be less than or equal to 39. No more than 32 receiver 16-bit words of RTCM data should be delivered to the receiver with any one message.

Word Description	Number of Words	
Header		4
Header Checksun	m	1
Reserved (Seque	nce Number)	1
RTCM Data		<=32
Data Checksum		1
Max Number of	words	<=39

Note 2:

The sequence number is a count that indicates whether the data in a particular binary message has been updated or changed since the last message output.

Note 3:

Raw demodulated data must conform to the "6 of 8" format described in the RTCM SC-104 standard. The data must also be packed into one or more 16-bit words and should be ordered chronologically from earliest to latest. Specifically, Word7 should represent the earliest data and Word n-1 should represent the latest. Within each word, the most significant bit (bit 15) should represent the latest received bit and the least significant bit (bit 0) should represent the earliest received bit. (Note that according to RTCM "6 of 8" format, bits 6 and 14 should be set marking (1) and bit7 and 15 should be set spacing (0) for each word.) The intent of this bit ordering is to allow the user to pass on the raw RTCM data without modification.

0 WGS 84-Default 1 Adindan - MEAN FOR Ethiopia, Sudan 2 Adindan - Burkina Faso 3 Adindan - Cameroon 4 Adindan - Ethiopia 5 Adindan - Mali 6 Adindan - Senegal 7 Adindan - Sudan 8 Afgooye -Somalia 9 Ain el Abd 1970-Bahrain Ain el Abd 1970-Saudi Arabia 10 11 Anna 1 Astro 1965-Cocos Islands 12 Antigua Island Astro 1943 Antigua (Leeward Islands) Arc 1950 MEAN FOR Botswana, 13 Lesotho, Malawi, Swaziland, Zaire, Zambia, Zimbabwe 14 Arc 1950-Botswana 15 Arc 1950-Burundi 16 Arc 1950-Lesotho 17 Arc 1950-Malawi 18 Arc 1950-Swaziland Arc 1950-Zaire 19 20 Arc 1950-Zambia

Arc 1950-Zimbabwe

Ascension Island 1958

Ascension Island

Tanzania

Island

Island

Arc 1960-MEAN FOR Kenya,

Astro Beacon E 1945 – Iwo Jima

Astro DOS 71/4-St Helena Island

Astro Tem Island (FRIG)1961 Tem

Astronomical Station 1952 Marcus

54

55

Islands

Australian Geodetic 1966

Australian Geodetic 1984

Ayabelle Lighthouse-Djibouti

Australia & Tasmania

Australia & Tasmania

21

22

23

24

25

26

27

28

29

30

31 Bellevue (IGN) Efate & Erromango Islands 32 Bermuda 1957-Bermuda 33 Bissau-Guinea-Bissau 34 Bogota Observatory-Colombia 35 Bukit Rimpah Indonesia (Bangka & Belitung Islands) 36 Camp Area Astro Antarctica (McMurdo Camp Area) 37 Camp Inchauspe-Argentina Canton Astro 1966-Phoenix Islands 38 39 Cape-South Africa Cape Canaveral-Bahamas, Florida 40 41 Carthage-Tunisia 42 Chatham Island Astro 1971 New Zealand (Chatham Island) 43 Chua Astro-Paraguay 44 Corrego Alegre-Brazil 45 Dabola-Guinea Djakarta(Batavia)Indonesia(Sumatra) 46 DOS 1968 New Georgia Islands (Gizo 47 Island) 48 Easter Island 1967-Easter Island 49 European 1950 MEAN FOR Austria, Belgium, Denmark, Finland, France, West Germany, Gibralter, Greece, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland 50 European 1950 MEAN FOR Austria, Denmark, France, West Germany, Netherlands, Switzerland European 1950 MEAN FOR Iraq, 51 Israel, Jordan, Lebanon, Kuwait, Saudi Arabia, Syria 52 European 1950-Cyprus European 1950-Egypt 53

European 1950 England, Channel

European 1950-Finland, Norway

Islands, Ireland, Scotland, Shetland

- 56 European 1950-Greece
- 57 European 1950-Iran
- 58 European 1950-Italy(Sardinia)
- 59 European 1950-Italy(Sicily)
- 60 European 1950-Malta
- 61 European 1950-Portugal, Spain
- 62 European 1979 MEAN FOR Austria, Finland, Netherlands, Norway, Spain, Sweden, Switzerland
- 63 Fort Thomas 1955 Nevis St. Kitts(Leeward Islands)
- 64 Gan 1970-Republic of Maldives
- 65 Geodetic Datum 1949-New Zealand
- 66 Graciosa Base SW 1948 Azores(Faial, Graciosa, Pico, Sao Jorge, Terceira)
- 67 Guam 1963-Guam
- 68 Gunung Segara-Indonesia (Kalimantan)
- 69 GUX 1 Astro-Guadalcanal Island
- 70 Herat North-Afghanistan
- 71 Hjorsey 1955-Iceland
- 72 Hong Kong 1963-Hong Kong
- 73 Hu- Tzu Shan- Taiwan
- 74 Indian-Bangladesh
- 75 Indian-India, Nepal
- 76 Indian 1954- Thailand, Vietnam
- 77 Indian 1975- Thailand
- 78 Ireland 1965- Ireland
- 79 ISTS 061 Astro 1968 South Georgia Islands
- 80 ISTS 073 Astro 1969- Diego Garcia
- 81 Johnston Island 1961- Johnston Island
- 82 Kandawala- Sri Lanka
- 83 Kerguelen Island 1949- Kerguelen Island
- 84 Kertau 1948- West Malaysia & Singapore
- 85 Kusaie Astro 1951- Caroline Islands
- 86 L.C. 5 Astro 1961- Cayman Brac Island
- 87 Leigon-Ghana
- 88 Liberia 1964- Liberia
- 89 Luzon Philippines (Excluding Mindanao)

- 90 Luzon-Philippines (Mindanao)
- 91 Mahe 1971-Mahe Island
- 92 Massawa-Ethiopia(Eritrea)
- 93 Merchich-Morocco
- 94 Midway Astro 1961-Midway Islands
- 95 Minna-Cameroon
- 96 Minna-Nigeria
- 97 Montserrat Island Astro 1958 Montserrat (Leeward Islands)
- 98 M'Poraloko-Gabon
- 99 Nahrwan-Oman(Masirah Island)
- 100 Nahrwan-Saudi Arabia
- 101 Nahrwan-United Arab Emirates
- 102 Naparima BWI-Trinidad & Tobago
- North American 1927 MEAN FORAntigua, Barbados, Barbuda, CaicosIslands, Cuba, Dominican Republic,Grand Cayman, Jamaica, Turks Islands
- 104 North American 1927 MEAN FOR Belize, Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua
- 105 North American 1927-MEAN FOR Canada
- 106 North American 1927-MEAN FOR CONUS
- 107 North American 1927 MEAN FOR CONUS(East of Mississippi River) including Louisiana, Missouri, Minnesota
- 108 North American 1927 MEAN FOR CONUS (West of Mississippi River)
- 109 North American 1927-Alaska
- 110 North American 1927 Bahamas (Except San Salvador Island)
- 111 North American 1927 Bahamas (San Salvador Island)
- 112 North American 1927 Canada (Alberta, British Columbia)
- 113 North American 1927 Canada (Manitoba, Ontario)
- 114 North American 1927 Canada (New Brunswick, Newfoundland, Nova Scotia, Quebec)

115	North American 1927 Canada		(Northem, Near 19° S)
	(Northwest Territories, Saskatchewan)	144	Provisional S. American 1956 Chile
116	North American 1927-Canada(Yukon)		(Southem, Near 43° S)
117	North American 1927-Canal Zone	145	Provisional S. American 1956
118	North American 1927-Cuba		-Colombia
119	North American 1927 Greenland	146	Provisional S. American 1956
	(Hayes Peninsula)		-Ecuador
120	North American 1927-Mexico	147	Provisional S. American 1956
120	North American 1983 Alaska,		-Guyana
	Canada, CONUS	148	Provisional S. American 1956 - Peru
122	North American 1983 Central	149	Provisional S. American 1956
	America, Mexico		Venezuela
123	Observatorio Metereo 1939 Azores	150	Provisional S. Chilean 1963 Chile
	(Corvo & Flores Islands)		(South, Near 53° S)(Hito XVIII)
124	Old Egyptian 1907-Egypt	151	Puerto Rico Puerto Rico, Virgin
125	Old Hawaiian MEAN FOR Hawaii,		Islands
	Kauai, Maui, Oahu	152	Qatar National-Qatar
126	Old Hawaiian-Hawaii	153	Qomoq-Greenland(South)
127	Old Hawaiian-Kauai	154	Reunion-Mascarene Islands
128	Old Hawaiian-Maui	155	Rome 1940-Itlay(Sardinia)
129	Old Hawaiian-Oahu	156	Santo(DOS) 1965 Espirito Santa
130	Oman-Oman		Maria Island
131	Ord. Survey G. Britain 1936 MEAN	157	Sao Braz Azores (Sao Miguel, Santa
	FOR England, Isle of Man, Scotland,		Maria Islands)
	Shetland Islands, Wales	158	Sapper Hill 1943-East Falkland Island
132	Ord. Survey G. Britain 1936-England	159	Schwarzeck-Namibia
133	Ord. Survey G. Britain 1936 England,	160	Selvagem Grande-Salvage Islands
	Isle of Man, Wales	161	SGS 85-Soviet Geodetic System 1985
134	Ord. Survey G. Britain 1936 Scotland,	162	South American 1969 MEAN FOR
	Shetland Islands		Argentina, Bolivia, Brazil, Chile,
135	Ord. Survey G. Britain 1936-Wales		Colombia, Ecuador, Guyana, Paraguay,
136	Pico de las Nieves-Canary Islands		Peru, Trinidad & Tobago, Venezuela
137	Pitcaim Astro 1967-Pitcaim Island	163	South American 1969-Argentina
138	Point 58 MEAN FOR Burkina Faso &	164	South American 1969-Bolivia
	Niger	165	South American 1969-Brazil
139	Pointe Noire 1948-Congo	166	South American 1969-Chile
140	Porto Santo 1936 Porto Santo,	167	South American 1969-Colombia
	Madeira Islands	168	South American 1969-Ecuador
141	Provisional S. American 1956 MEAN	169	South American 1969-Ecuador (Baltra,
	FOR Bolivia, Chile, Colombia,		Galapagos)
	Ecuador, Guyana, Peru, Venezuela	170	South American 1969-Guyana
142	Provisional S. American 1956-Bolivia	171	South American 1969-Paraguay
143	Provisional S. American 1956 Chile	172	South American 1969-Peru

173	South American 1969-Trinidad &	180	Tokyo-Korea
	Tobago	181	Tokyo-Okinawa
174	South American 1969-Venezuela	182	Tristan Astro 1968-Tristan da Cunha
175	South Asia-Singapore	183	Viti Levu 1916 Fiji (Viti Levu Island)
176	Tananarive Observatory 1925	184	Wake-Eniwetok 1960-Marshall
	Madagascar		Islands
177	Timbalai 1948 Brunei, East Malaysia	185	Wake Island Astro 1952-Wake Atoll
	(Sabah, Sarawak)	186	WGS 1972-Global Definition
178	Tokyo-MEAN FOR Japan, Korea,	187	Yacare - Uruguay
	Okinawa	188	Zanderij - Suriname
179	Tokyo-Japan		

3 ZODIAC NMEA DATA MESSAGES

This section describes the National Marine Electronics Association (NMEA) data messages of the Zodiac GPS receiver. All of the output and input NMEA messages are listed in Table III-1 together with their corresponding message IDs. Power-up default messages are also identified.

NMEA mode is selected according to the logic described in the hardware interface section of the *Zodiac GPS Receiver Family Designer's Guide*. NMEA messages are transmitted and received across the host port serial I/O interface (RS-232) with the following default communications parameters:

- 4800 bps
- no parity
- 8 data bits
- 1 stop bit

This interface conforms with the NMEA-0183, version 2.01, specification. All of the output NMEA messages are described in detail in section 3.1. All of the input NMEA messages are described in detail in section 3.2.

Table III-1. Zodiac NMEA Data Messages

Output Message Name	Message ID		
Rockwell Proprietary Built-In Test Results	BIT		
GPS Fix Data (*)	GGA		
GPS DOP and Active Satellites (*)	GSA		
GPS Satellites in View (*)	GSV		
Recommended Minimum Specific GPS Data (*)	RMC		
Rockwell Proprietary Receiver ID	RID		
Rockwell Proprietary Zodiac Channel Status (*)	ZCH		
Input Message Name	Message ID		
Rockwell Proprietary Built-In Test Command	IBIT.		
Rockwell Proprietary Log Control Message	ILOG		
Rockwell Proprietary Receiver Initialization	INIT		
Rockwell Proprietary Protocol Message	IPRO		
(*) Default power-up message			

3.1 Output Message Descriptions

3.1.1Rockwell Proprietary Built-In Test (BIT) Results (BIT). This proprietary message provides

detailed test results when a BIT is commanded.

Non-zero device failure status indicates failure. The contents of the BIT Message are described in Table III-2.

Table III-2. BIT Message: Rockwell Proprietary Built-In Test (BIT) Results Message

Messa	ge ID:	BIT		
Rate:		Variable		
Fields: 11				
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$PRWIBIT	Start of sentence and address field (Note 1)		\$PRWIBIT
1	ROM_FAIL	ROM failure (Note 2)	hhhh	0001
2	RAM_FAIL	RAM failure (Note 2)	hhhh	0000
3	EEP_FAIL	EEPROM failure (Note 2)	hhhh	0000
4	DPR_FAIL	Dual Port RAM failure (Note 2)	hhhh	0000
5	DSP_FAIL	Digital Signal Processor (DSP) failure (Note 2)	hhhh	0000
6	RTC_FAIL	Real-Time Clock (RTC) failure (Note 2)	hhhh	0000
7	SP1-ERR	Serial Port 1 Receive Error Count	X.X	0
8	SP2_ERR	Serial Port 2 Receive Error Count	x.x	0
9	SP1_RCV	Serial Port 1 Receive Character Count	X.X	15
10	SP2_RCV	Serial Port 2 Receive Character Count	X.X	640
11	SW_VER	Software Version	x.x	01.02
	CKSUM	Checksum	*hh	*75
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

\$ = NMEA message prefix.

P = Proprietary message indicator.

RWI = Rockwell International mnemonic.

BIT = BIT Results message ID.

Note 2:

A value of zero indicates a test has passed. A non-zero value indicates a device failure. Missing devices will be reported as failures. Therefore, the OEM's BIT pass /fail should ignore words for components that are not in the system under test. Note that the Dual Port RAM failure test is currently not implemented. Therefore, field 4 will report a value of zero.

Sample Message:

\$PRWIBIT,0001,0000,0000,0000,0000,0000,0,0,15,640,01.02*75

3.1.2GPS Fix Data (GGA). This message contains time, position, and fix related data for the Zodiac receiver. When a navigation solution passes all of the validity criteria (set using the binary Solution Validity Criteria message), a GGA message is

generated automatically. Otherwise, if any of the validity criteria are invalid for the solution, a GGA message is not generated. The contents of the GGA Message are described in Table III-3.

Table III-3. GGA Message: GPS Fix Data Message

Messag	e ID: GG	A (while receiver is in Navigation Mode Note	1)	
Rate:	Var	riable; defaults to 1 Hz		
Fields:	14			
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$GGA	Start of sentence and address field		\$GPGGA
1	POS_UTC	UTC of position (hours, minutes, seconds, decimal seconds)	hhmmss.ss	222435
2	LAT	Latitude	IIII.II	3339.7334
3	LAT_REF	Latitude direction ($N = north, S = south$)	a	N
4	LON	Longitude	ууууу.уу	11751.7598
5	LON_REF	Longitude direction (E = east, W = west)	a	W
6	GPS_QUAL	GPS quality indicator (Note 2)	X	2
7	NUM_SATS	Number of satellites in use, 00 to 12 (may be different from the number in view)	XX	06
8	HDOP	Horizontal Dilution of Precision (HDOP)	X.X	1.33
9	ALT_MSL	Antenna altitude above/below meanSea level (geoid) (Note 3)	X.X	27.0
10	M	Units of antenna altitude (meters)	M	M
11	GEOID_SEP	Geoidal separation (Note 4)	X.X	-34.4
12	M	Units of geoidal separation (meters)	M	M
13	DGPS_AGE	Age of differential GPS data (Note 5)	X.X	7
14	STA_ID	Differential reference station ID (0000 to 1023) (Note 6)	XXXX	0000
	CKSUM	Checksum	*hh	*41
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

When the navigation solution is invalid, fields 1 through 5 and 8 through 14 are null. Field 7 also has special meaning (see Note 3).

Note 2:

GPS quality indicator:

- 0 = Fix not available or invalid.
- 1 = GPS fix.
- 2 = Differential GPS fix.

Note 3:

The geodetic altitude can be computed from the mean sea level altitude by adding the geoidal separation

(word 11).

Note 4:

Geoidal separation is the difference between the WGS-84 Earth ellipsoid and mean sea level (geoid).

Note 5:

Time in seconds since the last SC104 Type 1 or Type 9 update; null field when DGPS is not used.

Note 6:

This field is null when DGPS is not used.

Sample Message:

\$GPGGA,222435,3339.7334,N,11751.7598,W,2,06,1.33,27.0,M,4.4,M,7,0000*41

3.1.3GPS DOP and Active Satellites (GSA). This message contains the Zodiac receiver's operating mode, satellites used for navigation, and DOP

values. The contents of the GSA Message are described in Table III-4.

Table III-4. GSA Message: GPS DOP and Active Satellites Message

Message ID: GSA						
Rate:	Va	ariable				
Fields:	17	1				
Field No.:	Symbol:	Field Description:	Field Type:	Example:		
	\$GSA	Start of sentence and address field		\$GPGSA		
1	OP_MODE	Mode (Note 1)	a	A		
2	FIX_MODE	Mode (Note 2)	X	3		
3-14	SATN	PRNs of satellites used in solution (null for unused fields)	xx,xx,	04, 16, 09, 24,		
15	PDOP	Position Dilution of Precision (PDOP) (Note 3)	x.x	3.33		
16	HDOP	Horizontal Dilution of Precision (HDOP) (Note 3)	x.x	1.96		
17	VDOP	Vertical Dilution of Precision (VDOP) (Note 3)	X.X	2.70		
	CKSUM	Checksum	*hh	*06		
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>		

Note 1:

Mode (operating):

M = Manual, forced to operate in 3-D mode.

A = Automatic, allowed to automatically switch between 2-D and 3-D.

Note 2:

Mode (fix):

1 = Fix not available

2 = 2-D

3 = 3-D

Note 3:

DOPs are based on the set of satellites above the elevation mask angle, which may not be the same set as that used for navigation.

Sample Message:

\$GPGSA,A,3,04,16,09,24,,,,,,3.33,1.96,2.70*06

3.1.4 GPS Satellites in View (GSV). This message contains the number of satellites in view, PRN numbers, elevation, azimuth, and Signal-to-Noise Ratio (SNR) values. Each transmission identifies up to four satellites maximum; additional satellite data is sent in a

second or third message. The total number of messages being transmitted and the number of the message being transmitted is indicated in the first two fields.

The contents of the GSV Message are described in Table III-5.

Table III-5. GSV Message: GPS Satellites in View Message

Message ID: GSV							
Rate:	Rate: Variable; defaults to 0.5 Hz						
Fields:		19					
Field No.:	Symbol:	Field Description:	Field Type:	Example:			
	\$GSV	Start of sentence and address field		\$GPGSV			
1	MAX_MSG	Total number of messages (1 to 3)	X	2			
2	NUM_MSG	Message number (1 to 3)	X	1			
3	NUM_SATS	Total number of satellites in view	XX	07			
4	SAT_PRN	Satellite PRN number (Note 1)	XX	24			
5	ELEV	Elevation in degrees (90 degrees maximum) (Note 2)	XX	60			
6	AZ	Azimuth in True degrees (000 to 359) (Note 2)	XXX	216			
7	SNR	SNR (C/No) 00 to 99 dB, null when not tracking	XX	50			
8-11		2nd satellite PRN number, elevation, azimuth, SNR (Note 1)	XX, XX, XXX, XX	•••			
12-15		3rd satellite PRN number, elevation, azimuth, SNR (Note 1)	XX, XX, XXX, XX				
16-19		4th satellite PRN number, elevation, azimuth, SNR (Note 1)	xx, xx, xxx, xx				
	CKSUM	Checksum	*hh	*75			
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>			

Note 1:

The visible satellites may include one or more that are below the horizon. Since NMEA doesn't account for negative elevation angles, the elevation field will be null for these satellites.

Note 2:

Azimuth and elevation are null when the satellite is in track, but a visible list is not available.

Sample Message:

\$GPGSV,2,1,07,24,60,216,50,20,47,135,47,12,40,020,47,16,36,319,46*75

1.1.5 Recommended Minimum Specific GPS

Data (RMC). This message contains time, date, position, course, and speed data. The fields in this message will always contain data even when the receiver is not navigating. This allows

user-initialized, stored, or default values to be displayed before a solution is obtained.

The contents of the RMC Message are described in Table III-6.

Table III-6. RMC Message: Recommended Minimum Specific GPS Data Message

Messa	lessage ID: RMC					
Rate:		Variable; defaults to 1 Hz				
Fields	:	11				
Field No.:	Symbol:	Field Description:	Field Type:	Example:		
	\$RMC	Start of sentence and address field		\$GPRMC		
1	POS_UTC	UTC of position (hours, minutes, seconds, decimal seconds)	hhmmss.ss	185203		
2	POS_STAT	Position status (A = Data valid, V = Data invalid) (Note 1)	a	A		
3	LAT	Latitude	IIII.II	3339.7332		
4	LAT_REF	Latitude direction ($N = north, S = south$)	a	N		
5	LON	Longitude	ууууу.уу	11751.7598		
6	LON_REF	Longitude direction (E = east, W = west)	a	W		
7	SPD	Speed over ground (knots)	X.X	0.000		
8	HDG	Heading/track made good (degrees True)	X.X	121.7		
9	DATE	Date (dd/mm/yy)	XXXXXX	160496		
10	MAG_VAR	Magnetic variation (degrees)	X.X	13.8		
11	MAG_REF	Magnetic variation (E = east, W = west) (Note 2)	a	Е		
	CKSUM	Checksum	*hh	*55		
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>		

Note 1:

The position status flag will be set to "V" (data invalid) until the receiver is navigating. at that time, the flag is changed to "A" (data valid) and the information provided in the RMC message will reflect a navigation solution.

Note 2:

Easterly variation (E) subtracts from True course. Westerly variation (W) adds to True course.

Sample Message:

\$GPRMC,185203,A,3339.7332,N,11751.7598,W,0.000,121.7,160496,13.8,E*55

1.1.6 Rockwell Proprietary Receiver ID (RID).

This message is output automatically at startup after the receiver has completed its initialization. It can be used to determine when the receiver is ready to accept serial input. manual requests for this message are also honored.

The contents of the RID Message are described in Table III-7.

Table III-7. RID Message: Rockwell Proprietary Receiver ID Message

Message ID:		RID				
Rate:		Variable (see above)				
Fields:		5				
Field No.:	Symbol:	Field Description:	Field Type:	Example:		
	\$RID	Start of sentence and address field		\$PRWIRID		
1	NUM_CHN	Number of Channels	xx	12		
2	SW_VER	Software Version	x.x	00.90		
3	SW_DATE	Software Date	ccccccc	12/25/95		
4	OPT_LST	Options List (Note 1)	hhhh	0003		
5	RES	Reserved				
	CKSUM	Checksum	*hh	*40		
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>		

Note 1:

The options list is a bit-encoded configuration word represented as a four-digit hexadecimal number:

bit 0 minimize ROM usage

bit 1 minimize RAM usage

bits 2-15 reserved

Sample Message:

\$PRWIRID,12,00.90,12/25/95,0003,*40

1.1.7 Rockwell Proprietary Zodiac Channel

Status (ZCH). This message complements the GSV message by providing satellite-to-channel mapping

and a status indication for each channel. The contents of the ZCH Message are described in Table III-8.

Table III-8. ZCH Message: Rockwell Proprietary Zodiac Channel Status Message

Message ID: ZCH								
Rate:	Rate: Variable ; defaults to 1 Hz							
Fields:	Fields: 24							
Field No.:	Symbol:	Field Description:	Field Type:	Example:				
	\$ZCH	Start of sentence and address field		\$PRWIZCH				
1-2	SAT_PRN	Channel 1 satellite PRN number (Note 1)	XX	05				
2	STATUS	Channel 1 status indication (Note 1)	hh	F				
3-4		Channel 2 satellite PRN number and status indication	xx,hh					
5-6		Channel 3 satellite PRN number and status indication	xx,hh					
7-8		Channel 4 satellite PRN number and status indication	xx,hh					
9-10		Channel 5 satellite PRN number and status indication	xx,hh					
11-12		Channel 6 satellite PRN number and status indication	xx,hh					
13-14		Channel 7 satellite PRN number and status indication	xx,hh					
15-16		Channel 8 satellite PRN number and status indication	xx,hh					
17-18		Channel 9 satellite PRN number and status indication	xx,hh					
19-20		Channel 10 satellite PRN number and status indication	xx,hh					
21-22		Channel 11 satellite PRN number and status indication	xx,hh					
23-24		Channel 12 satellite PRN number and status indication	xx,hh					
	CKSUM	Checksum	*hh	37				
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>				

Note 1:

Channel number (xx) is implied by position in message. Data for all 12 channels is always provided in this message. If a channel is unused, a value of 0 will appear for both channel fields. The status indication (hh_ _) is a one-digit, hexadecimal value which represents four bits as follows:

- < v.0> Measurement of the satellite on this channel used in navigation solution.
- <y.1> Ephemeris available for the satellite on this channel.
- <y.2> Satellite on this channel is in track.
- <y.3> DGPS corrections available for the satellite on this channel (NOTE: this bit will never be set whenever the configuration of a particular Zodiac GPS receiver does not support DGPS).

3.2 Input Message Descriptions_____

3.2.1 Rockwell Proprietary Built-In Test (BIT) Command Message (IBIT). This proprietary message instructs the receiver to immediately execute its BIT. Results of the BIT are available in the Rockwell Proprietary Built-In Test Results message. The data field is reserved and should be left null. The contents of the IBIT Message are described in Table III-9.

Table III-9. IBIT Message: Rockwell Proprietary Built-In Test (BIT) Command Message

Message I	D: IBI	T					
Rate:	Rate: As required						
Fields:	1						
Field No.:	Symbol:	Field Description:	Field Type:	Example:			
	\$PRWIIBIT	Start of sentence and address field (Note 1)		\$PRWIIBIT			
1	RES	Reserved					
	CKSUM	Checksum (optional)	*hh				
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>			
Note 1:							

\$ = NMEA message prefix.

P = Proprietary message indicator.

RWI = Rockwell International mnemonic.

ILOG = BIT command message ID.

Sample Message:

\$PRWIIBIT,

3.2.2 Rockwell Proprietary Log Control Message

(ILOG). This proprietary message controls the output of the Zodiac receiver's NMEA messages.

The contents of the ILOG Message are described in Table III-10.

Table III-10. ILOG Message: Rockwell Proprietary Log Control Message

Message ID:		ILOG		
Rate:		As required		
Fields:		5		
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$PRWIILOG	Start of sentence and address field (Note 1)		\$PRWIILOG
1	MSG_ID	Approved sentence formatter of the data being requested (Note 2)	ccc	RMC
2	ENABLE	Output enable flag (A = enable, V = disable) (Note 3)	a	A
3	TRIG	Output trigger (t = on time, u = on update) (Note 4)	a	Т
4	INTERVAL	Output interval (seconds, $0 = once$) (Note 4)	x.x	5
5	OFFSET	Initial output offset (seconds from minute mark) (Note 4)	x.x	0
	CKSUM	Checksum (optional)	*hh	
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

\$ = NMEA message prefix.

P = Proprietary message indicator.

RWI = Rockwell International mnemonic.

ILOG = Log control message ID.

Note 2:

A special form of this field disables all output messages. Use "???" as the message ID as in the following example: \$PRWIILOG,???,V,,,

Note 3:

This field may be null to indicate that the previous setting should be left unchanged.

Note 4:

The TRIG, INTERVAL, and OFFSET fields may be null to indicate that the previous setting should be left unchanged.

Sample Message:

\$PRWIILOG,RMC,A,T,5,0

3.2.3 Rockwell Proprietary Receiver

Initialization Message (INIT). This proprietary message commands the Zodiac receiver to perform

a reset, modify its operating mode, or reinitialize itself using specified parameters. The contents of the INIT Message are described in Table III-11.

Table III-11. INIT Message: Rockwell Proprietary Receiver Initialization Message.(1 of 2)

Messa	Message ID: INIT					
Rate:		As required				
Fields	•	14				
Field No.:	Symbol:	Field Description:	Field Type:	Example:		
	\$PRWIINIT	Start of sentence and address field (Note 1)		\$PRWIINIT		
1	RESET	Software reset flag (A = reset, V = don't reset) (Note 2)	a	V		
2	RES_1	Reserved				
3	RES_2	Reserved				
4	LAT	Latitude (Note 2)	Ш.Ш	3339.650		
5	LAT_REF	Latitude direction ($N = north$, $S = south$) (Note 2)	a	N		
6	LON	Longitude (Note 2)	ууууу.уу	11751.680		
7	LON_REF	Longitude direction (E = east, W = west) (Note 2)	a	W		
8	ALT	Altitude (meters) (Note 2)	X.X	64.131		
9	SPD	Ground speed (Note 2)	X.X	0.0		
10	SPD_TYP	Ground speed units (M = m/sec, N = knots, K = km/hr) (Note 2)	a	M		
11	HDG	Heading (0.0 to 360.0 degrees north) (Note 2)	X.X	0.0		
12	HDG_TYP	Heading type (T = true, M = magnetic) (Note 2)	a	Т		
13	TIME	UTC time (hours, minutes, seconds) (Note 2)	hhmmss	162338		
14	DATE	UTC date (Note 2)	ddmmyy	190594		
	CKSUM	Checksum (optional)	*hh			
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>		

Table III-11. INIT Message: Rockwell Proprietary Receiver Initialization Message.(2 of 2)

Note 1:

\$ = NMEA message prefix.

P = Proprietary message indicator.

RWI = Rockwell International mnemonic.

INIT = Initialization message ID.

Note 2:

This function is enabled by default. Each of the fields 1 through 14 may be null to indicate that the previous setting for the data item should be left unchanged. For example, reset may be commanded without specifying the other parameters by issuing the following command:

When using null fields, the following restrictions apply:

If a supplied parameter has a corresponding unit specifier or reference indicator, it must also be supplied.

Both latitude and longitude must be provided to specify a valid horizontal position.

Both ground speed and heading must be provided to specify a valid horizontal velocity.

If a magnetic heading is specified, horizontal position (lat/lon), and UTC time and date Must also be provided.

UTC time and date must be provided together.

Sample Message:

\$PRWIINIT,V,,,3339.650,N,11751.680,W,64.131,0.0,M,0.0,T,162338,190594

3.2.4 Rockwell Proprietary Protocol Message

(**IPRO**). This proprietary message allows the user to set the message format protocol which will be used to communicate information to and from the

receiver through the host serial I/O port. Currently, the available protocols are binary (with fixed-point numbers) and NMEA-0183. Storage for the Protocol Type parameter requires EEPROM.

The contents of the IPRO Message are described in Table III-12.

Message ID:		IPRO		
Rate:		As required		
Fields: 2				
Field No.:	Symbol:	Field Description:	Field Type:	Example:
	\$PRWIIPRO	Start of sentence and address field (Note 1)		\$PRWIIPRO
1	RES	Reserved		
2	PRO_TYPE	Protocol Type (RBIN = Rockwell binary)	cccc	RBIN
	CKSUM	Checksum (optional)	*hh	
	<cr><lf></lf></cr>	Sentence terminator		<cr><lf></lf></cr>

Note 1:

\$ = NMEA message prefix.

P = Proprietary message indicator.

RWI = Rockwell International mnemonic.

IPRO = Protocol message ID.

Sample Message:

\$PRWIIPRO,,RBIN