Our Products Make Your Product Better®

To learn more about EMAC's products and services and how they can help your project

http://ftp.emacinc.com/Tech Info/About EMAC Products and Services.pdf

Authorized Distributor, Integrator, and Value-Added Reseller

Manual downloaded from ftp.emacinc.com

For purchase information please contact info@emacinc.com

For technical support please submit a ticket at www.emacinc.com/support

PCI-6771 series

Socket 370 Pentium[®] III/Celeron[™] Half-size Card PC with High Speed PCI Bus, 3D LCD and Ethernet

Copyright Notice

This document is copyrighted, 1999. All rights are reserved. The original manufacturer reserves the right to make improvements to the products described in this manual at any time without notice.

No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of the original manufacturer. Information provided in this manual is intended to be accurate and reliable. However, the original manufacturer assumes no responsibility for its use, nor for any infringements upon the rights of third parties which may result from its use.

Acknowledgements

Award is a trademark of Award Software International, Inc. IBM, PC/AT, PS/2 and VGA are trademarks of International Business Machines Corporation.

Intel and Pentium are trademarks of Intel Corporation.

Microsoft Windows® is a registered trademark of Microsoft Corp.

UMC is a trademark of United Microelectronics Corporation.

All other product names or trademarks are properties of their respective owners.

For more information on this and other EMAC, Inc. products please visit our website at: http://www.emacinc.com

For technical support and service for please visit our support website at: http://www.emacinc.com/technical_support.htm

This manual is for the PCI-6771 Series Rev. A1 and B1

2nd Edition May 2000

Printed in Taiwan

1.2 Specifications

Standard SBC functions

- CPU: Socket 370 for Intel® Pentium III processors up to 650 MHz or higher in the future (Rev. B1 only) and CeleronTM processor up to 500 MHz
- **BIOS**: 2/4 Mbit Flash BIOS, supports Plug & Play, APM 1.2 Support Ethernet Boot ROM

Support boot from CD-ROM

Support boot from LS-120 ZIP™ Drive Optional Customer icon

- Chipset: Intel® 440BX PCI set, FSB 66/100 MHz
- 2nd level cache: 256 KB on Pentium III or 128 KB on CeleronTM Processor
- System memory: Two SODIMM sockets, support 8 MB to 256 MB, accepts 8/16/32/64/128 MB Synchronous DRAM
- **PCI IDE interface**: One Enhanced IDE interface, supports 2 IDE devices PIO mode 3,4 with bus mastering up to 14 MB/sec. Ultra DMA model up to 33 MB/sec.
- Floppy disk drive interface: Supports up to two FDDs (360 KB/1.2 MB/720 KB/1.44 MB/2.88 MB)
- Parallel port: One parallel port, supports EPP/ECP
- IR port: One 115 kbps IrDA compliant serial infrared
- **Serial ports**: 2 serial ports

COM1: RS-232, COM2: RS-232/422/485

• Watchdog timer: 62 levels timer interval, setup by software, jumperless selection, generates system reset or IRQ11

Contents

Ch	apter	1 General Information	1
	1.1	Introduction	2
	1.2	Specifications	3
	1.3	Features	
	1.4	Board layout: Dimensions	6
Ch	apter	2 Installation	7
	2.1 Sa	afety Precautions	8
	2.2	Jumpers	9
	2.3	Connectors	10
		2.3.1 Locating connectors	11
		2.3.2 Locating Connectors (solder side)	12
	2.4	Locating Jumpers (component side)	13
	2.5	Setting jumpers	
	2.6	CMOS clear function (JP1)	15
	2.7	Watchdog timer config. (JP2)	16
	2.8 C	OM2 settings for RS-232/422/485 (JP3)	17
	2.9	Power type select (JP4)	17
	2.10	LCD Panel select (SW1)	
	2.11 I	nstallation Caution	
	2.12	USB Connector (CN1)	
	2.13	Parallel Port Connector (CN2)	
	2.14	Hard disk drive LED (CN3)	
	2.15	IR Connector (CN4)	
	2.16	ATX power button (CN5)	
	2.17	Keyboard Lock (CN6)	
	2.18	External Speaker (CN7)	
	2.19	Enhanced IDE Connector (CN8)	
	2.20	Floppy Drive Connector (CN9)	
	2.21	ATX Feature Connector (CN10)	23
	2.22	Reset switch (CN11)	24
	2.23	VGA Display Connector (CN12)	24
	2.24	CPIJ Fan Power Supply Connector (CN13)	2.4

2.25	Ethernet Configuration (CN14)	25
2.26	RS-232 connection (COM1-CN15)	25
2.27	RS-232/422/485 connection	
2.28	Flat panel Display Connector (CN18)	26
2.29	Ext.flat panel Display Connector(CN19)	27
2.30	Keyboard & PS/2 Mouse Connector (CN20)	27
2.31	External Keyboard (CN21)	27
2.32	LCD Inverter Connector (CN22)	
2.33	AT Power Connector (CN23)	
2.34	CompactFlash Disk (CN24)	
2.35	Installing System Memory (SODIMMs)	28
	2.35.1 Installing SODIMMs	28
2.36	CPU installation and upgrading	30
СНАВТ	ER 3 Award Bios Setup	31
3.1 A	AWARD BIOS Setup	
	3.1.1 Entering setup	
	3.1.2 Standard CMOS setup	
	3.1.4 CHIPSET features setup	
	3.1.5 Power management setup	
	3.1.7 Load BIOS defaults	
	3.1.8 Load setup defaults	
	3.1.9 Integrated Peripherals	
	3.1.10 Password setting	
	3.1.11 IDE HDD auto detection	
	3.1.12 Save & exit setup	
	5.1.12 buve & care setup	42
	3.1.13 Exit without saving	42
AGP SV	/GA Setup	43
4.1	Introduction	44
	4.1.1 Chipset	44
	4.1.2 Display memory	44
	4.1.3 Display types	
	4.1.4 Dual/simultaneous display	
42	Installation of SVCA driver	

	4.2.1 Installation for windows 95/98	4/
	4.2.2 Installation for Windows NT	
4.3	Further information	52
Chapter	r 5 PCI Bus Ethernet Interface	53
5.1	Introduction	54
5.2	Installation of Ethernet driver	
	5.2.1 Installation for MS-DOS and Windows 3.1	54
	5.2.2 Installation for Windows 95/98	55
	5.2.3 Installation for Windows NT	57
5.3	Further information	59
Progran	nming the Watchdog Timer	61
APPEN	DIX A Programming the Watchdog Timer	61
A.1	Programming the Watchdog Timer	62
A 10 10 0 10 d		
	lix C Pin Assignments	
C.1	USB1/USB2 Connector (CN1)	
C.2	Parallel Port Connector (CN2)	
C.3	HDD LED Connector (CN3)	
C.4	IR Connector (CN4)	
C.5 C.6	ATX Power Switch (CN5)	
C.6 C.7	Keyboard Lock Connector (CN6) External Speaker Connector (CN7)	
C.7 C.8	IDE Hard Drive Connector (CN8)	
C.9	Floppy Drive Connector (CN9)	
C.10	ATX Power Connector (CN10)	
C.10	Reset Switch Connector (CN11)	
C.11	CRT Display Connector (CN12)	
C.13	CPU Fan Power Connector (CN13)	
C.15	COM1 RS-232 Serial Port (CN15)	
C.16	COM2 RS-422/485 Serial Port (CN16)	
C.17	· · · · · · · · · · · · · · · · · · ·	
C.18	24-bit LCD Display Connector (CN18)	
C.19	36-bit LCD Display Connector (CN19)	
C.20	Keyboard and Mouse Connnecto (CN20)	
C.23	AT Power Connector (CN23)	
C.22	LCD Power Inverter (CN22)	75

C.21	External Reypoard Connector (CN21)	/ 5
C.24	CompactFlash Card Connector (CN24)	76
Append	ix D System Assignments	77
D.1	System I/O Ports	78
D.2	DMA Channel Assignments	79
D.3	Interrupt Assignments	79
D.4	1st MB Memory Map	80
Tabl	D C	
Iabi	G3	
Table 2-1:	Jumpers	9

Table 2-3: RTC power and CMOS clear (JP1)15 Table 2-6: Power type select (JP4)17 Table C-1: USB1/USB2 connector 66 Table C-4: IR connector67 Table C-5:ATX power switch67 Table C-8: IDE hard drive connector69

Table C-13: CPU fan power connector71

Table C-15: COM1 RS-232 serial port	71
Table C-16: COM2 RS-232/422/485 serial port	72
Table C-17: COM2 RS-232 serial port	
Table C-5: 24-bit LCD display connector	73
Table C-19: 36-bit LCD display connector	74
Table C-20: Keyboard and mouse connector	74
Table C-23: AT power connector	
Table C-22: LCD power inverter	
Table C-21: External keyboard connector	75
Table C-24: CompactFlash card connector	76
Table D-1: System I/O ports	78
Table D-2: DMA channel assignments	79
Table D-3: Interrupt assignments	79
Table D-4:1st MB memory map	80
Figures	
Figures	
	5
Figure 1-1: PCA-6771 board layout Dimensions	5 11
Figure 1-1: PCA-6771 board layout Dimensions	11
Figure 1-1: PCA-6771 board layout Dimensions	11 12
Figure 1-1: PCA-6771 board layout Dimensions	11 12 13
Figure 1-1: PCA-6771 board layout Dimensions	11 12 13 23
Figure 1-1: PCA-6771 board layout Dimensions	11132329
Figure 1-1: PCA-6771 board layout Dimensions Figure 2-1: Locating connectors (component side) Figure 2-2: Locating connectors (solder side) Figure 2-3: Locating jumpers (component side) Figure 2-4: ATX adaptor cable Figure 2-5: SODIMM dimensions Figure 3-1: Setup program initial screen Figure 3-2: CMOS setup screen	111213232932
Figure 1-1: PCA-6771 board layout Dimensions Figure 2-1: Locating connectors (component side) Figure 2-2: Locating connectors (solder side) Figure 2-3: Locating jumpers (component side) Figure 2-4: ATX adaptor cable Figure 2-5: SODIMM dimensions Figure 3-1: Setup program initial screen Figure 3-2: CMOS setup screen Figure 3-3: BIOS features setup screen	
Figure 1-1: PCA-6771 board layout Dimensions Figure 2-1: Locating connectors (component side) Figure 2-2: Locating connectors (solder side) Figure 2-3: Locating jumpers (component side) Figure 2-4: ATX adaptor cable Figure 2-5: SODIMM dimensions Figure 3-1: Setup program initial screen Figure 3-2: CMOS setup screen Figure 3-3: BIOS features setup screen Figure 3-4: CHIPSET features setup screen	
Figure 1-1: PCA-6771 board layout Dimensions Figure 2-1: Locating connectors (component side) Figure 2-2: Locating connectors (solder side) Figure 2-3: Locating jumpers (component side) Figure 2-4: ATX adaptor cable Figure 2-5: SODIMM dimensions Figure 3-1: Setup program initial screen Figure 3-2: CMOS setup screen Figure 3-3: BIOS features setup screen Figure 3-4: CHIPSET features setup screen Figure 3-5: Power management setup screen	
Figure 1-1: PCA-6771 board layout Dimensions Figure 2-1: Locating connectors (component side) Figure 2-2: Locating connectors (solder side) Figure 2-3: Locating jumpers (component side) Figure 2-4: ATX adaptor cable Figure 2-5: SODIMM dimensions Figure 3-1: Setup program initial screen Figure 3-2: CMOS setup screen Figure 3-3: BIOS features setup screen Figure 3-4: CHIPSET features setup screen Figure 3-5: Power management setup screen Figure 3-6: PCI configuration screen	
Figure 1-1: PCA-6771 board layout Dimensions Figure 2-1: Locating connectors (component side) Figure 2-2: Locating connectors (solder side) Figure 2-3: Locating jumpers (component side) Figure 2-4: ATX adaptor cable Figure 2-5: SODIMM dimensions Figure 3-1: Setup program initial screen Figure 3-2: CMOS setup screen Figure 3-3: BIOS features setup screen Figure 3-4: CHIPSET features setup screen Figure 3-5: Power management setup screen	

General Information

This chapter gives background information on the PCI-6771.

Sections include:

- Introduction
- Features
- Specifications
- Board layout and dimensions

1.1 Introduction

The PCI-6771 all-in-one industrial grade PCI-bus CPU card uses Intel's highly acclaimed Celeron® processor or Pentium® III processor, together with the Intel 440BX PCI chipset.

The CPU provides 128 KB (or 256 KB for Pentium III) on-CPU L2 cache, eliminating the need for external SRAM chips. It has one PCI EIDE interface for up to two devices and a floppy disk drive interface for up to two devices. Other features include two RS-232 serial ports (16C550 UARTs with 16-byte FIFO or compatible), one enhanced parallel port (supports SPP/EPP/ECP) and one USB (Universal Serial Bus) port. The PCI enhanced IDE controller supports Ultra DMA/33 and PIO Mode 4 operation. This provides data transfer rates of over 33 MB/sec. System Bios supports boot-up from an IDE CD-ROM, SCSI CD-ROM and LS-120.

A backup of CMOS data is stored in the Flash memory, which protects data even after a battery failure. Also included is a 62-level Watchdog timer which resets the CPU or generates an interrupt if a program cannot be executed normally. This enables reliable operation in unattended environments.

The PCI-6771 offers several impressive industrial features such as VGA (AGP) controller, two SODIMM slots for a total of 256 MB RAM memory and a 10/100Base-T networking controller. In addition, the PCI-6771 series supports a solid state disk (SSD) using a CompactFlashTM disk that is not as vulnerable to the hazards of an industrial computing environment. These features make it an ideal choice for applications that require both high performance and full functionality.

1.2 Specifications

Standard SBC functions

- CPU: Socket 370 for Intel® Pentium III processors up to 650 MHz or higher in the future (Rev. B1 only) and CeleronTM processor up to 500 MHz
- **BIOS**: 2/4 Mbit Flash BIOS, supports Plug & Play, APM 1.2 Support Ethernet Boot ROM

Support boot from CD-ROM

Support boot from LS-120 ZIP™ Drive Optional Customer icon

- Chipset: Intel® 440BX PCI set, FSB 66/100 MHz
- 2nd level cache: 256 KB on Pentium III or 128 KB on CeleronTM Processor
- System memory: Two SODIMM sockets, support 8 MB to 256 MB, accepts 8/16/32/64/128 MB Synchronous DRAM
- **PCI IDE interface**: One Enhanced IDE interface, supports 2 IDE devices PIO mode 3,4 with bus mastering up to 14 MB/sec. Ultra DMA model up to 33 MB/sec.
- Floppy disk drive interface: Supports up to two FDDs (360
- IR port: One 115 kbps IrDA compliant serial infrared
- Serial ports: 2 serial ports

COM1: RS-232, COM2: RS-232/422/485

• Watchdog timer: 62 levels timer interval, setup by software, jumperless selection, generates system reset or IRQ11

• Parallel port: One parallel port, supports EPP/ECP

VGA function

AGP SVGA/Flat Panel Interface

- **Chipset**: TridentTM Cyber 9525 DVD, high performance 64-bit GUI, 3D engine
- **Display memory**: 2.5 MB of SDRAM frame buffer on cyber 9525DVD. (with optional 8 MB)
- **Display type**: Simultaneously supports CRT and flat panel (EL, LCD and gas plasma) displays
- Interface: 2x AGP, Accelerator Graphics Ports 1.0 compliant
- Display mode:

LCD panel supports up to 800 x 600 @ 24 bpp, 1024 x 768 @ 24 bpp.

CRT display supports up to 800 x 600 @ 24 bpp, 1024 x 768 @ 24 bpp

Ethernet controller functions

RealTekTM RTL 8139 chip
 PCI Ethernet controller, IEEE 802.3 protocol compatible
 Supports 10/100 Mbps Base-T

Solid state disk

• Supports CompactFlashTM disks

Mechanical and environmental specifications

Standard Mode Power Consumption

4.73 A @ 5 V with CeleronTM 466, 128 MB SO DIMM

• Operating temperature: $0 \sim 60^{\circ} \text{ C } (32 \sim 140^{\circ} \text{ F})$

• **Size**: 185 mm x 122 mm

• Weight: 0.26 kg

1.3 Features

- Supports Socket 370 for Intel[®] Pentium[®] III/CeleronTM processor
- AGP 3D VGA/LCD and supports 36 bit XGA TFT LCD Panel
- USB interface compliant with USB rev. 1.0
- SIR support
- System overheat temperature control
- 62-levels Watchdog timer, jumperless on-line setup supported
- Supports wake-up on LAN, Modem
- Supports turn off LCD back light function
- Supports PCI interface compliant with PCI rev. 2.1
- Supports four PCI Bus masters

1.4 Board layout: Dimensions

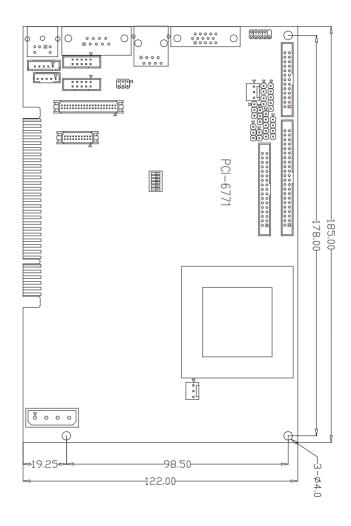


Figure 1-1: PCI-6771 (dimensions)

Installation

This chapter tells how to set up the PCI-6771 hardware. It includes instructions on setting jumpers, and connecting peripherals, switches and indicators. Be sure to read all the safety precautions before you begin the installation procedure.

2.1 Safety Precautions

Follow these simple precautions to protect yourself from harm and your PC from damage.

- To avoid electric shock, always disconnect the power from your PC chassis before you work on it. Don't touch any components on the CPU card or other cards while the PC is on.
- Disconnect power before making any configuration changes. The sudden rush of power as you connect a jumper or install a card may damage sensitive electronic components.
- 3. Always ground yourself to remove any static charge before you touch your CPU card. Be particularly careful not to touch the chip connectors. Modern integrated electronic devices, especially CPUs and memory chips, are extremely sensitive to static electric discharges and fields. Keep the card in its antistatic packaging when it is not installed in the PC, and place it on a static dissipative mat when you are working with it. Wear a grounding wrist strap for continuous protection.

2.2 Jumpers

The PCI-6771 has a number of jumpers that allow you to configure your system to suit your application. The table below lists the function of each of the board's jumpers.

TABLE	2-1: JUMPERS
Label	Function
JP1	CMOS clear
JP2	Watchdog timer action
JP3	COM2 RS-232/422/485 setting
JP4	Power type select
SW1	Panel type select

2.3 Connectors

On-board connectors link the PCI-6771 to external devices such as hard disk drives, a keyboard, or floppy drives. The table below lists the function of each of the board's connectors.

TABLE	2-2: CONNECTORS
Label	Function
CN1	USB channel 1, 2 connector
CN2	Parallel port connector
CN3	External IDE LED
CN4	IR connector
CN5	ATX power switch button
CN6	Keyboard Lock connector
CN7	Speaker connector
CN8	IDE hard drive connector
CN9	Floppy drive connector
CN10	ATX feature connector
CN11	Reset connector
CN12	CRT display connector
CN13	Fan power connector
CN14	Ethernet 100/10Base-T connector
CN15	COM1, 232 connector
CN16	COM2, 422/485 connector
CN17	COM2, 232 connector
CN18	Flat panel connector
CN19	Ext. flat panel display connector
CN20	Keyboard and PS/2 mouse connector
CN21	EXT keyboard connector
CN22	LCD inverter power
CN23	Main power connector
CN24	CFC connector

2.3.1 Locating connectors

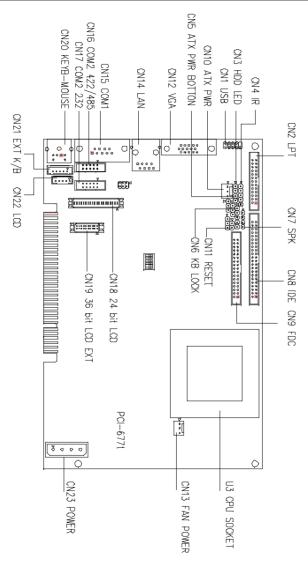


Figure 2-1: Locating connectors (component side)

2.3.2 Locating Connectors (solder side)

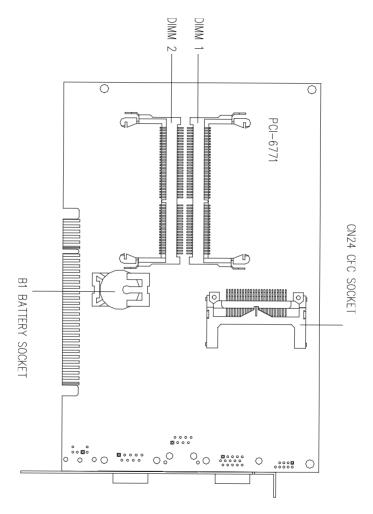
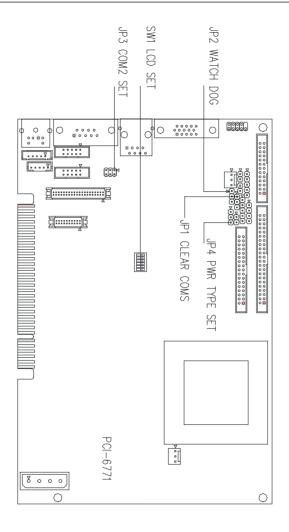
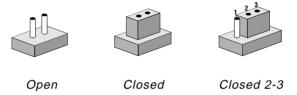
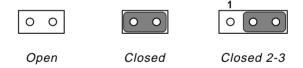


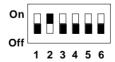
Figure 2-2: Locating connectors (solder side)

2.4 Locating Jumpers (component side)

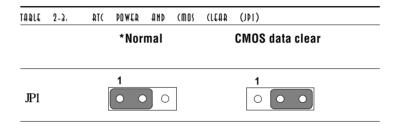

Figure 2-3: Locating jumpers (component side)

2.5 Setting jumpers


You configure your card to match the needs of your application by setting jumpers. A jumper is the simplest kind of electric switch. It consists of two metal pins and a small metal clip (often protected by a plastic cover) that slides over the pins to connect them. To "close" a jumper, connect the pins with the clip. To "open" a jumper, remove the clip. Sometimes a jumper will have three pins, labeled 1, 2, and 3. In this case, you would connect either pins 1 and 2 or 2 and 3.

The jumper settings are schematically depicted in this manual as follows:

A pair of needle-nose pliers may be helpful when working with jumpers. Setting switches is slightly different but more simple. Simply slide the desired switch to the **on or off** position. In the example below, the 6 element switch would be. 1:off, **2:on**, 3:off, 4:off, 5:off, 6:off.

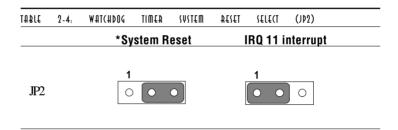


If you have any doubts about the best hardware configuration for your application, contact your local distributor or sales rep

2.6 CMOS clear function (JP1)

Warning: To avoid damaging the computer, always turn off the power supply before setting "Clear CMOS".

Set the jumper back to normal before turning on the power supply.

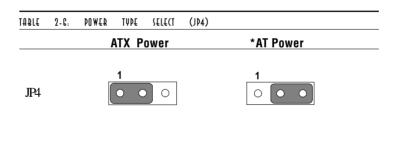


^{*} default setting

2.7 Watchdog timer config. (JP2)

An on-board watchdog timer reduces the chance of disruptions which EMP (electro-magnetic pulse) interference can cause. This is an invaluable protective device for standalone or unmanned applications. Setup involves two jumpers and running the control software. (Refer to Appendix A.)

When the watchdog timer is enabled and the CPU shuts down, the watchdog timer will automatically either reset the system or generate an interrupt on IRQ 11, depending on the setting of jumper JP2, as shown below:


^{*} default setting

2.8 COM2 settings for RS-232/422/485 (JP3)

JJ4AT	2-5:	(OM2	SETTINGS	401	RS-232/422/485	(103)	
		*R	S-232		RS-422		RS-485
JP3		1 3 5	2 2 4 6		1 0 0 2 3 0 0 4 5 0 0 6		1

^{*} default setting

2.9 Power type select (JP4)

^{*} default setting

2.10 LCD Panel select (SW1)

TABLE 2-7: PAN	EL TUPE SELECT (SWI)	
Display	ТҮРЕ	Setting (SW1)
640 x 480	18 bits TFT	On
800 x 600	18 bits TFT	On
1024 x 768	24 bits TFT	On
1024 x 768	36 bits TFT	On
640 x 480	16 bits STN	On
800 x 600	16 bits STN	On
1024 x 768	16 bits STN	On 1 2 3 4 5 6
1024 x 768	24 bits STN	On

^{*} Please Note: Pin 6 is extra, please disregard!

18

2.11 Installation Caution

The following sections tell how to make each connection. In most cases, you will simply need to connect a standard cable. All of the connector pin assignments are shown in Appendix C.

Warning! Always completely disconnect the power cord from your chassis whenever you are working on it. Do not make connections while the power is on. Sensitive electronic components can be damaged by a sudden rush of power. Only experienced electronics personnel should open the PC chassis.

Caution!

Always ground yourself to remove any static charge before touching the CPU card. Modern electronic devices are very sensitive to static electric charges. Use a grounding wrist strap at all times. Place all electronic components on a static-dissipative surface or in a static-shielded bag when they are not in the chassis.

2.12 USB Connector (CN1)

The PCI-6771 board provides two USB (Universal Serial Bus) interfaces, which give complete plug and play and also hot attach/detach for up to 127 external devices. The USB interfaces comply with USB specification rev. 1.0 and are fuse protected.

The USB interfaces are accessed through a 10-pin flat-cable connector, CN1. The adapter cable has a 10-pin connector on one end and a USB connector on the bracket.

The USB interfaces can be disabled in the system BIOS setup.

2.13 Parallel Port Connector (CN2)

The parallel port is normally used to connect the CPU card to a printer. The PCI-6771 includes an on-board parallel port, accessed through a 26-pin flat-cable connector, CN2. The card comes with an adapter cable which lets you use a traditional DB-25 connector. The cable has a 26-pin connector on one end and a DB-25 connector on the other, mounted on a retaining bracket. The bracket installs at the end of an empty slot in your chassis, giving you access to the connector.

The parallel port is designated as LPT1, and can be disabled or changed to LPT2 or LPT3 in the system BIOS setup.

To install the bracket, find an empty slot in your chassis. Unscrew the plate that covers the end of the slot. Screw in the bracket in place of the plate. Next, attach the flat-cable connector to CN2 on the CPU card. Wire 1 of the cable is red or blue, and the other wires are gray. Make sure that wire 1 corresponds to pin 1 of CN2. Pin 1 is on the right side of CN2.

2.14 Hard disk drive LED (CN3)

You can connect an LED to connector CN3 to indicate when the HDD is active. Marks on the circuit board indicate LED polarity.

2.15 IR Connector (CN4)

This connector supports the optional wireless infrared transmitting and receiving module. This module mounts on the system case. You must configure the setting through BIOS setup.

2.16 ATX power button (CN5)

The PCI-6771 provides an ATX power input connector. When connected with the ATX power switch, the ATX power switch connector (CN5) enables power On/Off from the chassis

2.17 Keyboard Lock (CN6)

Connecting CN6 enables the keyboard locking function from the front panel of your chassis.

2.18 External Speaker (CN7)

Connect external speakers to CN7. To activate the on-board buzzer, set the connector so that Pins 3 and 4 are closed.

2.19 Enhanced IDE Connector (CN8)

You can attach two IDE (Integrated Device Electronics) drives to the PCI-6771's internal controller. The PCI-6771 CPU card has an EIDE connector, CN8.

Wire number 1 on the cable is red or blue, and the other wires are gray. Connect one end to connector CN8 on the CPU card. Make sure that the red (or blue) wire corresponds to pin 1 on the connector (on the right side). See Chapter 1 for help in finding the connector.

Unlike floppy drives, IDE hard drives can connect in either position on the cable. If you install two drives, you will need to set one as the master and one as the slave. You do this by setting the jumpers on the drives. If you use just one drive, you should set it as the master. See the documentation that came with your drive for more information.

Connect the first hard drive to the other end of the cable. Wire 1 on the cable should also connect to pin 1 on the hard drive connector, which is labeled on the drive circuit board. Check the documentation that came with the drive for more information.

Connect the second drive, as described above, on CN8.

2.20 Floppy Drive Connector (CN9)

You can attach up to two floppy disk drives to the PCI-6771's on-board controller. You can use any combination of 5.25" (360 KB/1.2 MB) and/or 3.5" (720 KB/1.44/2.88 MB) drives.

The card comes with a 34-pin daisy-chain drive connector cable. On one end of the cable is a 34-pin flat-cable connector. On the other end are two sets of floppy disk drive connectors. Each set consists of a 34-pin flat-cable connector (usually used for 3.5" drives) and a printed-circuit-board connector (usually used for 5.25" drives). You can use only one connector in each set. The set on the end (after the twist in the cable) connects to the A: floppy. The set in the middle connects to the B: floppy.

2.21 ATX Feature Connector (CN10)

When the PCI-6771 is used as a stand alone card, both the 4-pin main power connector (CN23) and the ATX feature connector (CN10) must be connected to the power supply. If the PCI-6771 is used with a passive backplane, the main power connector (CN23) should not be connected as the card will be powered from the backplane.

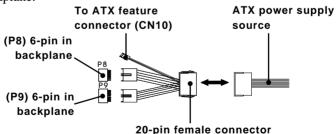


Figure 2-4: ATX Adaptor cable

The ATX adapter cable (provided) is used to connect the PCI-6771 to the ATX power supply. The ATX adapter cable has

different connectors at both ends. On one end is the ATX 20-pin (female type) which connects to the (male) ATX power supply source. The other end has a 3-pin connector (female type) which connects to the ATX feature connector (CN10) on the board itself. This end also has the 6-pin main power connector (P8) and a 6-pin connector (P9) which is used when the board is mounted on a passive backplane.

2.22 Reset switch (CN11)

If you install a reset switch, it should be a single pole switch rated at 10 mA, 5 V. Momentarily pressing the switch will activate a reset.

For reset switch pin assignments, please see Appendix C.

2.23 VGA Display Connector (CN12)

The PCI-6771 provides a VGA controller for a high resolution VGA interface. The PCI-6771 CN12 is a DB-15 connector for VGA monitor input. Pin assignments for the CRT display are detailed in Appendix C.

2.24 CPU Fan Power Supply Connector (CN13)

This provides power supply to the optional CPU cooling fan. This connector is only available when +12 V power is supplied to the board.

Warning! Before making the connection, make sure the voltage is absolutely correct and matched with the correct connector.

2.25 Ethernet Configuration (CN14)

The PCI-6771 is equipped with a high performance 32-bit PCI-bus Fast Ethernet interface which is fully compliant with IEEE 802.3u 10/100Base-T specifications. It is supported by all major network operating systems.

The medium type can be configured via the **RSET8139.EXE** program included on the utility disk. (See Chapter 5 for detailed information.)

RJ-45A connector (CN14)

10/100Base-T connects to the PCI-6771 via an adapter cable to the RJ-45 standard jack.

Network boot

The network boot feature is built into the BIOS. It can be enabled or disabled in the chipset setup of the CMOS configuration. Refer to "BIOS Setting" in Chapter 3 for more information.

2.26 RS-232 connection (COM1-CN15)

Different devices implement the RS-232 standard in different ways. If you are having problems with a serial device, be sure to check the pin assignments for the connector.

2.27 RS-232/422/485 connection (COM2-CN17: RS-232; CN16: RS-422/485)

COM2 is an RS-232/422/485 serial port. The specific port type is determined by jumper settings (JP3), as detailed in Chapter 1.

The IRQ and address range for both ports are fixed. However, if you wish to disable the port or change these parameters later, you can do this in the system BIOS setup. The table below shows the settings for the PCI-6771 board's ports:

JJ4AT	2-10:	P(I-G771	141432	TAOA	DELANTA	SETTINGS
Port	Α	ddress		Int	errupt	Default
COM1	3F8, 3E8		IRC	Q 4	3F8	
COM2	2F8, 2E8		IRC	13	2F8	

2.28 Flat panel Display Connector (CN18)

CN18 is a 40-pin connector which can support a 24-bit TFT LCD. It is Hirose's product no. DF13A-40DP-1.25V.

The PCI-6771 provides a bias control signal on CN18 that can be used to control the LCD bias voltage. It is recommended that the LCD bias voltage not be applied to the panel until the logic supply voltage (+5 V or +3.3 V) and panel video signals are stable. Under normal operation, the control signal (ENAVEE) is active high. When the PCI-6771's power is applied, the control signal is low until just after the relevant flat panel signals are present.

2.29Ext.flat panel Display Connector(CN19)

CN19 consists of a 20-pin header, which is Hirose's product no. DF13A-20DP-1.25V. The PCI-6771 supports a 36-bit LCD panel with connections to both CN18 and CN19. For details of pin assignments, refer to Appendix C.

2.30 Keyboard & PS/2 Mouse Connector (CN20)

The PCI-6771 board provides a keyboard connector. A 6-pin mini-DIN connector (CN20) on the card mounting bracket supports single-board computer applications. The card comes with an adapter to convert from the 6-pin mini-DIN connector to a standard DIN connector and to a PS/2 mouse connector.

2.31 External Keyboard (CN21)

In addition to the PS/2 mouse/keyboard connector, an additional external keyboard connector is provided.

For external keyboard pin assignments, please see Appendix C.

2.32 LCD Inverter Connector (CN22)

The LCD inverter is connectoed to CN22 via a 5-pin connector to provide +12 V power to the LCD display. The pin assignments for CN22 can be found in Appendix C.

2.33 AT Power Connector (CN23)

If you prefer not to acquire power through PCI-6771's backplane via the gold H-connectors, CN23 also provides power input connectors for +5 V and +12 V. (see Appendix C)

2.34 CompactFlash Disk (CN24)

The PCI-6771 is equipped with a CompactFlashTM disk socket on the solder side that supports the IDE interface for CompactFlash cards. The on-board CompactFlash socket is designed to prevent incorrect installation. Be sure that the system power is off when installing and removing CompactFlashTM cards.

The CompactFlash card is defaulted as the Secondary channel slave drive on your PC system.

2.35 Installing System Memory (SODIMMs)

You can install anywhere from 8 to 256 MB of SDRAM into your PCI-6771 series card. The card provides **two** 144-pin SODIMM sockets. Each socket accepts 8, 16, 32, 64 or 128 MB 3.3 V power level SODIMMs. If only one SODIMM module is installed, it may be installed in either SODIMM socket on the solder side of the PCI-6771 series card.

Note: PCI-6771 card only supports SDRAM SODIMM modules. EDO SODIMM is not supported.

2.35.1 Installing SODIMMs

Note 1:The modules can only fit into a socket one way. Their gold pins must point down into the SODIMM socket.

Please refer to the diagram below for dimensions.

The procedure for installing SODIMMs appears below. Please follow these steps carefully.

- 1. Ensure that all power supplies to the system are switched Off.
- 2. Install the SODIMM card. Install the SODIMM so that its gold pins point down into the SODIMM socket.
- 3. Slip the SODIMM into the socket at a 45 degree angle and carefully fit the bottom of the card against the connectors.
- 4. Gently push the SODIMM into a perpendicular position until the clips on the ends of the SODIMM sockets snap into place.
- Check to ensure that the SODIMM is correctly seated and all connector contacts touch. The SODIMM should not move around in its socket.

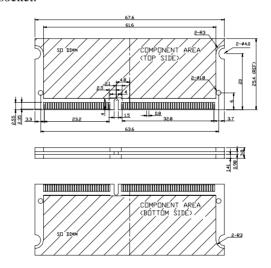


Figure 2-5: Standard SODIMM Dimensions

Note 2:Only use Standard Form SODIMM memory modules
(As shown in the dimensions above). Standardized
dimensions ensure a proper fit. Check with your
Memory supplier about the SODIMM modules you will
use.

2.36 CPU installation and upgrading

- If you are upgrading the CPU, remove the old CPU from the socket. If it is difficult to remove, you may find chip lubricant (designed for pin-grid-array devices, PGAs) and a chip puller helpful. Both are available at electronics hobby supply stores.
- 2. Plug the new CPU into the empty socket. Follow the instructions that came with the CPU or math coprocessor. If you have no instructions, do the following: Lubricate the CPU pins with lubricant made for PGA devices. This will make the new CPU slide in much more easily, and reduce the chance of damaging it. Next, carefully align the CPU so that it is parallel to the socket and the notch on the corner of the CPU corresponds with the notch on the inside of the socket. Gently slide the CPU in. There will probably be a gap between the CPU and the connector when it is fully seated do not push too hard!

Award BIOS Setup

This chapter describes how to set the card's BIOS configuration data.

3.1 AWARD BIOS Setup

Figure 3-1: Setup program initial screen

Award's BIOS ROM has a built-in Setup program that allows users to modify the basic system configuration. This type of information is stored in battery-backed RAM so that it retains the Setup information when the power is turned off.

3.1.1 Entering setup

Turning on the computer and pressing immediately will allow you to enter Setup.

3.1.2 Standard CMOS setup

Choose the "STANDARD CMOS SETUP" option from the INITIAL SETUP SCREEN Menu, and the screen below is displayed. This standard Setup Menu allows users to configure system components such as date, time, hard disk drive, floppy drive, display, and memory.

```
ROM PCI/ISA BIOS (2AGBKAKI)
                                    MARD SOFTWARE, INC
Date (maiddigg) : Mon. Oct 4 1999
Time (hhimmiss) : 10 : 23 : 25
HARD DISKS
                          TYPE
                                      SIZE
                                                 CYLS HEAD PRECOMP LANGE SECTOR HODE
Primary Master :
Primary Slave :
Secondary Master :
Secondary Slave :
                                                                                           8 NORMIL
                                                                                           8 NORMAL
                                                                                           O NORMAL
                                                                                              NORMAL
Drive B : 1.99H, 3.5 in.
Drive B : None
Video : EGA/VGA
Helt On : All Erroro
                                                                           PU/PD/+/- : Modify
    Guit
                                                 Select Item
Change Color
                                (Shift)F2
    Help
```

Figure 3-2: CMOS setup screen

3.1.3 BIOS features setup

The "BIOS FEATURES SETUP" screen appears when choosing the BIOS FEATURES SETUP item from the CMOS SETUP UTILITY Menu. It allows the user to configure the PCA-6770 according to his particular requirements.

Below are some major items that are provided in the BIOS FEATURES SETUP screen:

```
ROH PCI/ISA BIOS (ZAGSKAKI)
                                                     BIOS FEATURES SETUP
                                                     AWARD SOFTMARE, INC
                                                       Disabled
Enabled
                                                                          Video BIOS Shadow :
C8090-C8FFF Shadow :
 CPU Internal Cache
                                                                                                                    Disabled
                                                                          CC000-CFFFF Shadow : Disabled

09000-D3FFF Shadow : Disabled

09000-D3FFF Shadow : Disabled

09000-D9FFF Shadow : Disabled
External Cache
CPU L2 Cache ECC Checking
                                                      Enabled
                                                      Enabled
Processor Number Feature :
Quick Power On Self Test
Boot From LAW First
                                                   : Enabled
                                                      Enabled
                                                                           DC000-DFFFF Shedow
                                                       Disabled
                                                                                                                 Disabled
Boot Free LAW First
Boot Sequence
SHAP Floppy Drive
Boot Up Floppy Seek
Boot Up HumLock Status
Gate A20 Option
Typematic Rate Setting
Typematic Rate (Chars/Sec)
Typematic Delay (Mose)
                                                       C.A.SCSI
                                                       Disabled
                                                      Enabled
                                                  : On
                                                      Disabled
                                                       250
                                                                                      Setup
 Security Option
PS/2 mouse function control: Enabled
PCE/UGR Palette Snoop Disabled
OS Select For DRGM > 84HB : Mon-052
Report No FDO For WIN 35 Ves
                                                      Disabled
```

Figure 3-3: BIOS features setup screen

Virus Warning

During and after the system boots up, any attempt to write to the boot sector or partition table of the hard disk drive will halt the system. In this case, a warning message will be displayed. You can run the antivirus program to locate the problem.

If Virus Warning is Disabled, no warning message will appear if anything attempts to access the boot sector or hard disk partition.

CPU Internal Cache/External Cache

Depending on the CPU/chipset design, these options can speed up memory access when enabled.

Quick Power On Self Test

This option speeds up the Power-On Self Test (POST) conducted as soon as the computer is turned on. When enabled, BIOS shortens or skips some of the items during the test. When disabled, normal POST procedures assumes.

Boot Sequence

This function determines the sequence in which the computer will search the drives for the disk operating system (i.e. DOS). The default value is "C, A".

A,C	System will first search the FDD, then the HDD.
C,A	System will first search the HDD, then the FDD.
C only	System will only search the HDD.
•	•
•	•

Boot Up Floppy Seek

During POST, BIOS will determine if the floppy disk drive installed is 40 or 80 tracks. 360 KB type is 40 tracks while 720 KB, 1.2 MB, and 1.44 MB are all 80 tracks.

Enabled	BIOS searches the floppy drive to determine if it is 40 or 80 tracks. Note that BIOS cannot differentiate 720 KB, 1.2 MB, and 1.44 MB type drives as they are all 80 tracks.
Disabled	BIOS will not search for the floppy drive type by track number. Note that there will not be any warning message if the drive installed is 360 KB.

Boot Up NumLock Status

The default is "On".

On	Keypad boots up to number keys.
Off	Keypad boots up to arrow keys.

Boot Up System Speed

High	Sets the speed to high
Low	Sets the speed to low

IDE HDD Block Mode

Enabled	Enable IDE HDD Block Mode. BIOS will detect the block size of the HDD and send a block command automatically.	
Disabled	Disable IDE HDD Block Mode	

Gate A20 option

Normal	The A20 signal is controlled by the keyboard controller or chipset hardware
Fast	Default: Fast. The A20 signal is controlled by Port 92 or chipset specific method.

Typematic Rate Setting

The typematic rate determines the characters per second accepted by the computer. Typematic Rate setting enables or disables the typematic rate.

Typematic Rate (Char/Sec)

BIOS accepts the following input values (character/second) for Typematic Rate: 6, 8, 10, 12, 15, 20, 24, 30.

Typematic Delay (msec)

When holding down a key, the Typematic Delay is the time interval between the appearance of the first and second characters. The input values (msec) for this category are: 250, 500, 750, 1000.

Security Option

This setting determines whether the system will boot if the password is denied, while limiting access to Setup.

System	The system will not boot, and access to Setup will be denied if the correct password is not entered at the prompt.
Setup	The system will boot, but access to Setup will be denied if the correct password is not entered at the prompt.

Note: To disable security, select PASSWORD SETTING in the main menu. At this point, you will be asked to enter a password. Simply hit the <ENTER> key to disable security. When security is disabled, the system will boot, and you can enter Setup freely.

OS Select for DRAM>64 MB

This setting is under OS/2 system.

Video BIOS Shadow

This determines whether video BIOS will be copied to RAM, which is optional according to the chipset design. When enabled, Video Shadow increases the video speed.

C8000 - CFFFF Shadow/DC000-DFFFF Shadow

These determine whether optional ROM will be copied to RAM in blocks of 16 KB.

Enabled	Optional shadow is enabled
Disabled	Optional shadow is disabled

3.1.4 CHIPSET features setup

By choosing the "CHIPSET FEATURES SETUP" option from the INITIAL SETUP SCREEN Menu, the screen below is displayed. This sample screen contains the manufacturer's default values for the PCA-6770.

Figure 3-4: CHIPSET features setup screen

3.1.5 Power management setup

The power management setup controls the CPU cards' "green" features. The following screen shows the manufacturer's default.

Figure 3-5: Power management setup screen

Power Management

This option allows you to determine if the values in power management are disabled, user-defined, or predefined.

HDD Power Management

You can choose to turn the HDD off after a one of the time interval listed, or when the system is in Suspend mode. If in a power saving mode, any access to the HDD will wake it up.

Note: HDD will not power down if the Power Management option is disabled.

IRQ Activity

IRQ can be set independently. Activity on any enabled IRQ will wake up the system.

3.1.6 PnP PCI configuration setup

```
ROM PCI/ISA BIOS (2865KAKI)
PNP/PCI CONFIGURATION
AWARD SOFTWARE, INC.

PNP OS Installed : No!
Resources Controlled By : Manual
Reset Configuration Data : Disabled

IR9-3 assigned to : PCI/ISA PNP
IR9-3 assigned to : PCI/ISA PNP
IR9-5 assigned to : PCI/ISA PNP
IR9-6 assigned to : PCI/ISA PNP
IR9-10 assigned to : PCI/ISA PNP
IR9-10 assigned to : PCI/ISA PNP
IR9-11 assigned to : PCI/ISA PNP
IR9-12 assigned to : PCI/ISA PNP
IR9-13 assigned to : PCI/ISA PNP
IR9-14 assigned to : PCI/ISA PNP
IR9-15 assigned to : PCI/ISA PNP
OMA-0 assigned to : PCI/ISA PNP
OMA-1 assigned to : PCI/ISA PNP
OMA-3 assigned to : PCI/ISA PNP
OMA-5 assigned to : PCI/ISA PNP
OMA-6 assigned to : PCI/ISA PNP
OMA-7 assigned to : PCI/ISA PNP
OMA-7 assigned to : PCI/ISA PNP
OMA-7 assigned to : PCI/ISA PNP
F5 : Lead BIOS Defaults
OMA-7 assigned to : PCI/ISA PNP
F7 : Lead Setup Defaults
```

Figure 3-6: PCI configuration screen

3.1.7 Load BIOS defaults

"LOAD BIOS DEFAULTS" indicates the most appropriate values for the system parameters for minimum performance. These default values are loaded automatically if the stored record created by the Setup program becomes corrupted (and therefore unusable).

3.1.8 Load setup defaults

"LOAD SETUP DEFAULTS" loads the values required by the system for maximum performance.

3.1.9 Integrated Peripherals

```
ROM PCI/ISA BIOS (2AGBKAKI)
INTEGRATED PERIPHERALS
                                          AMARD SOFTWARE, INC
IDE HOD Block Hode
                                                             Onboard Serial Port 2 IRD: 3
                                         Enabled
IDE Primary Master PIO
IDE Primary Slave PIO
                                         Auto
                                                             UART Hode Select
RxD . TxD Active
                                         Auto
                                                                                                      Hi.Lo
IDE Secondary Haster PIO
IDE Secondary Slave PIO
IDE Primary Haster UOHA
                                                            IR Transmittiion delay :
Onboard Parallel Port
Onboard Parallel Port IRD:
                                                                                                      Enabled
                                        Auto
                                      : Auto
     Primary Slave UCHO
                                                             Parallel Port Mode
                                         district or
                                                             ECP Hode Use DMA
EPP Hode Select
     Secondary Master UDMA: Auto
Secondary Slave UDMA: Auto
                                                                                                      EPP1.7
    Chip Primary
                          PCI IDE: Enabled
PCI IDE: Enabled
                                                            Boot Up Display Tupe
Panel Type : By
                                                                                                Simultaneous
On-Chip Secondary
                                                                                      : By Hardware Jumper
Onboard PCI Lan Chip
                                        Enabled
USB Keyboard Support
Init Display First
                                         Disabled
                                         PCI Slot
KBC input clock
                                         # HHz
                                                                                         T1++ +
                                                                                                   Select Item
Onboard FDC Controller : El
Onboard Serial Port !
Onboard Serial Port ! IRG: 4
                                         Enabled
                                                             F1
F5
                                                                      Help
                                                                                                          Hodify
                                                                                       (Shift)F2 : Color
                                                                      Old Values (Shift)
Load BIDS Defaults
Onboard Serial Port 2
                                                                      Load Setup Defaults
```

Figure 3-7: Integrated peripherals

Note: If you enable the IDE HDD block mode, the enhanced IDE driver will be enabled.

3.1.10 Password setting

To change, confirm, or disable the password, choose the "PASS-WORD SETTING" option form the Setup main menu and press [Enter]. The password can be at most 8 characters long.

Remember, to enable this feature. You must first select the Security Option in the BIOS FEATURES SETUP to be either "Setup" or "System." Pressing [Enter] again without typing any characters can disable the password setting function.

3.1.11 IDE HDD auto detection

"IDE HDD AUTO DETECTION" automatically self-detect for the correct hard disk type.

3.1.12 Save & exit setup

If you select this and press the [Enter] key, the values entered in the setup utilities will be recorded in the CMOS memory of the chipset. The microprocessor will check this every time you turn your system on and compare this to what it finds as it checks the system. This record is required for the system to operate.

```
ROM PCI/ISA BIOS (2AGBRAKI)
CMOS SETUP UTILITY
AMARD SOFTWARE, INC.

STANDARD CHOS SETUP

INTEGRATED PERIPHERALS
BIOS FEATURES SETUP

CHIPSET FEATURES SETUP

POWER HOWASEMENT SETUP

PNP/PCI CONFIGURA
LOND RIOS DEFAULT

LOND SETUP DEFAULTS

Ecc : Quit

file : Save & Exit Setup

(Shift)F2 : Change Color
```

Figure 3-8: Exiting

3.1.13 Exit without saving

Selecting this option and pressing the [Enter] key lets you exit the Setup program without recording any new values or changing old ones.

AGP SVGA Setup

- Introduction
- Installation of SVGA driver for
 - Windows 95
 - Windows 98
 - Windows NT

4.1 Introduction

The PCI-6771 has an on-board AGP flat panel/VGA interface. The specifications and features are described as follows:

4.1.1 Chipset

The PCI-6771 uses a Trident 9525DVD chipset for its AGP/SVGA controller. It supports many popular LCD, EL, and gas plasma flat panel displays and conventional analog CRT monitors. The 9525 VGA BIOS supports monochrome LCD, EL, color TFT and STN LCD flat panel displays. In addition, it also supports interlaced and non-interlaced analog monitors (color and monochrome VGA) in high-resolution modes while maintaining complete IBM VGA compatibility. Digital monitors (i.e. MDA, CGA, and EGA) are NOT supported. Multiple frequency

(multisync) monitors are handled as if they were analog monitors.

4.1.2 Display memory

With 2.5 MB display memory on chip, the VGA controller can drive CRT displays or color panel displays with resolutions up to 1024 x 768 at 16.8 M colors. (With an option of 8 MB display memory on chip). This yields true-color resolution of 1280 x 1024.

4.1.3 Display types

CRT and panel displays can be used simultaneously. The PCI-6771 can be set in one of three configurations: on a CRT, on a flat panel display, or on both simultaneously. The system is initially set to simultaneous display mode. The BIOS setup can be used to configure the display. In BIOS, select "Integrated Peripherals", then "Boot-up display type." You can then choose one of the following modes: "CRT only", "Panel only", or "Simultaneous."

4.1.4 Dual/simultaneous display

The PCI-6771 uses a Trident Cyber 9525DVD LCD controller that is capable of providing multiple views and simultaneous display with mixed video and graphics on a flat panel and CRT.

To set up dual display under Windows 98, follow these steps:

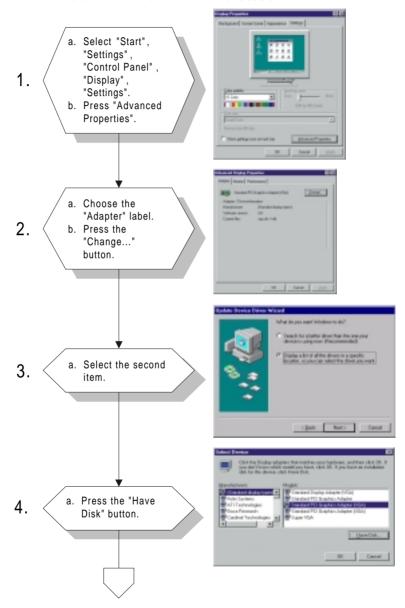
- 1. Select "Windows98", "Control panel", "Display", "Settings".
- 2. Select "1" for current display, or "2" for second display.
- 3. Enable "Extend my Windows desktop onto this monitor".
- 4. Click "OK".

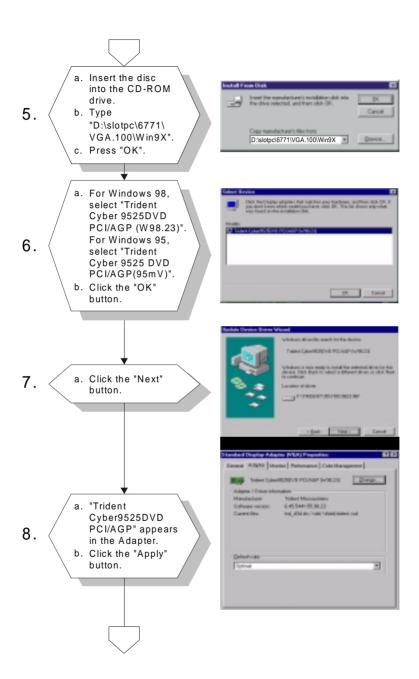
Figure 4-1: Selecting display settings

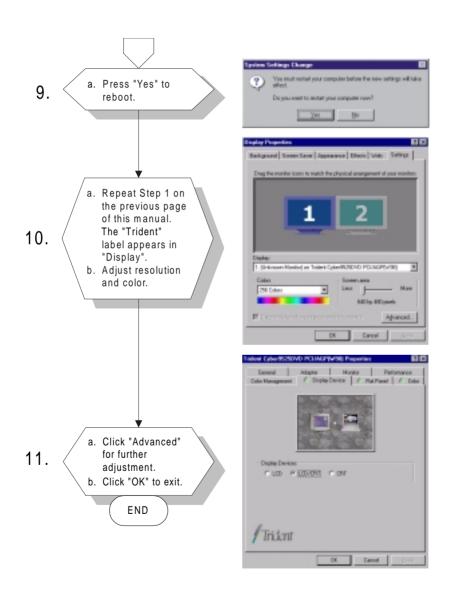
4.2 Installation of SVGA driver

Complete the following steps to install the SVGA driver. Follow the procedures in the flow chart that apply to the operating system that you are using within your PCI-6771.

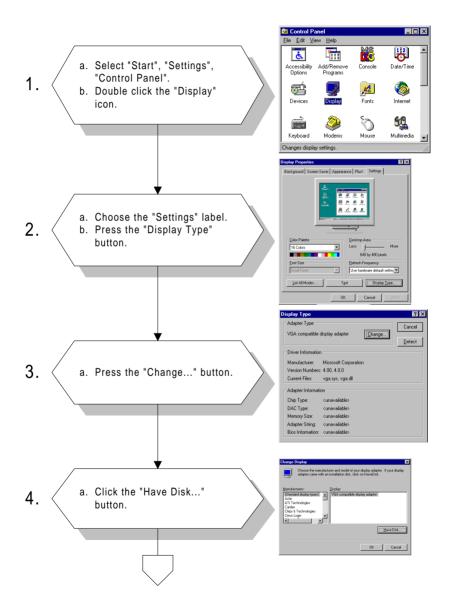
Important: The following windows illustrations are examples

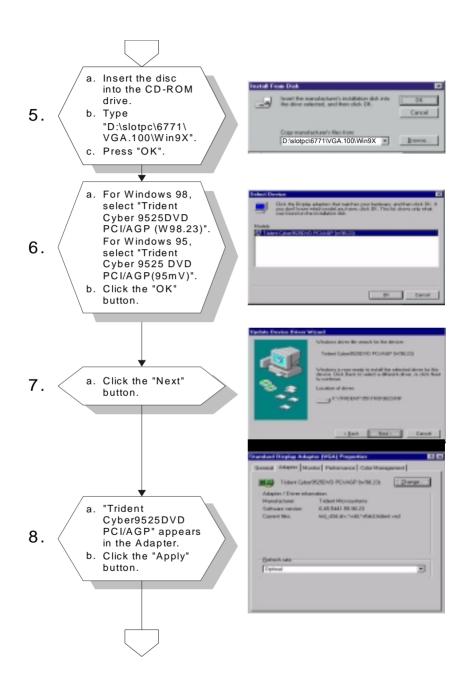

only. You must follow the flow chart instructions and pay attention to the instructions which then appear

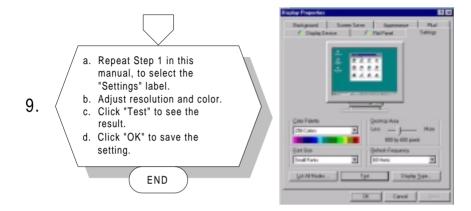

on your screen.


Note: <Enter> means pressing the "Enter" key on the

keyboard.


4.2.1 Installation for Windows 95/98





4.2.2 Installation for Windows NT

4.3 Further information

For further information about the AGP/SVGA installation in your PCI-6771, including driver updates, troubleshooting guides and FAQ lists, visit the following web resources:

Trident website: www.trid.com

EMAC website: www.emacinc.com

PCI Bus Ethernet Interface

This chapter provides information on Ethernet configuration.

- Introduction
- Installation of Ethernet driver for Windows 95/98/NT
- Further information

5.1 Introduction

The PCI-6771 is equipped with a high performance 32-bit Ethernet chipset which is fully compliant with IEEE 802.3 100 Mbps CSMA/CD standards. It is supported by major network operating systems. It is also both 100Base-T and 10Base-T compatible. The medium type can be configured via the RSET8139.exe program included on the utility disk.

The Ethernet port provides a standard RJ-45 jack on board. The network boot feature can be utilized by incorporating the boot ROM image files for the appropriate network operating system. The boot ROM BIOS files are combined with system BIOS, which can be enabled/disabled in the BIOS setup.

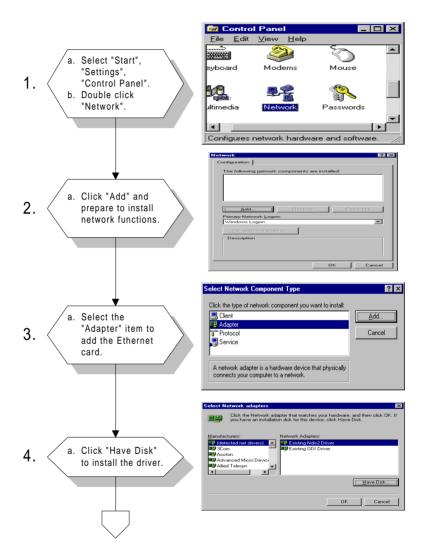
5.2 Installation of Ethernet driver

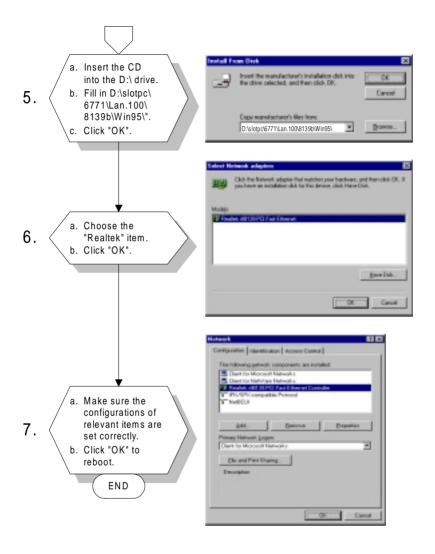
Before installing the Ethernet driver, note the procedures below. You must know which operating system you are using in your PCI-6771, and then refer to the corresponding installation flow chart. Then just follow the steps described in the flow chart. You will quickly and successfully complete the installation, even if you are not familiar with instructions for MS-DOS or Windows.

Note:

The windows illustrations in this chapter are examples only. You must follow the flow chart instructions and pay attention to the instructions which then appear on your screen.

5.2.1 Installation for MS-DOS and Windows 3.1

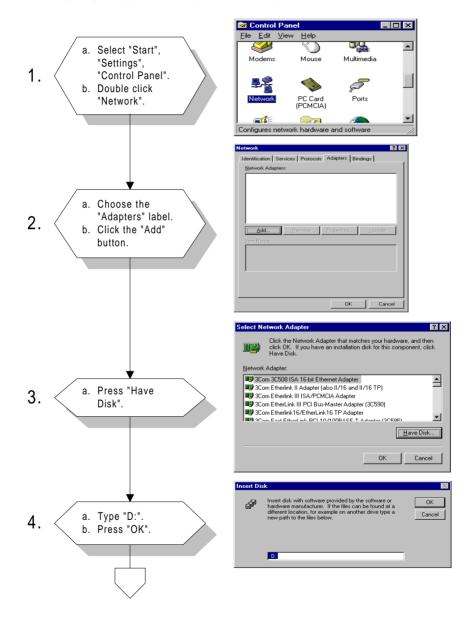

If you want to set up your Ethernet connection under the MS-DOS or Windows 3.1 environment, you should first check your server system model. For example, MS-NT, IBM-LAN server, and so on.

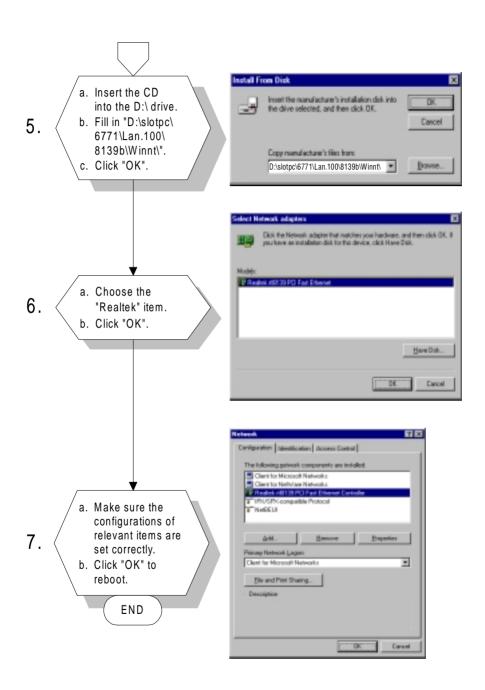

Then choose the correct driver to install in your panel PC.

The installation procedures for various servers can be found on CD-ROM, the correct path being:

D:\slotpc\6771\Lan.100\8139B\wfw311

5.2.2 Installation for Windows 95/98





Note 1: The correct file path for Windows 98 is: slotpc\6771\Lan.100\8139b\Win98

Note 2: In the file path, choose "8139a" or "8139b" according to the type of Ethernet chip used.

5.2.3 Installation for Windows NT

5.3 Further information

Realtek website: www.realtek.com

EAMC website: www.emacinc.com

Programming the Watchdog Timer

The PCI-6771 is equipped with a watchdog timer that resets the CPU or generates an interrupt if processing comes to a standstill for any reason. This feature ensures system reliability in industrial standalone or unmanned environments.

A.1 Programming the Watchdog Timer

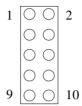
To program the watchdog timer, you must write a program which writes I/O port address 443 (hex). The output data is a value of time interval. The value range is from 01 (hex) to 3E (hex), and the related time interval is 1 sec. to 62 sec.

Data	Time Interval
01	1 sec.
02	2 sec.
03	3 sec.
04	4 sec.
•	•
•	•
•	•
3E	62 sec.

After data entry, your program must refresh the watchdog timer by rewriting the I/O port 443 (hex) while simultaneously setting it. When you want to disable the watchdog timer, your program should read I/O port 443 (hex).

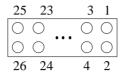
The following example shows how you might program the watchdog timer in BASIC:

```
10
      REM Watchdog timer example program
2.0
       OUT &H443, data REM Start and restart the watchdog
     GOSUB 1000 REM Your application task #1,
30
40
      OUT &H443, data REM Reset the timer
50
      GOSUB 2000 REM Your application task #2.
60
       OUT &H443, data REM Reset the timer
70
      X=INP (&H443) REM, Disable the watchdog timer
80
      END
1000 REM Subroutine #1, your application task
1070 RETURN
2000 REM Subroutine #2, your application task
2090 RETURN
```



Pin Assignments

This appendix contains information of a detailed or specialized nature. It includes:


- · CRT display connector
- LCD display/inverter connector
- RS-232/422/485 serial port connector
- · Keyboard and mouse connector
- · External keyboard connector
- Main power connectors (AT/ATX)
- · IDE connector
- RS-232 serial port connector
- Ethernet RJ-45 connector
- · Floppy connector
- Parallel connector
- · IR connector
- · HDD LED connector

C.1 USB1/USB2 Connector (CN1)

Table (Table C-1: USB1/USB2 connector				
	USB1		USB2		
1	+5 V	2	+5 V		
3	UV-	4	UV-		
5	UV+	6	UV+		
7	GND	8	GND		
9	Chassis GND	10	N/C		

C.2 Parallel Port Connector (CN2)

Table C-2: Parallel port connector			
Pin	Signal		
1	* STROBE		
2	* AUTOFD		
3	D0		
4	ERR		
5	D1		
6	* INIT		
7	D2		
8	* SLCTINI		
9	D3		
10	GND		
11	D4		
12	GND		
13	D5		
14	GND		
15	D6		
16	GND		
17	D7		
18	GND		
19	* ACK		
20	GND		
21	BUSY		
22	GND		
23	PE		
24	GND		
25	SLCT		

^{*} low active

GND

26

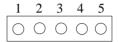
C.3 HDD LED Connector (CN3)

Tahla	C-3·	חחח	IED	connector

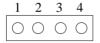
Pin	Signal	
1	IDE LED -	

C.4 IR Connector (CN4)

Table C-4: IR connector				
Pin	Signal			
1	+5 V			
2	N/C			
3	IR_RX			
4	GND			


C.5 ATX Power Switch (CN5)

T-61-	C-5·ATX		A
Iahla	(:-5·Δ I X	nower	CWITCH


Pin	Signal	
1	Standby 5 V	

C.6 Keyboard Lock Connector (CN6)

Table C-6: Keyboard lock connector			
Pin	Signal		
1	+5 V		
2	N/C		
3	GND		
4	KBLOCK		
5	GND		

C.7 External Speaker Connector (CN7)

Table C-7: External speaker connector		
Pin	Signal	
1	+ 5 V	
2	N/C	
3	Internal speaker	
4	External speaker	

C.8 IDE Hard Drive Connector (CN8)

Pin	Signal	Pin	Signal
1	IDE RESET*	2	GND
3	DATA 7	4	DATA 8
5	DATA 6	6	DATA 9
7	DATA 5	8	DATA 10
9	DATA 4	10	DATA 11
11	DATA 3	12	DATA 12
13	DATA 2	14	DATA 13
15	DATA 1	16	DATA 14
17	DATA 0	18	DATA 15
19	SIGNAL GND	20	N/C
21	N/C	22	GND
23	IO WRITE	24	GND
25	IO READ	26	GND
27	IO CHANNEL READY	28	N/C
29	HDACKO*	30	GND
31	IRQ14	32	IOCS16
33	ADDR 1	34	N/C
35	ADDR 0	36	ADDR 2
37	HARD DISK SELECT 0*	38	HARD DISK SELECT1*
39	IDE ACTIVE*	40	GND
41	5 V	42	5 V
43	GND	44	NC

^{*} low active

C.9 Floppy Drive Connector (CN9)

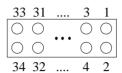


Table C-9: Floppy drive connector

Pin	Signal	Pin	Signal
1	GND	2	DENSITY SELECT*
3	GND	4	N/C
5	GND	6	DS1*
7	GND	8	INDEX*
9	GND	10	MOTOR 0*
11	GND	12	DRIVE SELECT 1*
13	GND	14	DRIVE SELECT 0*
15	GND	16	MOTOR 1*
17	GND	18	DIRECTION*
19	GND	20	STEP*
21	GND	22	WRITE DATA*
23	GND	24	WRITE GATE*
25	GND	26	TRACK 0*
27	GND	28	WRITE PROTECT*
29	GND	30	READ DATA*
31	GND	32	HEAD SELECT*
33	GND	34	DISK CHANGE*

^{*} low active

C.10 ATX Power Connector (CN10)

Table C-10: ATX power connector			
Pin	Signal		
1	5 V SB		
2	N/C		
3	PS_ON		

C.11 Reset Switch Connector (CN11)

Table C-11: Reset switch connector			
Pin	Signal		
1	MR_RESET		
2	GND		

C.12 CRT Display Connector (CN12)

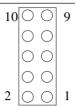
Table C-12: CRT display connector

Pin	Signal	Pin	Signal
1	RED	9	N/C
2	GREEN	10	GND
3	BLUE	11	N/C
4	N/C	12	N/C
5	GND	13	H-SYNC
6	GND	14	V-SYNC
7	GND	15	N/C
8	GND		

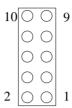
C.13 CPU Fan Power Connector (CN13)

$$\begin{array}{c|cccc}
1 & 2 & 3 \\
\hline
\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
\end{array}$$

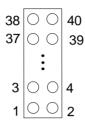
Table C-13: CPU fan power connector


Pin	Signal	
1	NC	
2	+12 V	
3	GND	

C.15 COM1 RS-232 Serial Port (CN15)


Table C-15: COM1 RS-232 serial port		
Pin	Signal	
1	DCD	
2	RXD	
3	TXD	
4	DTR	
5	GND	
6	DSR	
7	RTS	
8	CTS	
9	RI	

C.16 COM2 RS-422/485 Serial Port (CN16)


Pin	RS-422 port	RS-485 port
1	TXD-	DATA-
2	N/C	N/C
3	TXD+	DATA+
4	N/C	N/C
5	RXD+	N/C
6	N/C	N/C
7	RXD-	N/C
8	N/C	N/C
9	GND	GND
10	N/C	N/C

C.17 COM2 RS-232 Serial Port (CN17)

Table C-17: COM2 RS-232 serial port				
Pin	RS-232 port	Pin	RS-232 port	
1	DCD	6	CTS	
2	DSR	7	DTR	
3	RxD	8	RI	
4	RTS	9	GND	
5	TxD	10	N/C	

C.18 24-bit LCD Display Connector (CN18)

Table C-5: 24-bit LCD display connector				
Pin	Signal	Pin	Signal	
1	VDDSAFE5	2	VDDSAFE5	
3	GND	4	GND	
5	VDDSAFE3	6	VDDSAFE3	
7	Vcon	8	GND	
9	P0	10	P1	
11	P2	12	P3	
13	P4	14	P5	
15	P6	16	P7	
17	P8	18	P9	
19	P10	20	P11	
21	P12	22	P13	
23	P14	24	P15	
25	P16	26	P17	
27	P18	28	P19	
29	P20	30	P21	
31	P22	32	P23	
33	GND	34	GND	
35	SHIFT CLOCK	36	FILM	
37	М	38	LP	
39	DOTCLK	40	ENAVEE	

Note: The model number of the CN18 socket is DF13A-40DP-1.25V (Hirose Electric Co., Ltd.)

C.19 36-bit LCD Display Connector (CN19)

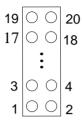


Table C-19: 36-bit LCD display connector

Pin	Signal	Pin	Signal	
1	GND	2	GND	_
3	P24	4	P25	
5	P26	6	P27	_
7	P28	8	P29	_
9	P30	10	P31	_
11	P32	12	P33	
13	P34	14	P35	_
15	GND	16	GND	_
17	N/C	18	N/C	
19	N/C	20	N/C	_

Note: The model number of the CN19 socket is DF13A-20DP-1.25V (Hirose Electric Co., Ltd.)

C.20 Keyboard and Mouse Connnecto (CN20)

Table C-20: Keyboard and mouse connector			
Pin	Signal		
1	KB DATA		
2	MS DATA		
3	GND		
4	+5 V		
5	KB CLOCK		
6	MS CLOCK		

C.21 External Keyboard Connector (CN21)

Table C-21: External keyboard connector			
Pin	Signal		
1	CLK		
2	DATA		
3	NC		
4	GND		
5	+ 5 V		

C.22 LCD Power Inverter (CN22)

Table C-22: LCD power inverter			
Pin	Signal		
1	+12 V		
2	GND		
3	ENABKL		
4	VBR		
5	+ 5 V		

C.21 External Keyboard Connector (CN21)

Table C-21: External keyboard connector

Table 6-21. External Reyboard Connector		
Pin	Signal	
1	CLK	
2	DATA	
3	NC	
4	GND	
5	+ 5 V	

C.22 LCD Power Inverter (CN22)

Table C-22: LCD power inverter

Table G-22. LGD power inverter		
Pin	Signal	
1	+12 V	
2	GND	
3	ENABKL	
4	VBR	
5	+ 5 V	

C.23 AT Power Connector (CN23)

Table C-23: AT	power	connector
----------------	-------	-----------

	·
Pin	Signal
1	+12 V
2	GND
3	GND
4	+5 V

C.24 CompactFlash Card Connector (CN24)

Table C-24: CompactFlash card connector				
Pin	Signal	Pin	Signal	
1	GND	2	D03	
3	D04	4	D05	
5	D06	6	D07	
7	* CS0	8	A10 ²	
9	* ATA SEL	10	A09 ²	
11	A08 ²	12	A07 ²	
13	+5 V	14	A06 ²	
15	A05 ²	16	A04 ²	
17	A03 ²	18	A02	
19	A01	20	A00	
21	D00	22	D01	
23	D02	24	* IOCS16	
25	* CD2	26	* CD1	
27	D11 ¹	28	D12 ¹	
29	D131	30	D14 ¹	
31	D15 ¹	32	* CS11	
33	* VS1	34	* IORD	
35	* IOWR	36	* WE³	
37	INTRQ	38	+5 V	
39	* CSEL	40	* VS2	
41	* RESER	42	IORDY	
43	* INPACK	44	* REG³	
45	* DASP	46	* PDIAG	
47	D08 ¹	48	D09 ¹	
49	D10	50	GND	
				$\overline{}$

^{*} low active

System Assignments

This appendix contains information of a detailed or specialized nature. It includes:

- System I/O ports
- DMA channel assignments
- Interrupt assignments
- 1st MB memory map

D.1 System I/O Ports

Table D-1: System	I/O ports
Addr. range (He	ex) Device
000-01F	DMA controller
020-021	Interrupt controller 1, master
022-023	Chipset address
040-05F	8254 timer
060-06F	8042 (keyboard controller)
070-07F	Real-time clock, non-maskable interrupt (NMI)
	mask
080-09F	DMA page register
0A0-0BF	Interrupt controller 2
0C0-0DF	DMA controller
0F0	Clear math co-processor
0F1	Reset math co-processor
0F8-0FF	Math co-processor
1F0-1F8	Fixed disk
200-207	Game I/O
278-27F	Parallel printer port 2 (LPT 3)
2F8-2FF	Serial port 2
300-31F	Prototype card
360-36F	Reserved
378-37F	Parallel printer port 1 (LPT 2)
380-38F	SDLC, bisynchronous 2
3A0-3AF	Bisynchronous 1
3B0-3BF	Monochrome display and printer adapter (LPT1)
3C0-3CF	Reserved
3D0-3DF	Color/graphics monitor adapter
3F0-3F7	Diskette controller
3F8-3FF	Serial port 1

^{*} PNP audio I/O map range from 220 ~ 250H (16 bytes) MPU-401 select from 300 ~ 330H (2 bytes)

D.2 DMA Channel Assignments

Channel Function		
0	Available	_
1	Available	

² Floppy disk (8-bit transfer)3 Available

D.3 Interrupt Assignments

Table D-3:	Interrupt	assignments
Intorrupt	ц	Intorrunt

Interrup	t#	Interrupt source
IRQ 0		Interval timer
IRQ 1		Keyboard
IRQ 2		Interrupt from controller 2 (cascade)
IRQ 8		Real-time clock
IRQ 9		Cascaded to INT 0A (IRQ 2)
IRQ 10		Available
IRQ 11		Watchdog Timer
IRQ 12		PS/2 mouse (non-releasable)
IRQ 13		INT from co-processor
IRQ 14		Fixed disk controller (primary)
IRQ 15		Fixed disk controller (secondary)
IRQ 3		Serial communication port 2
IRQ 4		Serial communication port 1
IRQ 5		Parallel port 2
IRQ 6		Diskette controller (FDC)
IRQ 7		Parallel port 1 (print port)
d. DATE	11 100 1	

^{*} PNP audio IRQ select: 5, 7, 9 or 10

⁴ Cascade for DMA controller 1

⁵ Available6 Available

⁷ Available * Audio DMA select 0, 1 or 3

^{*} Ethernet function is auto-sensing

D.4 1st MB Memory Map

Table D-4:1st MB memory map		
Addr. range (Hex)	Device	
F000h - FFFFh	System ROM	
C800h - EFFFh	Expansion ROM	
C000h - C7FFh	System ROM	
B800h - BFFFh	CGA/EGA/VGA text	
B000h - B7FFh	Unused	
A000h - AFFFh	EGA/VGA graphics	
0000h - 9FFFh	Base memory	