Trusted ePlatform Services

ADMNTECH

SUSI® Library

Version 1.2

User’s Manual

Advantech Co. Ltd.

No. 1, Alley 20, Lane 26,
Rueiguang Road, Neihu District,
Taipei 114, Taiwan, R. O. C.

www.advantech.com

Copyright Notice

This document is copyrighted, 2006, by Advantech Co., Ltd. All rights reserved.
Advantech Co., Ltd. reserves the right to make improvements to the products
described in this manual at any time. Specifications are thus subject to change without
notice.

No part of this manual may be reproduced, copied, translated, or transmitted in any
form or by any means without prior written permission of Advantech Co., Ltd.
Information provided in this manual is intended to be accurate and reliable. However,
Advantech Co., Ltd., assumes no responsibility for its use, or for any infringements
upon the rights of third parties which may result from its use.

All the trade marks of products and companies mentioned in this data sheet belong to
their respective owners.

Copyright © 1983-2007 Advantech Co., Ltd. All Rights Reserved

Part No.
Version: 1.2

Printed in Taiwan 2007-07-16

Version History

Date Version Part no Remark
2006-7-27 1.0 New release
2006-9-29 1.1 Add hardware monitoring support for
SOM-4472/SOM-4475/SOM-4481/SOM-4486
2007-6-27 1.2 Add many new functionalities over

Control APIs
Programmable GP1O, SMBus Enhanced
Protocols
Monitoring APls
Boot Counter and Running Timer, H/W
Control
Display APIs
Auto-Brightness, Hotkey VGA Control
Debug API
Get last error code
About new SUSI-enabled platforms, please refer

to Appendix A

Table of Contents

INTRODUCGTION. ...ttt e e e et e e s e bt e e e s ebbe e e e e eareeeeaan 7
ENVIRONMENTS ..ottt et abee e e s e e e 13
PACKAGE CONTENTS ...ttt aare e e 14
INSTALLATION ...ttt e e et e e s e e e e e aba e e e s sbaeeeeans 14
WINDOWS XP ...ttt %‘Fﬁr{' RES 1‘—_%?{2"%‘ °
WINDOWS CEoviieiiiiee et E‘F&r{ RES 1‘—_%?{2"%‘ °
ADDITIONAL PROGRAMS ...ttt ettt 15
VGA CONTROL HOTKEY UTILITY 1evvviiiieeeeeeeeeeiiiieee e e e e e e eeeanin e e e e e e e eeeannnnnnes 15
DEMO PROGRAMcttttiiiieeeeieeeetitie s s e e e e e e e eeaata s e e e e e e e e eeaaan s e e e e eeeeeesnnnnnnnas 15

= To o] o]0 [0 =] Co TSR TPR 16

LAV = 1o T (o T OSSR 17

€1 = [S SSUOSUSRRSSS 18
Programmable GPIO ... 20
SIMBUS ...ttt e e 22
YT 1] 012 (= 1 SRR 23

LY €7 AN O] o] o] USSR 24
Hardware MONILOTc.oiioieiiece et 25
Hardware CONLIOlc.oiveieiieie et 26

Y o1 | USRS 27
PROGRAMMING OVERVIEW.......oooi ettt 28
COre fUNCLIONSccuiiiicec ettt re e e e e 29
Watchdog (WD) fUNCLIONScoviiiiie e 29
GPIO (IO) fUNCLIONS ...t ae s 29
SMBUS fUNCHIONS......ciiiieiice et sae e 30

1T @3 {1 T o £ OSSPSR 31
VGA Control (VC) fUNCLIONS ..o 32
Hardware Monitoring (HWM) funCtionS..........ccccoocveiiiieieic e 32
MIGRATION FROM EARLY VERSIONS ... 33
SUSI API PROGRAMMER’S DOCUMENTATION......cccooviiiieeiie e 34
SUSIDIINIT ..ot sre e 34
SUSIDHURNINIT ...t sre e 35
SUSIDIGEEVEISION.....c.veiiicie et sre e 36
SUSIDIGELLASLEITONc.vveiecie ettt nne s 37
SUSICOreAVAIIADIE. ... 38
SUSICOreGEtBIOSVEISION......c..eivieiecie et 39
SuSICoreGetPIatfOrmMNAME..........cccvii e 40

SUSICOreACCESSBOOTCOUNTET ...ttt e e e e e e e e e e e eeeeeaans 41

SUSICOreACCESSRUNTIMENvviivieieeie ettt nne s 43
SSCORE_RUNTIMER........ciiitiii ittt sttt ane s 44
SUSIWDAVAIADIE........c.oiiiieee e 45
SUSIWDGEIRANGE ...t sieeie ettt ae e reeae e e nre s 46
SUSIVWD SEICONTIGveeteeeie ettt ste e e e nne s 47
STV LAY A 1 o o 1= S SUSSSTRSSN 48
SUSIWDDISADIE ...t 49
SUSHOAVAIADIE ...t 50
SUSHTOCOUNIEX ...ttt e e nne s e nnaenee s 51
SUSIHTOQUETYIMASK......c.veieieiieeiectiesie et te s e et sae e e e e seeaneesnaeee s 52
SUSIHTOSEIDITECLION ...ttt raenre e nneenee s 54
SUSIHOSELDITECIONMUILE ... 55
SUSIHTOREAAEX........ceiieeieieie ittt sne e te e e sreenneaneenneenee s 56
SUSIHTOREAAMUILIEXccveeie et nne s 57
SUSTHTOWIIEEEX ...ttt te et e e e sraenneanee s 58
SUSHOWIEMUITIEX ...t 59
SUSISMBUSAVAIIADIE ..o 60
SUSISMBUSSCANDEVICE.........ecuviivieieeie ettt nae e sne e 61
SUSISMBUSREAAQUICK.......cceiiiiiiiiie et 62
SUSISMBUSWIITEQUICKccviiiiieiiic et 63
SUSISMBUSRECEIVEBYLEocvveiieie e 64
SUSISMBUSSENUBYLEcovieiieciieiie ettt e e see e e nnaeee s 65
SUSISMBUSREAUABYLEccviiieciieiii ettt ae s 66
SUSISMBUSWIITEBYLEecviciiecieee et 67
SUSISMBUSREAAWOIT..........ccveiiieiicie e nae s 68
SUSISMBUSWITEWOIT ..ottt nae s 69
SUSIHICAVAIADIE ... 70
SUSIHTICREAA ...ttt e e e e sneenneenee s 71
SUSTTICWWIIEE ...ttt e s re e teeneeaneenne s 72
SUSIHICWIiteReadComDINEcccveiieiiee e 73
SUSIVCAVAIADIE ... s 74
SUSIVCGEIBIIgtRANGEecie et 75
SUSIVCGEIBIIGNT ... 76
SUSIVCSEIBIIGNT......eice et 77
SUSIVCSCIEENOIN ...ttt et re et e e e e s raenteaneesneene s 78
SUSIV CSCIEENOTT ...ttt e e e ae s 79
SUSIHWMANVAIIADIEc.oveeicieciee et 80

SUSIHWMGELFANSPEEU ..ottt ee et e e enaenne s 81

SUSIHWMGELTEMPEIALUIE. ... eeveeeieceiecieeie e ie e et ee e sae e e e sreenaesneennes 82
SUSIHWMGELVOIAGE. ... ettt 83
SUSIHWMSELFANSPEEA.coiieiiee ettt 84
APPENDIX A - SUPPORT PLATFORM LISToooiiiiieeeececeeecee e 85
WINDOWS XP ettt et e e e e et e e e e e e e e e e e eennaes 85
WINDOWS CE ..oeoiiiiee e e e e e e e e e 89
APPENDIX B - GPIO INFORMATIONcooiiiiiiectecseece e 91
APPENDIX C - PROGRAMMING FLAGS OVERVIEW..........cccooveieiveece. 97
APPENDIX D - API ERROR CODES.......cccoi ittt 100
FUNCTION INDEX CODEuuiiiiiieiiieeeiieeeeie e e et e e ete e e e e e e e e eaneeeanaeeenneees 100
LIBRARY ERROR CODEuuiiiiiiiiiieeiiie e et e et e e et e e e et e e e e e eaneeeanneeennaeees 103
DRIVER ERROR CODE ... cciuiiiiiiieiiiieeeie et e e e e e e e e e e e e e e eanneeeanneees 105

Introduction

SLISI - A bridge to simplify & enhance H/W &
application implementation effciency.

Do you struggle with:

|
= GPIO to control system LED/buttons?
“ 12C bus to control fan speed & battery?
= And more...?
1)

SUSI can help!

Application Development

—

- ===]
R&D Resource

Spec. Study

BN Development B
o =

Ho e)
| Testing

e | i | I:._.‘._

OS/Drivers

Aduantech Hardware

When developers want to write an application that involves hardware access, they
have to study the specifications to write the drivers. This is a time-consuming job and
requires lots of expertise.

Advantech has done all the tasks for our customers by the release of a suite of APIs
(Application Programming Interfaces), called the Secured & Unified Smart
Interface (SUSI).

SUSI provides not only the underlying drivers required but also a rich set of
user-friendly, intelligent and integrated interfaces, which speeds development,
enhances security and offers add-on value for Advantech platforms. SUSI plays the

role of catalyst between developer and solution, and makes Advantech embedded
platforms easier and simpler to adopt and operate with customer applications.

Benefits

Faster Time to Market

SUSI's unified API helps developers write applications to control the hardware
without knowing the hardware specs of the chipsets and driver architecture.
Reduced Project Effort

When customers have their own devices connected to the onboard bus, they can
either: study the data sheet and write the driver & API from scratch, or they can
use SUSI to start the integration with a 50% head start. Developers can reference
the sample program on the CD to see and learn more about the software
development environment.

Enhances Hardware Platform Reliability

SUSI provides a trusted custom ready solution which combines chipset and
library function support, controlling application development through SUSI
enhances reliability and brings peace of mind.

Flexible Upgrade Possibilities

SUSI supports an easy upgrade solution for customers. Customers just need to
install the new version SUSI that supports the new functions.

SUSI Contains 3 + 1Categories of Features:

Control

Control to the devices connected with GPIO, 12C and SMBus buses

Display

Adjust the brightness of LCD panels or turn on/off the power of display devices
Monitor

Monitor the system status, including voltage, temperature, fan speed and
Watchdog function to restart if it freezes or crashes.

Debug

Let’s go easy debug with SUSI. When an SUSI API call fails, the error code
helps programmers to know what exactly the error is. All the possible errors have
been listed.

Control

GPIO

GPIO

—

General Purpose Input/Output is a flexible parallel interface that allows a veriety
of custom connections. It supports various Digital 1/0O devices — input devices
like buttons, switches; output devices such as cash drawers, LED lights...etc,
allows users to monitor the level of signal input or set the output status to switch
on/off the device.

Programmable GPIO

Programmabile
GPIC

Da—e——1

The Programmable GP1O API allows developers to dynamically set the GP1O
input or output status, GPIO infout status is usually defined in BIOS, if
customers need to have different settings, they must modify the BIOS. Now with
the new Programmable GPIO, customers can change the settings in their
application by calling the SUSI API; greatly saving development time.

SMBus is the System Management Bus defined by Intel® Corporation in 1995.
It is used in personal computers and servers for low-speed system management
communications. Today, SMBus is used in all types of embedded systems.

The SMBus API allows a developer to interface a Windows XP or CE PC to a
downstream embedded system environment and transfer serial messages using
the SMBus protocols, allowing multiple simultaneous device control.

SMBus Enhanced protocols

New SMBus protocols allow developers to control and access devices easily.
SMBus is used more and more in embedded system design for many
low-bandwidth devices. This new API saves a lot of R&D development effort.

m I2C

I°C is a bi-directional two wire bus that was developed by Philips for use in their
televisions in the 1980s. Today, I°C is used in all types of embedded systems.
The I1°C API allows a developer to interface a Windows XP or CE PC to a
downstream embedded system environment and transfer serial messages using
the 1°C protocols, allowing multiple simultaneous device control.

Monitor
= Watchdog
Watchdog

Ty

A watchdog timer (WDT) is a device or electronic card that performs a specific
operation after a certain period of time if something goes wrong with an
electronic system and the system does not recover on its own.

A watchdog timer can be programmed to perform a warm boot (restarting the
system) after a certain number of seconds during which a program or computer
fails to respond following the most recent mouse click or keyboard action.

s Hardware Monitor

511

The Hardware Monitor (HWM) API is a system health supervision API that
inspects certain condition indexes, such as fan speed, temperature and voltage.

10

= Boot Logger

Boat Logger |

S

e

The Boot Logger API can be used to monitor the device boot times and running
hours. Customers can read the log data to decide when to replace a new device
before it runs to the end of its life, or use it as an index to take action.

s Hardware Control

)

Harciware Control
EE—HE
The Hardware Control API allows developers to set the PWM (Pulse Width

Modulation) value to adjust Fan Speed or other devices; can also be used to
adjust the LCD brightness.

Display

= Brightness Control

Brightness
Y'ﬁ'l

The Brightness Control API allows a developer to interface Windows XP and
Windows CE PC to easily control brightness.

= Auto-Brightness

The Auto-Brightness function contains a new API and a Light Sensor IC, so
systems can have an Auto-Brightness adjustment utility built-in.

= Backlight

11

The Backlight API allows a developer to control the backlight (screen) on/off in
Windows XP and Windows CE. Users can press CTRL + ALT + “1” or “0” for
on or off.

Hotkey VGA Control

The Hotkey VGA Control API provides a Hotkey for VGA Control; users can
press CTRL + ALT + “+” or “-” to increase or decrease brightness. Pressing Ctrl
ALT + “6” will get 60% brightness.

12

Environments

The operating systems that SUSI supports:

e Windows CE .NET
¢ Windows XP Embedded
o Windows XP Pro or Home Edition

For the complete list of SUSI-enabled platforms, please refer to Appendix A. Note
that the list may be changed without any notifications. For the latest support list,
please check it out on the web site at. http://www.advantech.com.tw/ess/SUSI.asp
Should you have any questions about your Advantech boards, please contact us by a
direct phone call or E-mail.

13

Package Content

SUSI currently supports two operating systems - Windows CE and Windows XP. The
content for users is listed below:

Operating System Location Installation
Windows XP(e) C:\Program Files\SUSI\VV12 Setup.exe
Windows CE \Program Files\SUSI\VV12 Image Built-in

Directory Contents
User Manual SUSIL.pdf
e Susi.lib
Function export
Library Files e Susi.dll

Dynamic link library

e Susi.h
Include Files o Debug.h /Errdrv.h / Errlib.h

e SusiDemo.exe
Demo program execution file

SusiDemo _
e Susidll
Dynamic link library
SusiDemo\SRC\ C# Source code of SusiDemo program in C#, VS2005

Source code of Watchdog of SusiDemo program in
VB.NET, VS2005

SusiDemo\SRC \VB.NET

14

Additional Programs

VGA Control Hotkey Utility

The VGA control hotkey utility, SusiHotkey.exe, automatically runs during system
startup in both Windows XP and Windows CE. It provides users with an easy access
to VGA functionalities with the following hotkey assignment.

Key Action
Ctrl + Alt + *+’ Increase brightness by 10%
Ctrl + Alt + - Decrease brightness by 10%
Ctrl + Alt + *6° Set brightness to 60 %
Ctrl + Alt + ‘1’ Turn VGA display on
Ctrl + Alt + ‘0’ Turn VGA display off

Demo Programs

The SUSI demo programs demonstrate how to incorporate SUSI APIs into user’s own
applications written in either C# or VB.NET:

m SusiDemo is written in C# and based upon .NET Compact Framework 2.0,
Visual Studio 2005. It contains all the SUSI features. The execution file,
SusiDemo.exe, released with source code can be run on both Windows XP and
Windows CE.

m SUSI_WDT _VB is written in VB and based upon .NET Compact Framework
2.0, Visual Studio 2005. It demonstrates how to use SUSI with VB.NET.

The execution file, SUSI_WDT _VB.exe, released with source code can be run
on both Windows XP and Windows CE.

The following pages are a detailed introduction to the SusiDemo program:

15

Boot Logger

SusiDemo

Boot Counter

Enable | | (boolean)
BootTimes | |

Get Set

Run Timer

RuUrning | | (1 or 0}
Autorun | | (1 or
Cuntinualr:ln| | Frif
Tomlon | | min

Get Set

This part belongs to the feature Core in SUSI APIs.

m Check the CheckBox to select the information of a certain item to be got or set
in its TextBox.

In Boot Counter

m If you want to reset the BootTimes to O, just text a 0 in its TextBox with its
CheckBox being checked, and then press Button “Set”.

In Run Timer

m If you set 1 to “Running”, the timer starts counting, a 0 to stop.

m Ifyou set 1 to “Autorun”, the timer will start next time when the system restarts.

16

Watchdog

)

Boot Logger| Watchdog | GPIO | Programmable GPIO| SMBus | Multibyts ic | vea <[»

Timeout [nformation

Min | | Unit (s

MMa | |

Step | |

Timeout Setting
Delay P | Unit (ms)

Timeout P |

Countdown Value

Left | | Unit (ms)

Start ‘ Refresh ‘ Stop ‘

When SusiDemo program executes, it shows watchdog information in “Timeout

Information” field - “Min”, “Max”, and “Step” of timeout in milliseconds. For

example, a range 1-255-second watchdog will have a 1000 min timeout, a 255000

max timeout, and a 1000 timeout step.

Here is an example of how to use it:

= Set the timeout value, say 3000 (3 sec.) in TextBox of “Timeout” and set delay
value 2000 (2 sec.) in TextBox of “Delay” (optional), and click the “Start”
Button. The TextBox of “Left” will show the approximate countdown value the
watchdog is currently running. (This is a software timer in the demo program,
not the actual watchdog hardware timer so it is not very accurate)

m Before the timer counts down to zero, you may reset the timer by click the
“Refresh” Button, or just “Stop” it.

17

GPIO

Boot Logger | Watchdog| GPIO | Programmable GPIO| SMeus | Multibyte tic | vea 4| »

Pin Information

Mum of in pins | |

Murm of out pins | |

Pin Confrol
{_) Single-pin F | {Fin number
() Multi-ping | | {Hesx)
RANY Result | | {Hex)
Read | Wt ite ‘

This page is only for backward compatible with previous old APIs that are direction
unchangeable. So in new GPIO supported platforms in SUSI V12, this page will not
be shown. We highly recommend our users to use the new Programmable GPI10O.

When SusiDemo program executes, it displays the fixed numbers of input pins and
output pins in “Pin Information” field. You can click RadioButton to choose from the
operations of either “Single-pin” or “Multi-pins”. For GPIO pins information on
platforms, please refer to Appendix.

Read Single Input Pin

m Click the RadioButton of “Single-Pin”.

m Key in the input pin number to read the status from. Pin number begins from 0 to
(total number of input pins minus 1).

18

Click Button “Read” and then the status of GPIO pin will be shown in “(R/W)
Result”.

Read Multiple Input Pin

Click the RadioButton of “Multiple-Pins”.

Key in the pin number from *0x01’ to ‘OxOF’ to read the statuses of the input
pins. The pin numbers are bitwise-ORed, i.e. bit 0 stands for input pin 0, bit 1
stands for input pin 1, etc. For example, if you want to read input pin 0, 1, and 3,
the value assigned in TextBox of “Multiple-Pins” should be ‘Ox0B’.

Click Button “Read” and then the statuses of GPIO pins will be shown in
“(R/W) Result”.

Write Single Output Pin

Click the RadioButton of “Single-Pin”.

Key in the output pin number to write the status to. Pin number begins from 0
to (total number of output pins minus 1).

Key in either '0" or '1" in “(R/W) Result” to set the output status as low or high.
Click Button “Write” to perform the operation.

Write Multiple Output Pins

Click the RadioButton of “Multi-Pins”.

Key in the pin number from ‘0x01’ to ‘OXOF’ to choose the output pins to write.
The pin numbers are bitwise-ORed, i.e. bit 0 stands for output pin 0, bit 1 stands
for output pin 1, etc. For example, if you want to write output pin 0, 1, and 3, the
pin numbers should be *0x0B’.

Key in the value in TextBox of “(R/W) Result” from ‘Ox01’ to ‘OxO0F’ to set the
statuses of output pins. Again, the pin statuses are bitwise-ored, i.e. bit O stands
for the desire status of output pin 0, bit 1 for output pin 1, etc. For example, if
you want to set pin 0 and 1 high, 3 to low, the value given in TextBox of
“(R/W)Result” should be ‘0x0A’.

Click Button “Wrtie” to perform the operation.

19

Programmable GPIO

SusiDemo !lla
Boot Logger | Watchdog| GPIO | Programmable GPIO | SMBus | Multibyte TIC| vaa 4] ¥
Pin Nurmber Cirection Change / RW Access

Input
Sl % [single Pin EI

[Multiple Pin |:| (Bir
Get Pin Count value I:I (@in)

Set Direction
PN
[Full Pin (S [Jem LRz
i
[10 Configurable {53 I:I ':E'.) o Tl
[T 10 Direction Mow I:I (Bin
et Mask
Pin Number

m Get the numbers of input pins and output pins respectively. Each number may
vary with the direction of current pins, but the sum remains the same.

MASK
m Choose the mask of interest by check its CheckBox. And click “Get Mask”.

Direction Change / RW Access

m Choose the operation to be of either “Single Pin” or “Multiple Pin”.

m The possible values set to TextBox of “Single Pin” ranges from 0 to (total
number of GPIO pins minus 1).

20

Single Pin Operation — “10 Write” / “Set Direction”

m Give a value of “1’(output status high/input direction) or ‘0’(output status low/
output direction) to set to the pin when it comes with the button click “IO Write”
or “Set Direction”.

Single Pin Operation — “1O Read”

m Click “10O Read” to get the pin input status.

Multiple Pin Operation — “1O Write” / “Set Direction”

If there are total 8 GPIO pins:

m If you want to write the statuses of GP1O output pin 0, 1, 6, 7. Give TextBox of
“Multiple Pin” with a value 11000011. Bit 0 stand for GPIO 0, bit 1 stand for
GPI0O 1, and so on.

If you want to set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low. Give
TextBox of “Value” with 01XXXX01, X is for don’t care pin, please simply
assign a 0 for it, i.e. 1000001.

m To set the direction of GPIO pin 0, 1, 6, 7. Give TextBox of “Multiple Pin” with
a value 11000011. Again bit 0 stand for GPIO 0, bit 1 stand for GPIO 1, and so
on. If you want to set pin 0 as input, pin 1 as output, pin 6 as input and pin 7 as
output. Give TextBox of “Value” with 01XXXX01, X is for don’t care, please
simply assign a O for it, i.e. 1000001.

Multiple Pin Operation — “1O Read”

m For example, if you want to read the statuses of GPIO pin 0, 1, 6, 7. Give
TextBox of “Multiple Pin” with a value 11000011. Bit 0 stand for GPIO 0, bit 1
stand for GPIO 1, and so on. Again, if the pin is in status high, the value got in
relevant bit in TextBox of “Value” will be 1. If the pin is in status low, it will be
zero.

[Note]

1. “10 Write” can only be performed on pins with direction output.

2. “Set Direction” can only be performed on direction changeable pins.
3. “l10 Read” can get the statues of both input and output pins.

Please get the information first in the “MASK?” field.

21

SMBus

SusiDemo
Profocols
Result (Hex)
() QuICK () WIORD DATA 0x0
() BYTE () BLOCK DATA
(bytes)

Ooreoars

Slave address Reqister offset

10 (Hesx) [0 Hex)

Fead Wirite Scan Address Occupancy

Protocols

m Choose RadioButton to be one of the protocol operations.

m Give the proper value to the TextBox of “Slave address” and “Register offset”
(some without).

m Click Button “Read” for read/receive operation, and “Write” for a write/send
operation.

m The values read or to be written are in the TextBox of "Result (Hex)”

Button “Scan Address Occupancy”

m Click to get the addresses currently taken by slave devices connected to the
SMBus.

m The occupied addresses will be shown in the TextBox of "Result (Hex)”. The
addresses are already in an 8-bit format.

22

Multibyte IIC

SusiDemo

Boot Logger | Watchdog| GPIO | Programmable GPIO| SMBus| Multibyte IIC | VG

Multi-bytes Access

Slave addres Read num Wl ite L () Primary

(Hex) P | p | () SMBLS-TIC

Input Data (ex. 00 fF 7f..0 (Hex)

Result (Hex)

Read Wyt ite WE Combite

m Select the RadioButton to be either “Primary” or “SMBus-I11C”. If one of them
is not supported, its RadioButton will be shown as disabled.

Primary

m Connect the IIC devices to the_IIC connector.

m Text in the data bytes to be written in TextBox of “Input Data”
m The bytes read will be shown in TextBox of “Result”

SMBus-11C

m Connect the IIC devices to the SMBus connector.

= In AMD platforms, all the 11C functions are fully supported.

= In Intel or VIA platforms, only Read and Write with “Read num” = 1 or “Write
num” = 1. And “WR Combine” is not supported.

23

VGA Control

SusiDemo

watrhdog| GPIO | Programmable GPIO| SMBus| Multibyte TIC) YGa Control | Hard 4|

Brightrness Confrol O /Off Confrol
@ O (Cirl+alt+1)
- 0
Up () OFF (Cir[+alt+0)
0
Do _ <:| 0

Brighthess UP{Cr AR+

Brightness 60%(Cir A"

Erightness DowniCirHal+'-"

You may control the VGA functionalities in the TabPage or directly by the hotkey.
If the brightness control is not supported, the control parts will be shown as color grey
(disabled)

24

Hardware Monitor

Susidemo______________________M§g

Multibyte TIC | YGA Control| Hardware Manitor | Hardware Contral| about... | |
Yoltage Temperature
vcore B] cu P
V25 E SYS E
via P]
- D Fan Speed
vizo B] - .
w] o]
vesT P over P |
wiso P
Wi P Manitor
vit P]

Click “Monitor” to get and display the hardware monitor values. If a certain data
value is not supported in the platform, its TextBox will be shown as color gray
(disabled).

25

Hardware Control

SusiDemo

The function now contains the Pulse Width Modulation (PWM) control over devices,
such as the fan speed, the panel brightness...etc.

The bigger the value given, the higher the duty cycle (power) of the pulse, e.g. the fan
will have a higher speed in RPM.

26

About

SusiDemo

ADVANTECH

This page contains the platform name, the BIOS version...etc, i.e. the information
retrieve by SUSI APIs.

27

Programming Overview

Header Files

s SUSLH includes API declaration, constants and flags that are required for
programming.

= DEBUG.H/ERRDRV.H / ERRLIB.H are for debug code definition.
DEBUG.H - Function index codes
ERRLIB.H - Library error codes
ERRDRV.H - Driver error codes

Library Files
m Susi.lib is for library import and Susi.dll is a dynamic link library that exports
all the API functions.

Demo Program
m SusiDemo program, released with source code, demonstrates how to fully use
SUSI APIs. The program is written in the latest programming language C#.

Drivers

There are totally seven drivers for SUSI -CORE /WDT/GPIO/SMBus/I1C/VC/HWM.
E.g. Driver CORE is for SusiCore- prefixed APIs, and so on.

To note that a driver will be loaded only if its corresponding function set is supported
by a platform.

Installation File

In Windows CE, files and drivers mentioned above are already built-in in image.

In Windows XP, you have to run Setup.exe for installation. To avoid double
installation, please make sure you have removed any existing SUSI drivers, either by
the Setup.exe or do it manually in Device Manger.

DIl functions

SusiDII- APIs are driver-independent, i.e. they could be called without any drivers.
In Windows XP, after drivers having been installed, users have to call
SusiDI I Init for initialization before using any other APIs that are not SusiDl1-
prefixed. Before the application terminates, call SusiDIIUnInit to free allocated
system resources.

28

And Once API call fails, use SusGetLastError to get the error report. An error
value will be either

Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code
The Function Index Code tells from calling which API the error results and the
library/Driver Error Code indicates the actual error type, i.e. is it an error in library or
in driver. For a complete list of error codes, please refer to Appendix

m SusiDIlInit

s SusiDIllIUnInit

m SusiDlIGetLastError
s SusiDlIGetVersion

Core functions

SusiCore- APIs are available for all Advantech SUSI-enabled platforms to get the
board information, such as the platform name and BIOS version. New Boot Logger
feature available with APIs SusiCoreAccessBootCounter and
SusiCoreAccessBootCounter for monitoring system reboot times, total OS
run time and continual run time.

m SusiCoreGetPlatformName

m SusiCoreGetBIOSVersion

m SusiCoreAccessBootCounter
m SusiCoreAccessRunTimer

Watchdog (WD) functions

Hardware watchdog timer is a common feature among all Advantech platforms. In
user’s application, call SusiWDSetConfig with specific timeout value to start the
watchdog timer countdown, meanwhile create a thread or timer to periodically refresh
the timer by SusiWDTrigger before it expires. If application ever hangs, it will fail
to refresh the timer, thus watchdog reset will cause a system reboot.

s SusiWDGetRange
s SusiWDSetConfig
s SusiWDTrigger

s SusiWDDisable

GPIO (10) functions

There are two sets of GPIO functions. It is highly recommended to use the new one.

29

With input pins statuses read and output pins statuses write, more flexibility is added
to allow easy pin direction change as needed, and also the capability of reading the
statuses of output pins.

New programmable GPIO function set:
m Susil0CountEx

m SusilOQueryMask

m SusilOSetDirection

m SusilOSetDirectionMulti
m SusilOReadEx

m SusilOReadMultiEx

m SusilOWriteEx

m SusilOWriteMultiEx

Previous function set:

s SusilOCount

s SusilOInitial

m SusilORead

m SusilOReadMulti;
m SusilOWrite

m SusilOWriteMulti

To know the board pins allocation and their default direction, please refer to
Appendix.

SMBus functions
We support the SMBus 2.0 compliant protocols in SusiSMBus- APIs :

m Quick Command — SusiSMBusReadQuick/SusiSMBusWriteQuick

m Byte Receive/Send — SusiSMBusReceiveByte/SusiSMBusSendByte
m Byte Data Read/Write — SusiSMBusReadByte/SusiSMBusWriteByte
s Word Data Read/Write — SusiSMBusReadWord/SusiSMBusWr iteWord

An additional API used for probing, which is very useful:

s SusiSMBusScanDevice

According to specification, address to each slave device (slave address) is expressed
as a 7-bit Hex number ranging from 0x00 to 0x7F, however the actual addresses used
for R/W are

30

8-bit write address = 7-bit address <<1(left shift one) with LSB O(for write)

8-bit read address = 7-bit address <<1(left shift one) with LSB 1(for read)
E.g. Given a 7-bit slave address 0x20, the write address is 0x40 and the read address
is 0x41.
Here in all APIs (except for SusiSMBusScanDevice), parameter
SlaveAddress is the 8-bit address and users don’t need to care about giving it as a
R or W address since the actual R/W is taken care by the API itself, i.e. you could
even give write address, say 0x41 for APIs with write operation and get the right
result, and vice versa.
SusiSMBusScanDevice is used to probe whether an address is currently used by
certain devices on a platform. By scanning from 0x00 to 0x7f, you could know which
addresses are occupied, i.e. if you want to connect a new device, avoid those
addresses; or by probing before and after connecting the new device, you could
quickly know its address. The SlaveAddress_7 parameter given in this API is
with 7-bit address.

[IC functions

The APIs here cover IIC standard mode operations with a 7-bit device address:
s SusillICRead

m SusillCWrite

s SusillICWriteReadCombine

11C versus SMBus - compatibility

About platforms that do not have 11C but SMBus, i.e. a call to Susi 1 ICAvailable
returns SUS1_11C_TYPE_SMBUS (2). Users might be able to use SMBus as a
substitute; however, whether it’s with fully or partially support depends on the types
of SMBus controllers.

In AMD platforms, we have implemented the SMBus driver to be totally IIC
standard mode compatible; users could use the 11C APIs implemented by the SMBus
controller with 11CType = SUSI_11C_TYPE_SMBUS to communicate with all
kinds of I1C devices.

In Intel and VIA’s platforms, the currently compatible protocols are

s SusillICRead withReadLen =1

m SusillCWritewithWriteLen=1

Among all platforms that have SMBus support, the IIC devices with 7-bit slave
addresses could also be scanned by SusiSMBusScanDevice.

We are now working on more I1C compatible APIs in Intel and VIA’s controllers, they
will be supported soon.

31

For more details on platform 11C/SMBus support, please refer to Appendix A.

VGA Control (VC) functions

SusiVC- functions supports VGA signal ON/OFF on all SUSI-enabled platforms
and also LCD brightness adjustment.

s SusiVCScreenOn

s SusiVCScreenOff

s SusiVCGetBrightRange
s SusiVCGetBright

s SusiVCSetBright

One of the user scenarios of SusiVCScreenOn and SusiVCScreenOffT is to
have the the display signal disabled when system idles after certain period of time to

expand the panel life span.

Hardware Monitoring (HWM) functions

Sus iHWM- functions support the system health supervision by retrieving the values
of board sensors of voltage, temperature and fan. In some platforms, it is possible to
control the fan speed of CPU/System fans, please use it cautiously.

s SusiHWMAvailable

s SusiHWMGetFanSpeed

s SusiHWMGetTemperature
s SusiHWMGetVoltage

s SusiHWMSetFanSpeed

32

Migration from Early Versions

m Almost all APIs are compatible with SUSI V11, except for 2 APIs. A call to
SusiSMBusReadByteMulti or SusiSMBusWriteByteMulti equals
calls to SusiSMBusReadByte or SusiSMBusWriteByte with a loop.
They have nothing to do with certain IIC/SMBus protocols in official
specifications. For clarification, we decided to get rid of them in SUSI V12.

For a complete list of backward compatible APIs, please refer to SUSI.h

m The API return types have been unified in SUSI V12. The return type can be
either
1. BOOL with TRUE (a value 1 for success) or FALSE (a value 0 for failure)
2. int with -1 (Fail), 0 (not exist/not support) and other positive values with
different meanings

33

SUSI APl Programmer’s Documentation

All the APIs are with BOOL return type, except the Susi*Avai lable ones or some
special cases that are with type int. If any function call fails, i.e. BOOL with FALSE,
or int with -1, the error code could always be retrieved by an immediate call to
SusiGetLastError.

SusiDIInit

Initialize the Susi Library.

BOOL SusiDllInit(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

An application must call SusiDIlInit before calling any other non SusiDII-
functions.

34

SusiDIIUnInit

Uninitialize the Susi Library.

BOOL SusiDIlUnInit(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Before an application terminates, it must call SusiDIlUnInit if it has
successfully called SusiDIlInit. Calls to SusiDIlInit and
SusiDIIUnInit can be nested but must be paired.

35

SusiDIIGetVersion

Retrieve the version numbers of SUSI Library.

void SusiDlIGetVersion(WORD *major, WORD *minor);

Parameters
major
[out] Pointerto a variable containing the major version number.
minor

[out] Pointerto a variable containing the minor version number.

Return Value
None.

Remarks
This function returns the version numbers of SUSI. It’s suggested to call this
function first and compare the numbers with the constants SUS1_LIB_VER_MJ
and SUSI_LIB_VER_MR in header file SUSI.H to insure the library compatibility.

36

SusiDIIGetLastError

This function returns the last error code value.

int SusiDlIGetLastError(void);

Parameters
None

Return Value
The code of error reason for the last function call with failure.

Remarks

You should call the SusiDl1GetLastError immediately when a function's
return value indicates failure.
The return error code will be either

Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code
The Function Index Code tells from calling which API the error results and the
library/Driver Error Code indicates the actual error type, i.e. is it an error in library
or in driver. For a complete list of error codes, please refer to Appendix.

37

SusiCoreAvailable

Check if Core driver is available.

int SusiCoreAvailable (void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusiCore- APIs.
1 The function succeeds; the platform supports Core.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

38

SusiCoreGetBlIOSVersion

Get the current BIOS version.

BOOL SusiCoreGetBlOSVersion(TCHAR *BIOSVersion, DWORD
*size);

Parameters
BIOSVersion
[out] Pointer to an array in which the function returns the string of BIOS
version.
size
[in/out]
Pointer to a variable that specifies the size, in TCHAR, of the array
pointed to by the BIOSVersion parameter.
If BIOSVersion is given as NULL, when the function returns, the
variable will contain the array size required for the BIOS version.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call the function twice, first by giving BIOSVersion as NULL to get the array
size required for the string. Then allocate a TCHAR array with the size required
and give the array with its size as parameters to get the BIOS version. Note that the
BI1OS version cannot be correctly got if it’s in released version.

39

SusiCoreGetPlatformName

Get the current platform name.

BOOL SusiCoreGetPlatformName(TCHAR *PlatformName, DWORD
*size);

Parameters
PlatformName
[out] Pointer to an array in which the function returns the string of platform
name.
size
[in/out]
Pointer to a variable that specifies the size, in TCHAR, of the array
pointed to by the PlatformName parameter.
If PlatformName is given as NULL, when the function returns, the
variable will contain the array size required for the platform name.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call the function twice, first by giving PlatformName as NULL to get the array
size required for the string. Then allocate a TCHAR array with the size required
and give the array with its size as parameters to get the platform name. Note that
the platform name cannot be correctly got if the BIOS is in released version.

40

SusiCoreAccessBootCounter

Access the information of boot counter. A boot counter is used to count the number

of boot times.

BOOL SusiCoreAccessBootCounter(DWORD mode, DWORD OPFlag,
BOOL *enable, DWORD *value);

Parameters
mode
[in] The value can be either
ESCORE_BOOTCOUNTER_MODE_GET (0)
- To get information from counter.
ESCORE_BOOTCOUNTER_MODE_SET (1)
- To set information to counter.
OPFlag
[in] The operation flag can be the combination of
ESCORE_BOOTCOUNTER_STATUS (1)
- The operation is on the parameter enable
ESCORE_BOOTCOUNTER_VALUE (2)
- The operation is on the parameter value
enable
[in/out]
If OPFlag contains ESCORE_BOOTCOUNTER_STATUS (1):
With mode equals ESCORE_BOOTCOUNTER_MODE_GET(O),
when the function returns, enable will contain the status of the
counter as TRUE (enabled) or FALSE (disabled).
With mode equals ESCORE_BOOTCOUNTER_MODE_SET(1),
enable is a pointer to a variable that contains the status to set. A
TRUE to start the counter, FALSE to stop.
value
[in/out]

If OPFlag contains ESCORE_BOOTCOUNTER_VALUE (2):
With mode equals ESCORE_BOOTCOUNTER_MODE_GET(O0),
when the function returns, value will contain the number of reboot

count.
With mode equals ESCORE_BOOTCOUNTER_MODE_SET(1),
value is a pointer to a variable that contains the reboot count to set.

41

Give a value 0 to clear the count or any other values for counting from.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

In windows XP, the boot counter information is stored in registry values
HKEY_LOCAL_MACHINE \SYSTEM\SusiBootCounter\Enable
HKEY_LOCAL_MACHINE \SYSTEM\SusiBootCounter\BootTimes

In windows CE,
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\BootCounter\Enable
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\BootCounter\BootTimes

The information will be lost only if the registry values have been wiped out.

For definition of boot counter flags, please refer to Appendix.

42

SusiCoreAccessRunTimer

Access the information of run timer. A run timer is used to count the system
running time.

BOOL SusiCoreAccessRunTimer(DWORD mode, PSSCORE_RUNTIMER
pRunTimer);

Parameters
mode
[in] The value can be either
ESCORE_BOOTCOUNTER_MODE_GET (0)
- Get information from counter.
ESCORE_BOOTCOUNTER_MODE_SET (1)
- Set information to counter.
pRunTimer
[in/out]
Pointer to a SSCORE_RUNTIMER structure to set or get the timer
information, please see next page.
Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

In windows XP, the information is stored in registry values
HKEY_LOCAL_MACHINE\SY STEM\SusiRunTimer\Running
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimer\Autorun
HKEY_LOCAL_MACHINE\SY STEM\SusiRunTimer\ContinualOnTime
HKEY_LOCAL_MACHINE\SYSTEM\SusiRunTimer\TotalOnTime

In windows CE, they are in
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\RunTimer\Running
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\RunTimer\Autorun
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\RunTimer\ContinualOnTime
HKEY_CURRENT_USER\Software\Advantech\Susi\Core\RunTimer\TotalOnTime

The information will be lost only if the registry values have been wiped out.

For detail definition about structure SSCORE_RUNTIMER, please refer to next

page.

43

SSCORE_RUNTIMER

This structure represents the run timer information.

typedef struct {
DWORD dwOPFlag;
BOOL 1sRunning;
BOOL isAutorun;
DWORD dwTimeContinual;
DWORD dwTimeTotal;
} SSCORE_RUNTIMER, *PSSCORE_RUNTIMER;

Members
dwOPFlag
The operation flag can be the combination of
ESCORE_RUNTIMER_STATUS_RUNNING (1)
- The operation is on the member isRunning
ESCORE_RUNTIMER_STATUS_AUTORUN (2)
- The operation is on the member isAutorun
ESCORE_RUNTIMER_VALUE_CONT INUALON(4)
- The operation is on the member dwTimeContinual
ESCORE_RUNTIMER_VALUE_TOTALON(8)
- The operation is on the member dwTimeTotal
isRunning
TURE indicates the timer is running now, FLASE indicates not.
isAutorun
TRUE states the timer will start automatically upon startup, i.e. it will be running
each time when the system reboots.
dwTimeContinual
Specify the system continual-on time in minutes, i.e. the OS running time
without a system reboot. Once reboot, it will be reset to 0.
dwTimeTotal
Specify the system total-on time in minutes, i.e. the total time accumulates while

OS is running.

44

SusiWDAvailable

Check if watchdog driver is available.

BOOL SusiWDAvailable(void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusiwD- APIs.
1 The function succeeds; the platform supports Watchdog.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

45

SusiWwDGetRange

Get the step, minimum and maximum values of watchdog timeout.

BOOL SusiWDGetRange(DWORD *minimum, DWORD *maximum,
DWORD *stepping);

Parameters
minimum

[out] Pointerto a variable to get the minimum timeout value in milliseconds.
maximum

[out] Pointer to a variable to get the maximum timeout value in
milliseconds.
stepping

[out] Pointer to a variable to get the resolution of timeout value in
milliseconds.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The values may vary from platform to platform; depend on the hardware
implementations of watchdog timer. For example, if minimum timeout is 1000,

maximum timeout is 63000, and the step is 1000, it means the watchdog timeout
canbel, 2,3, ..., 63 seconds.

46

SusiWDSetConfig

Start watchdog timer with specified timeout value.

BOOL SusiWDSetConftig(DWORD delay, DWORD timeout);

Parameters
delay
[in] Specifies a value in milliseconds which will be added to “the first”
timeout period. This allows the application to have sufficient time to do
initialization before the first call to SusiWDTrigger and still be
protected by the watchdog.
timeout
[in] Specifies a value in milliseconds for the watchdog timeout.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure

Remarks
Once the watchdog has been activated, its timer begins to count down. The
application has to periodically call SusiWDTrigger to refresh the timer before it
expires, i.e. reload the watchdog timer within the specified timeout or the system
will reboot if it counts to 0.
Actually a subsequent call to SusiWDTrigger equals a call to
SusiWDSetConfig with delay 0 and the original timeout value, so if you
want to change the timeout value, give a call to SusiWDSetConfig with new
timeout value instead of SusiWDTrigger.
Use SusiWDGetRange to get the acceptable timeout values.

47

SusiWDTrigger

Reload the watchdog timer back to its timeout value given originally in
SusiWwDSetConfig to prevent the system from reboot.

BOOL SusiWDTrigger(void);

Parameters
None

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A watchdog protected application has to call SusiWDTrigger continuously to
indicate that it is still working properly to prevent a system restart. The first call to
SusiWDTrigger in the middle of delaying resulting from a previous call to
SusiWDSetConTig causes the delay timer to be canceled immediately and starts
watchdog timer countdown from timeout value. So it is always a good choice for
users to have a longer delay time in SusiWDSetConTfig.

48

SusiWwDDisable

Disable the watchdog, stop its timer countdown.

BOOL SusiWDDisable(void);

Parameters
None

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
If watchdog protection is no longer required by an application, it can call
SusiWDDisable to disable the watchdog. A call to SusiWDDisable in the
middle of delaying resulting from a previous call to SusiWDSetConfig causes
the delay timer to be canceled immediately and stops watchdog timer countdown.
Only a few hardware implementations that the watchdog timer cannot be stopped
once it has been activated, if this is the case, the call will return with FALSE.

49

SusilOAvailable

Check if GPIO driver is available.

int SusiCoreAvailable (void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusilO- APIs.
1 The function succeeds; the platform supports GPIO.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

50

SusilOCountEx

Query the current number of input and output pins.

BOOL Susil10CountEx(DWORD *inCount, DWORD *outCount)

Parameters
inCount
[out] Pointer to a variable in which this function returns the count of input
pins.
outCount
[out] Pointer to a variable in which this function returns the count of output
pins.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The number of total GP1O pins equals the number of input pins plugs the number of
output pins. With this constant pin number, the numbers of input and output pins
may vary in accordance with current pin direction.

51

SusilOQueryMask

Query the GPIO mask information.

BOOL Susil10QueryMask(DWORD flag, DWORD *Mask)

Parameters
flag

[in] Value given to indicate the type of mask to retrieve, it can be one of the

following values:

Static masks
ESI0O_SMASK_PIN_FULL (1)

ESI0_SMASK_CONFIGURABLE (2)

Dynamic masks
ESI0_DMASK_DIRECTION (0x20)
Mask

[out] Pointerto a variable in which this function returns the queried mask.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A mask is expressed as a series of binary digits. Each bit value stands for
different meaning for each pin (bit 0 for pin 0, bit 1 for pin 1, bit 2 for pin 2, ...),

depends on the mask type:
A bit value 1 stands for a pin with

1. Input direction
2. Status HIGH

3. Direction changeable.
Or a bit value O stands for a pin with

1. Output direction
2. Status LOW

3. Direction unchangeable

Here are the definitions for masks:
= ESI0_SMASK_PIN_FULL

- If there are total 8 GPIO pins (GPIO 0 ~ 7) in a platform, the full pin mask
would be OxFF, or in binary 11111111, i.e. the number of 1s corresponds to

52

the number of pins.
m ESIO_SMASK CONFIGURABLE

- This is the mask to indicate which pins are directions changeable. If all the

8 pins are changeable, the mask would be OxFF.
m ESIO_DMASK_DIRECTION

- The current direction of pins. If the mask is OXAA, or in binary 10101010,
it means the even pins are output pins and the odd pins are input pins.

53

SusilOSetDirection

Set direction of one GPIO pin as input or output.

BOOL SusilOSetDirection(BYTE PinNum, BYTE 10, DWORD
*PinDirMask) ;

Parameters
PinNum

[in] Specifies the GPIO pin demanded to be changed, ranging from 0 ~ (total

number of GPIO pins minus 1).
10

[in] Specifies the pin direction to be set.

PinDirMask

[out] Pointer to a variable in which the function returns the latest direction
mask after the pin direction is set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
An 10 with 1 to set the pin as input, 0 to set the pin as output.
The function can only set the direction of one of the pins that is direction
configurable. If the pin number specified is an in-configurable pin or an invalid
pin, the function call will fail and return with FALSE.

54

SusilOSetDirectionMulti

Set directions of multiple pins at once.

BOOL SusilOSetDirectionMulti(DWORD TargetPinMask, DWORD
*PinDirMask) ;

Parameters
TargetPinMask

[in] Specifies the mask of GPIO output pins demanded to be written.

PinDirMask
[in/out]
Specifies the directions of pins to be set in a Bitwise-ORed manner.
After the function call returns with TRUE, it contains the latest
direction mask after set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you set to the directions of GPIO pin 0, 1, 6, 7. Give parameter
TargetPinMask with a value 11000011, or 0xC3. Bit 0 stand for GPIO 0, bit 1
stand for GPIO 1, and so on.
If you want to set pin 0 as input, pin 1 as output, pin 6 as input and pin 7 as output.
Give value in parameter PinDirMask as 01XXXXO01, X is for don’t care, you
could simply assign a O for it, i.e. 0x41.

55

SusilOReadEXx

Read current status of one GPIO input or output pin.

BOOL SusilOReadEx(BYTE PinNum, BOOL *status)

Parameters
PinNum
[in] Specifies the GPIO pin demanded to be read, ranging from 0 ~ (total
number of GPIO pins minus 1).
status

[out] Pointerto a variable in which the pin status returns.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
If the pin is in status high, the value got in status will be 1. If the pin is in status
low, it will be zero. The function is capable of reading the status of either an input
pin or an output pin.

56

SusilOReadMultiEx

Read current statuses of multiple pins at once regardless of the pin directions.

BOOL SusilOReadMultiEx(DWORD TargetPinMask, DWORD
*StatusMask) ;

Parameters
TargetPinMask

[in] Specifies the mask of GPIO pins demanded to be read.

StatusMask
[out] Statuses of pins in Bitwise-ORed. For pins that are not specified in
TargetPinMask, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you want to read the statuses of GPIO pin 0, 1, 6, 7. Give
parameter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for
GPIO 0, bit 1 stand for GPIO 1, and so on. Again, if the pin is in status high, the
value got in relevant bit of StatusMask will be 1. If the pin is in status low, it
will be zero.

57

SusilOWTriteEx

Set one GPIO output pin as status high or low.

BOOL SusilOWriteEx(BYTE PinNum, BOOL status);

Parameters
PinNum
[in] Specifies the GPIO pin demanded to be written, ranging from 0 ~ (total
number of GPIO pins minus 1).
status
[in] Specifies the GPIO status to be written.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function can only set the status of one of the output pins. If the pin number
specified is an input pin or an invalid pin, the function call will fail and return
with FALSE. A status with 1 to set the pin as output high, 0 to set the pin as
output low.

58

SusilOWriteMultiEx

Set statuses of multiple output pins at once.

BOOL SusilOWriteMultiEx(DWORD TargetPinMask, DWORD
StatusMask) ;

Parameters
TargetPinMask

[in] Specifies the mask of GPIO output pins demanded to be written.

StatusMask
[in] Statuses of pins to be set in Bitwise-ORed. For pins that are not
specified in TargetPinMask, the related bit value is invalid.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
For example, if you want to write the statuses of GPIO output pin 0, 1, 6, 7. Give
parameter TargetPinMask with a value 11000011, or OxC3. Bit 0 stand for
GPIO 0, bit 1 stand for GPIO 1, and so on.
If you want to set pin 0 as high, pin 1 as low, pin 6 as high and pin 7 as low. Give
parameter StatusMask with a value 01XXXX01, X is for don’t care pin, you
could simply assign a O for it, i.e. 0x41.

59

SusiSMBusAvailable

Check if SMBus driver is available.

int SusiSMBusAvailable(void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusiSMbus- APIs.
1 The function succeeds; the platform supports SMBus.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

60

SusiSMBusScanDevice

Scan if the address is taken by one of the slave devices currently connected to the
SMBus.

int SusiSMBusScanDevice(BYTE SlaveAddress_7)

Parameters
SlaveAddress

[in] Specifies the 7-bit device address, ranging from 0x00 — Ox7F.

Return Value

value Meaning

-1 The function fails.

The function succeeds; the address is not occupied.
The function succeeds; there is a device to this address.

Remarks
There could be as much as 128 devices connected to a single SMBus. For more
information about how to use this API, please refer to “Programming Overview”
part “SMBus functions”.

61

SusiSMBusReadQuick

Turn a SMBus device function on (off) or enable (disable) a specific device mode.

BOOL SusiSMBusReadQuick(BYTE SlaveAddress);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

62

SusiSMBusWriteQuick

Turn a SMBus device function off (on) or disable (enable) a specific device mode.

BOOL SusiSMBusWriteQuick(BYTE SlaveAddress);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

63

SusiSMBusReceiveByte

Receive information in a byte from the target slave device in the SMBus.

BOOL SusiSMBusReceiveByte(BYTE SlaveAddress, BYTE
*Result);

Parameters
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress

could be ignored.
Result

[out] Pointer to a variable in which the function receives the byte
information.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

A simple device may have information that the host needs to be received in the
parameter Result.

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

64

SusiSMBusSendByte

Send information in a byte to the target slave device in the SMBus.

BOOL SusiSMBusSendByte(BYTE SlaveAddress, BYTE Result);

Parameters
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress

could be ignored.
Result

[in] Specifies the byte information to be sent.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
A simple device may recognize its own slave address and accept up to 256 possible
encoded commands in the form of a byte given in the parameter Resul t.
For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

65

SusiSMBusReadByte

Read a byte of data from the target slave device in the SMBus.

BOOL SusiSMBusReadByte(BYTE SlaveAddress, BYTE
RegisterOffset, BYTE *Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

RegisterOffset
[in] Specifies the offset of the device register to read data from.
Result

[out] Pointerto a variable in which the function reads the byte data.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

66

SusiSMBusWriteByte

Write a byte of data to the target slave device in the SMBus.

BOOL SusiSMBusWriteByte(BYTE SlaveAddress, BYTE
RegisterOffset, BYTE Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

RegisterOffset
[in] Specifies the offset of the device register to write data to.
Result

[in] Specifies the byte data to be written .

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

67

SusiSMBusReadWord

Read a word (2 bytes) of data from the target slave device in the SMBus.

BOOL SusiSMBusReadWord(BYTE SlaveAddress, BYTE
RegisterOffset, WORD *Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

RegisterOffset
[in] Specifies the offset of the device register to read data from.
Result

[out] Pointerto a variable in which the function reads the word data.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The first byte read from slave device will be placed in the low byte of Result,
and the second byte read will be placed in the high byte.
For more information about how to use this API, please refer to “Programming
Overview”, part “SMBus functions”.

68

SusiSMBusWriteWord

Write a word (2 bytes) of data to the target slave device in the SMBus.

BOOL SusiSMBusWriteWord(BYTE SlaveAddress, BYTE
RegisterOffset, WORD Result);

Parameters
SlaveAddress

[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.

RegisterOffset
[in] Specifies the offset of the device register to write data to.
Result

[in] Specifies the word data to be written .

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The low byte of Result will be send to the slave device first and then the high
byte. For more information about how to use this API, please refer to

“Programming Overview”, part “SMBus functions”

69

SusilICAvailable

Check if 1°C driver is available and also get the I1C type supported.

int SusillCAvailable();

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not

support any SusillC - APlIs.

SUSI_IIC_TYPE_PRIMARY (1) | The function succeeds; the platform supports
only primary IIC.

SUSI_IIC_TYPE_SMBUS (2) The function succeeds; the platform supports
only SMBus implemented I1C.

SUSI_I11C_TYPE_BOTH (3) The function succeeds; the platform supports
both primary 11C and SMBus IIC.

Remarks
After calling SusiDlIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

70

SusillICRead

Read bytes of data from the target slave device in the 1°C bus.

SUSI_API BOOL Susil1CRead(DWORD 11CType, BYTE SlaveAddress,
BYTE *ReadBuf, DWORD ReadLen);

Parameters
11CType
[in] Specifies the I°C type, the value can either be
SUSI1_I11C_TYPE_PRIMARY (1)
SUSI_1I1C_TYPE_SMBUS (2)
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.
ReadBuf
[out] Pointer to a variable in which the function reads the bytes of data.
ReadLen
[in] Specifies the number of bytes to be read.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusillCAvailable first to make sure the support I°C type. For more
information about how to use this API, and the relationship between IIC and
SMBus, please refer to “Programming Overview”, parts “SMBus functions” to
“IIC versus SMBus — compatibility”

71

SusilICWrite

Write bytes of data to the target slave device in the I°C bus.

BOOL SusilICWrite(DWORD 11CType, BYTE SlaveAddress, BYTE
*WriteBuf, DWORD WriteLen);

Parameters
11CType
[in] Specifies the I°C type, the value can either be
SUSI1_I11C_TYPE_PRIMARY (1)
SUSI_1I1C_TYPE_SMBUS (2)
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.
WriteBuf
[in] Pointer to a byte array which contains the bytes of data to be written.
WritelLen
[in] Specifies the number of bytes to be written.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusillCAvailable first to make sure the support I°C type. For more
information about how to use this API, and the relationship between IIC and
SMBus, please refer to “Programming Overview”, parts “SMBus functions” to
“IIC versus SMBus — compatibility”.

72

SusilICWriteReadCombine

A sequential operation to write bytes of data followed by bytes read from the target
slave device in the 1°C bus.

BOOL SusillICWriteReadCombine(DWORD 11CType, BYTE
SlaveAddress, BYTE *WriteBuf, DWORD WriteLen, BYTE *ReadBuf,
DWORD ReadLen);

Parameters
11CType
[in] Specifies the I°C type, the value can either be
SUSI1_I11C_TYPE_PRIMARY (1)
SUSI_1I1C_TYPE_SMBUS (2)
SlaveAddress
[in] Specifies the 8-bit device address, ranging from 0x00 — OxFF.
Whether to give a 1 (read) or O (write) to the LSB of SlaveAddress
could be ignored.
WriteBuf
[in] Pointer to a byte array which contains the bytes of data to be written.
WritelLen
[in] Specifies the number of bytes to be written.
ReadBuf
[out] Pointer to a variable in which the function reads the bytes of data.
ReadLen
[in] Specifies the number of bytes to be read.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

The function is mainly for EEPROM I%C devices - the bytes written first are used to
locate to a certain address in ROM, and the following bytes read will retrieve the
data bytes starting from this address.

Call SusillCAvailable first to make sure the support I°C type. For more
information about how to use this API, and the relationship between IIC and
SMBus, please refer to “Programming Overview”, parts “SMBus functions” to
“IIC versus SMBus — compatibility”

73

SusiVCAvailable

Check if VC driver is available and also get the feature support information.

BOOL SusiVCAvailable(void);

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform

does not support any SusiVC- APIs.

SUSI_VC_BRIGHT_CONTROL_AVAILABLE (1)

The function succeeds; the platform
supports only brightness APIs.

SUSI_VC_VGA_CONTROL_AVAILABLE (2)

The function succeeds; the platform
supports only screen on/off APIs.

SUSI_VC_BOTH_AVAILABLE (3)

The function succeeds; the platform
supports all SusiVC- APIs.

Remarks

After calling SusiDI I Init successfully, all Susi*Avai lable functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*-

functions.

74

SusiVCGetBrightRange

Get the step, minimum and maximum values in brightness adjustment.

BOOL SusiVCGetBrightRange(BYTE *minimum, BYTE *maximum,
BYTE *stepping);

Parameters
minimum
[out] Pointerto a variable to get the minimum brightness value.
maximum
[out] Pointerto a variable to get the maximum brightness value.
stepping
[out] Pointer to a variable to get the step of brightness up and down

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvailable firstto make sure if the brightness control is available.
The values may vary from platform to platform; depend on the hardware
implementations of brightness control. For example, if minimum is 0, maximum is
255, and stepping is 5, it means the brightness can be 0, 5, 10, ..., 255.

75

SusiVCGetBright

Get the current panel brightness.

BOOL SusiVCGetBright(BYTE *brightness);
Parameters
brightness

[out] Pointerto a variable in which this function returns the brightness.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvailable firstto make sure if the brightness control is available.

76

SusiVCSetBright

Set current panel brightness.

BOOL SusiVCSetBright(BYTE brightness);

Parameters
brightness

[in] Specifies the brightness value to be set.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call SusiVCAvai lable first to make sure if the brightness control is available.
In some implementations, the higher the brightness value, the higher the voltage fed
to the panel. So please make sure the voltage toleration of your panel prior to the
API use.

77

SusiVCScreenOn

Turn on VGA display signal.

BOOL SusiVCScreenOn(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function enables both the LCD and CRT display signals.

78

SusiVCScreenOff

Turn off VGA display signal.

BOOL SusiVCScreenOff(void);

Parameters
None.

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The function disables both the LCD and CRT display signals.

79

SusiHWMAvailable

Check if the hardware monitor driver is available.

int SusiHWMAvailable();

Parameters
None.

Return Value

value Meaning
-1 The function fails.
0 The function succeeds; the platform does not support
SusiHWM- APIs.
1 The function succeeds; the platform supports HWM.
Remarks

After calling SusiDIIInit successfully, all Susi*Available functions are
use to check if the corresponding features are supported by the platform or not. So
it is suggested to call Susi*Avai lable before using any Susi*- functions.

80

SusiHWMGetFanSpeed

Read the current value of one of the fan speed sensors, or get the types of available
Sensors.

BOOL SusiHWMGetFanSpeed(WORD fanType, WORD *retval, WORD
*typeSupport = NULL);

Parameters
fantype
[in] Specifies a fan speed sensor to get value from. It can be one of the
flags
FCPU (1) -CPU Fan
FSYS (2) - System/ Chassis fan
retval

[out] Pointto avariable in which this function returns the fan speed in RPM

Typesupport
[out]
If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed
Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call the function first with a non-NULL typesupport to know the available fan
sensors and a following call to get the fan speed required.

81

SusiHWMGetTemperature

Read the current value of one of the temperature sensors, or get the types of

available sensors.

BOOL SusiHWMGetTemperature(WORD tempType, float *retval,
WORD *typeSupport = NULL);

Parameters
tempType
[in] Specifies a temperature sensor to get value from. It can be one of the
flags
TCPU (1) - CPU temperature
TSYS (2) - System/ambient temperature
retval
[out] Point to a variable in which this function returns the temperature in
Celsius.
Typesupport
[out]
If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
Call the function first with a non-NULL typesupport to know the available

temperature sensors and a following call to get the temperature required.

82

SusiHWMGetVoltage

Read the current value of one of the voltage sensors, or get the types of available
Sensors.

BOOL SusiHWMGetVoltage(DWORD voltType, fTloat *retval,
DWORD *typeSupport = NULL);

Parameters
voltType

[in] Specifies a voltage sensor to get value from. It can be one of the flags
VCORE (1<<0)

V25 (1<<1)
V33 (1<<2)
V50 (1<<Q)
V120 (1<<4)
VSB (1<<b)

VBAT (1<<6)
VN50 (1<<7)
VN120 (1<<8)
VIT (1<<9)
retval
[out] Pointto a variable in which this function returns the voltage in Volt.
Typesupport
[out]
If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available sensors in flags bitwise-ORed

Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks

Call the function first with a non-NULL typesupport to know the available fan
sensors and a following call to get the voltage required.

83

SusiHWMSetFanSpeed

Control the speed of one of the fans, or get the types of available fans.

BOOL SusiHWMSetFanSpeed(WORD fanType, BYTE setval, WORD
*typeSupport = NULL);

Parameters
fantype
[in] Specifies a fan to be controlled. It can be one of the flags
FCPU (1) -CPU Fan
FSYS (2) - System/ Chassis fan
setval
[in] Specifies the value to set, ranging from 0 to 255.

Typesupport
[out]
If the value is specified as a pointer (non-NULL) to a variable, it will
return the types of available fans in flags bitwise-ORed
Return Value
TRUE (1) indicates success; FALSE (0) indicates failure.

Remarks
The fan speed is controlled by Pulse Width Modulation (PWM):
Duty cycle (%) = (setval/ 255) * 100%
And the default duty cycle is set to 100%, i.e. the maximal fan speed.
Call the function first with a non-NULL typesupport to know the available fan
sensors and a following call to set the fan speed.

84

Appendix A - Support Platform List

Windows XP

Platform

Programmahle
GPIO

GPIO

SMBus

SMBus
Enhance
Procotols

Boot
Logager

Watchdog

HW
Monitor

Hardware
Control

HotKey VGA
Control

Backlight
On/oft

Brightness

Auto-
Brightness

EmbeddedATX

AlB-240

AlMB-240

AlMB-251

AlMB-340

AlB-350

AlMB-554

AlMB-640

AlMB-E41

Q|C(oD|C|(o|0|C

Q(Qo|0|0|0|0|0

Q(Qo|0|0|0|0|0

c(o(o|o|o|0|0|o

ISA SBC

PCA-BTT3

o

@]

@]

o

@]

PCI SBC

FCI-6570

FCI-6872

FCI-6880

PCI-6581

FCI-6886

D|0|0|0|0

O|0|0|0|o

O|0|0|0|o

o(o|o|o

O|0|0|0

PC/104

PCM-3353

PCM-3370

Ql

FCM-3372

PCM-3375

PChM-3380

PCM-3386

Qo]

FCM-4153

FCM-4170

Q|0|0|0|0|0|0|0

0|0|0|0|0|C|C|o

Qo|C(o|0|C(a|O

0|0|0|0|0|C|C|o

Platform

Programmable
GPIO

GPIO

SMBus

SMBus
Enhance
Procotols

Boot
Laogger

Watchdog

Monitor

Hardware
Control

HotHey VGA
Control

Backlight
OnfOrt

Brightness

Aurto-
Brightness

EPIC

PCM-4372

PCh-4350

PCh-4336

PCh-4390

00|00

D000

0|0|0|o

D000

0|0|0|o

o|o|c|o

D000

o|o|c|o

3.5" SBC

PCh-9371

PCW-9372

PCM-9373

ajiajla

PCM-9375

PCM-9377

PCh-9350

PCh-9381

PCh-9336

PCW-93357

D|0|0|0|0|0

000|000

O|0|0|0|0|o|0|0|0

D|0|0|0|0|0|0|0|0

D|0|0|0|0

0|0|0|0

D|0|0|0|0|0|0|0|0

C|o|Cc(o|c|o|c|a|o

5.25" SBC

PCW-9577

o

o

PCW-9579

FCM-9580

PCh-9581

PCh-9582

PCh-95356

PCh-9534

PCh-9537

Q000|100

000|000

O|O|0|0|o|0|0|0

D|0|0|0|0|0|0|0

D|0|0|0|0|0

O|0|0|0|0|0

D|0|0|0|0|0|0|0

C(o|Cc|o|c|a|o|o

86

Platform

Programmable
GPIO

GPIO

SMBus

SMBus
Enhance
Procotols

Boot
Logger

Watchdog

HW
Monitor

Hardware
Control

HotKey VGA
Control

Backlight
OO

Brightness

Auto-
Brightness

SOM (System ()

n Module)

SOM-4455(81)

SOM-4455(A7)

o|0

Q|0

SOM-447T5(A1)

SOM-44T5H (AL

SOn-4477

SOM-44381(A1)

SOM-4451(A2)

SOM-44381(A3)

SOM-4486(A1)

SOM-4436(A7)

SOM-4486(AT)

SOh-5780

SOM-5782

g|C|o|0|C|o|0|C(o|C

S(c(ojo|0|0|0|0|0|0|0|0|0

Qo000 |0|0|0|0|0|0|0

g|C|o|o|C|o|0|C|o|C|(a|o|o

S(c(ojo|0|0|0|0|0|0|0|0|0

g|C|o|o|C|o|0|C|o|C|(a|o|o

QOO0 |0|0|0|0

S(c(ojo|0|0|0|0|0|0|0|0|0

Qo000 |0|0|0|0|0|0|0

Embedded Box

Computers

ARK-1370

ARE-1380

ARK-3380

AR-2331

ARN-3382

ARN-3383

ARK-3384

ARk-3384

g|C{o|o|C (o

g|C{O|o|C (o
oo o] o] o,

AR-5280

EBFC-3500

EBFC-5240-32

EBFPC-5250-34

o|o|o|o|o|o|(o|o|O|0

O|0|0|D|D|0|0|0|0|0

C(o|Cc|(o|C|o|jo|c|jo|o|o|o

O|0|0|0|0|0|0|0|0|0|0|0

O|0|0|0|0|0|0|0|0|0|0

C(o|C|o|C|o|o|o|o|C|o

O|0|0|0|0|0|0|0|0|o

D|0|0|0|0|0|0|0|0|0

87

SMBus .
Programmable Boot HAW Hardware | HotKey VGA | Backlight . Auto-
Flatforim GPIO GPIO e SMBus Fl'El ':2::3?5 Logger Watchdog Monttor Control Comtrol On/Ofr Brightness Brightness

PCHSA (PICMG|1.0) Single Board Computers (SBC)
PCA-B186 == -- -- -- -- 8] O O 8] - - == == ==
PCA-B187 == -- -- -- -- 8] O O 8] - - == == ==
PCA-B190 == -- -- -- --] 8] o) 8] - - -- -- --
SHB Express (RICMG 1.3) System Host Boards (SHB)
PCE-5120 == -- -- -- -- 0 O 0 0 == == == =o
PCE-7210 o] QO -- -- -- o] O 0 0 -- == == =o
Medical Computing Platforms
POC-125 0] 0 -- 0 8] o] QO QO o] 8] 8] o] o
POC-174] 8] -- 8] O O O O O O O 8] O
POC-5155 8] 0 -- O O O O O O O 8] 8] O
POC-58175 8] 0 -- O O O O O O O 8] 8] O
Panel PC
PPiC-155T == -- -- -- -- 0 O -- - - O o 0 o
PPC-L106T 0] O -- O 8] 8] O -- -- 0 o 0 or
PPC-L127T 0] -- -- QO 8] 0 O -- -- 0) 0 o*

Notel: -- Not Support
Note2: (O* need to have a light sensor IC

88

Windows CE

Platform

Programmahble
GPIO

GPIO

I'C

SMBus

SMBus
Enhance
Procotols

Boot Logger

Watchdog

Hardware
Monitor

Hardware
Control

HotKey VGA
Control

Brightness

Backlight
COniOFt

Auto-
Erightness

ISA SBC

PCA-BTTI

@]

o

o

o

PC/104

PCM-3353

o

o

PCM-3370

FCM-3375

FCM-3330

PCM-3386

PCM-4143

PCM-4170

o000 |0|0|o

o|0|o(o|o|a|o

o(0|0|o|o

o(0|0|o|o

Q000|000

Q000|000

EPIC

FC-4330

FCM-4336

o|0

oo

o|0

o|0

0|0

0|0

3.5" SBC

PCM-9371

PCM-9372

PCM-9373

FCM-9375

FCM-9377

FCM-9330

PCh-9381

PCM-9386

PCM-9387

g|o(oo|C|o

Q[0|0|o|o|0

cojo|o|0|o|a|o|0

g|o|o|o|C|o|C|a|d

Qo000 |0|0|0|0|0

Qo0 |0|0|0|0|0

89

Platform

Programmable
GPIO

GPIO

SMBus

SMBus
Enhance
Procotols

Boot Logger

Watchdog

Hardware
Monitor

Hardware
Control

HotKey VGA
Control

Brightness

Backlight
On/foff

Auto-
Brightness

5.25" SBC

PCM-9577

O

PCM-9578

P Ch-95581

o

PCM-9536

O

Q00|0

Q0|00

oo|c|o

oo|c|o

SOM {Systen|

S0OmM-4455

) On Module)

o

SOM-4475

SOn-14481

S0OM-4486

o|0|0(0|C

Q000|000

Q000|000

o|0|0(o|0|g|o

o|o|o(o|o|o|o

Embedded B

¥ Computers

ARK-1370

ARK-1380

ARK-3380

ARK-3381

ARK-3382

ARK-3383

ARK-3384

ARK-3359

o|C{o|o|c|o

a}ia}ia}ia}ia}ie

QQ(o(o|0|0|0|0

a)la}a]{a}a}a}a}ie

Q(Q|Q|0|0|0|0

Q(Q|Q|0|0|0|0

o|C|o|o|C|o

o|C{o|o|c|o

o|C{o|o|c|o

90

Appendix B - GPIO Information

Look up the table for the GPIO pins assignment and the default pins direction for a
platform. E.g. AIMB-330(CN19) means that the platform name is AIMB-330 and its
GPIO pins are located in CN19 on the board.

AIMB-330(CN19)/ AIMB-340(CN19)/ AIMB-640(CN18)
The number of GPIO pins : 4 Inputs, 4 outputs

Pin Signal | Pin Signal

Pin-1 | INO Pin-2 | +5V

Pin-3 | IN1 Pin-4 | OUTO (Max 1A)
Pin-5 | IN2 Pin-6 | GND

Pin-7 | IN3 Pin-8 | OUT1 (Max 1A)
Pin-9 | GND Pin-10 | +12V

Pin-11 | Key Pin-12 | Key

Pin-13 | POUT3 | Pin-14 | GND

Pin-15 | OUT2 | Pin-16 | +12V

*. It should add the pull-up resistors to OUTO0, OUT1 on AIMB-330, AIMB-340 and
AIMB-640.

*PCM-3350(CN36,CN37)/PCM-3353(CN36,CN37)/PCM-3

372(CN2,CN23)/PCM-4153(CN36,CN37)
*PCM-XXXX(IN,O0UT)

...........................

ADVANTECH

IN ouT
Pin Signal | Pin Signal
Pin-1 | VCC Pin-1 OuTo
Pin-2 | INO Pin-2 OuUT1
Pin-3 | IN1 Pin-3 ouT2
Pin-4 | IN2 Pin-4 OuUT3
Pin-5 | IN3 Pin-5 GND

PCM-4372(CN2)/PCM-4386(CN7)/PCM-4380(CN7)/
PCM-4390(CN6)/PCM-9374(CN4)/PCM-9375(CN9)/
PCM-9377(27)/PCM-9380(CN7)/PCM-9386(CN7)/

PCM-9577(CN25)/PCM-9584(CN16)/PCM-9586(CN9)/

PCM-9679(CN7)

The number of GPIO pins : 4 Inputs, 4 outputs

Pin | Signal | Pin Signal
Pin-1 | VCC | Pin-2 | OUTO
Pin-3 | INO Pin-4 | OUT1
Pin-5 | IN1 Pin-6 | OUT2
Pin-7 | IN2 Pin-8 | OUT3
Pin-9 | IN3 Pin-10 | GND

*. It should add the pull-up resistors to the input pins on PCM-9577 for logic level.

PCM-9381(CN7)/ PCM-9387(CN7)

92 of 106

Susi Library Reference

The number of GPIO pins : 4 Inputs, 4 outputs

Trusied cPlatfurm Services

ADVANTECH

The number of GPIO pins : 4 Inputs

Pin

Signal

Pin-1

VCC

Pin-2

INO

Pin-3

IN1

Pin-4

IN2

Pin-5

IN3

Susi Library Reference

PCM-9578(CNS5)

The number of GPIO pins : 4 Inputs, 4 outputs

Pin | Signal | Pin Signal
Pin-1 | OUTO | Pin-2 | OUT1
Pin-3 | OUT2 | Pin-4 | OUT3
Pin-5 | OUT4 | Pin-6 | OUT5
Pin-7 | OUT6 | Pin-8 | OUT7
Pin-9 | GND | Pin-10 | GND

PCM-9580(CN16)

93 of 106

The number of GPIO pins : 4 Inputs, 4 outputs

Pin | Signal | Pin Signal
Pin-1 | INO Pin-2 | OUTO
Pin-3 | IN1 Pin-4 | OUT1
Pin-5 | IN2 Pin-6 | OUT2
Pin-7 | IN3 Pin-8 | OUT3
Pin-9 | GND | Pin-10 | GND

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

PCM-9581(CN9)/ PCM-9582(CN19)/ PCM-9586(CN9)/

PCM-9587(CN19)/PCI-6681(CN16)

The number of GPIO pins : 4 Inputs, 4 outputs

Pin Signal | Pin Signal
Pin-1 | INO Pin-2 | OUTO
Pin-3 | GND | Pin-4 | GND
Pin-5 | IN1 Pin-6 | OUT1
Pin-7 | VCC |Pin-8 | NC
Pin-9 | IN2 Pin-10 | OUT2
Pin-11 | GND | Pin-12 | GND
Pin-13 | IN3 Pin-14 | OUT3

*. It should add the pull-up resistors to In2, In3, OUTO, OUT1 on PCM-9581 and
PCM-9586.

PCI-6880 (CN2)

The number of GPIO pins : 4 Inputs, 4 outputs

Pin | Signal | Pin Signal
Pin-1 | INO Pin-2 | OUTO
Pin-3 | IN1 Pin-4 | OUT1
Pin-5 | IN2 Pin-6 | OUT2
Pin-7 | IN3 Pin-8 | OUT3
Pin-9 | VCC | Pin-10 | GND

94 of 106

Trusied cPlatfurm Services

ADVANTECH

Susi Library Reference

SOM-5780(U17)/SOM-5782(U14)

The number of GPIO pins : 4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 | VCC 3.3V | Pin-16 | GND

Pin-4 | IN2 Pin-20 | OUT3
Pin-5 | IN3 Pin-21 | OUT2
Pin-11 | INO Pin-22 | OUT1
Pin-12 | IN1 Pin-23 | OUTO

*. SOM-5780, SOM-5782 must combine with SOM-DB5700(carrier board).

SOM-DB5700(CN27)

Pin-1 INO Pin-2 VCC
Pin-3 IN1 Pin-4 ouTo
Pin-5 IN2 Pin-6 OuUT1
Pin-7 IN3 Pin-8 ouT2
Pin-9 GND Pin-10 | +12V
Pin-11 | NC Pin-12 | NC
Pin-13 | OUT3 |Pin-14 | NC
Pin-15 | GND Pin-16 | +12V

PCM-3375(CN16)
The number of GPIO pins : 4 Inputs, 4 outputs

Pin Signal
Pin-1 | -5V

Pin-2 | GND
Pin-3 | -12V

95 of 106

Trusied cPlatfurm Services

ADVANTECH

Pin-19

INO

Pin-20

IN1

Pin-21

IN2

Pin-22

IN3

Pin-23

OuTO

Pin-24

OUT1

Pin-25

OouT2

Pin-26

OUT3

Susi Library Reference

*. There are two high drive digital outputs, OUTO, OUT1 (24 VDC, 1 A max), two
TTL level digital outputs, OUT2, OUT3 and four digital inputs (TTL level). You can
configure the digital 1/0 to control the opening of the cash drawer and to sense the
closing of the cash drawer. The above table explains how the digital 1/0 is
controlled via software programming and how a 12 V solenoid or relay can be

triggered. For completeness, please refer to the user manual of

POS-563/POS-564/POS-761.

96 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

Appendix C — Programming Flags Overview

Hardware Monitor Flags

= Fan
Flag Value Description
FCPU 1u CPU FAN
FSYS 2U System FAN
F2ND 4u 3rd FAN
= [emperature
Flag Value Description
TCPU lu CPU Temperature
TSYS 2u System Temperature
= \oltage
Flag Value Description
VCORE 1u Vcore
V25 2U 2.5V
V33 4u 3.3V
V50 8u 5V
V120 16u 12v
VSB 32u Voltage of standby
VBAT 64u VBAT
VN50 128u -5V
VN120 256u -12v
VTT 512u VTT

97 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

Boot Logger Flags

« Bootcounter

ESCORE_BOOTCOUNTER_MODE_GET 1u Read Operation
ESCORE_BOOTCOUNTER_MODE_SET 2u Write Operation

rren
ESCORE_BOOTCOUNTER_STATUS 1u Current Sta_tus
(Is Enabled or Disabled?)
ESCORE_BOOTCOUNTER_VALUE 2u Number of Reboot Times

= Runtimer

ESCORE_RUNTIMER_MODE_GET 1u Read Operation
ESCORE_RUNTIMER_MODE_SET 2u Write Operation

Current Status
(Is Enabled or Disabled?)
ESCORE_RUNTIMER_STATUS_AUTORUN 2u Is AutoRun upon Startup?
ESCORE_RUNTIMER_VALUE_CONT INUALON 4u | OS continual run time (reset

ESCORE_RUNTIMER_STATUS_RUNNING 1u

to O after a reboot)
ESCORE_RUNTIMER_VALUE_TOTALON 8u Sum of OS total run time

98 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

GPIO Mask Flags

Series of binary 1s for the number

ES10_SMASK_PIN_FULL 0x01 .

of total pins
ES10_SMASK_CONFIGURABLE | 0x02 Direction Changeable Pins
ESI10_DMASK_DIRECTION 0x20 Current Direction of Pins

99 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

Appendix D - API Error Codes

An error value will be either

Function Index Code + Library Error Code, or

Function Index Code + Driver Error Code.
If you call an API and returns with fail. The Function Index Code in its error
code combination does not necessarily equal to the index code of the API. This is
because the APl may make a call to another API.

Function Index Code

Index Code Function Index
DLL
00100000 ESusilnit
00200000 ESusiUninit
00300000 ESusiGetVersion
00400000 ESusiDIlInit
00500000 ESusiDIIUnInit
00600000 ESusiDlIGetVersion
00700000 ESusiDIlIGetLastError
Core
10100000 ESusiCorelnit
10200000 ESusiCoreAvailable
10300000 ESusiCoreGetBl0SVersion
10400000 ESusiCoreGetPlatformName
10500000 ESusiCoreAccessBootCounter
10600000 ESusiCoreAccessRunTimer
10700000 ESusiCoreRebootSystem
10800000 ESusiReserved38000000
Watchdog
20100000 ESusiWDInit
20200000 ESusiWDAvailable
20300000 ESusiWDDisable
20400000 ESusiWDGetRange

100 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

20500000 ESusiWDSetConfig
20600000 ESusiWDTrigger
GPIO
30100000 ESusilOInit
30200000 ESusi l0Available
30300000 ESusi10Count
30400000 ESusilOlInitial
30500000 ESusi IORead
30600000 ESusi IOReadMul ti
30700000 ESusilOWrite
30800000 ESusilOWriteMulti
30900000 ESusi 10CountEx
31000000 ESusi 10QueryMask
31100000 ESusil0SetDirection
31200000 ESusil0SetDirectionMulti
31300000 ESusi 10ReadEXx
31400000 ESusi 10ReadMul tiEx
31500000 ESusi IOWriteEx
31600000 ESusi 10WriteMultiEx
SMBus

40100000 ESusiSMBuslInit
40200000 ESusiSMBusAvailable
40300000 ESusiSMBusReadByte
40400000 ESusiSMBusReadByteMulti
40500000 ESusiSMBusReadWord
40600000 ESusiSMBusWriteByte
40700000 ESusiSMBusWriteByteMulti
40800000 ESusiSMBusWriteWord
40900000 ESusiSMBusReceiveByte
41000000 ESusiSMBusSendByte
41100000 ESusiSMBusWriteQuick
41200000 ESusiSMBusReadQuick
41300000 ESusiSMBusScanDevice
41400000 ESusiSMBusWriteBlock
41500000 ESusiSMBusReadBlock

IIC

101 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

50100000 ESusilICInit
50200000 ESusilICAvailable
50300000 ESusi 1 ICReadByte
50400000 ESusilICWriteByte
50500000 ESusilICWriteReadCombine
50600000 ESusi I ICRead
50700000 ESusilICWrite
50800000 ESusilI1CScanDevice
50900000 ESusilICWriteRegister
51000000 ESusil ICReadRegister
VGA Control
60100000 ESusiVCInit
60200000 ESusiVCAvailable
60300000 ESusiVCGetBright
60400000 ESusiVCGetBrightRange
60500000 ESusi1VCScreenOff
60600000 ESusiVCScreenOn
60700000 ESusiVCSetBright
Hardware Monitor
70100000 ESusiHWMInit
70200000 ESusiHWMAvailable
70300000 ESusiHWMGetFanSpeed
70400000 ESusiHWMGetTemperature
70500000 ESusiHWMGetVoltage
70600000 ESusiHWMSetFanSpeed

102 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

Library Error Code

Error Code Error Type

Driver Open Errors
00000001 ERRLIB_CORE_OPEN_FAIL
00000002 ERRLIB_WDT_OPEN_FAIL
00000004 ERRLIB_GPIO_OPEN_FAIL
00000008 ERRLIB_SMB_OPEN_FAIL
00000016 ERRLIB_VC_OPEN_FAIL
00000032 ERRLIB_HWM OPEN_FAIL

DLL Functions

00000000 ERRLIB_SUCCESS
00000001 ERRLIB_RESERVED1
00000002 ERRLI1B_RESERVED2
00000003 ERRLIB_LOGIC
00000004 ERRL1B_RESERVED4
00000005 ERRLIB_SUSIDLL_NOT_INIT
00000006 ERRLIB_PLATFORM_UNSUPPORT
00000007 ERRLIB_API_UNSUPPORT
00000008 ERRLIB_RESERVEDS8
00000009 ERRLIB_AP1_ CURRENT_UNSUPPORT
00000010 ERRLIB_LIB_INIT_FAIL
00000011 ERRLIB_DRIVER_CONTROL_FAIL
00000012 ERRLIB_INVALID_PARAMETER
00000013 ERRLIB_INVALID_ID
00000014 ERRLIB_CREATEMUTEX_FAIL
00000015 ERRLIB_OUTBUF_RETURN_SIZE_INCORRECT
00000016 ERRLI1B_RESERVED16
00000017 ERRLIB_ARRAY_LENGTH_INSUFFICIENT
00000032 ERRL1B_RESERVED32
00000050 ERRLIB_BRIGHT_CONTROL_FAIL
00000051 ERRLIB_BRIGHT_OUT_OF_RANGE
00000064 ERRLIB_RESERVED64
00000128 ERRLIB_RESERVED128
00000256 ERRL1B_RESERVED256

103 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

Core Functions

00000500 ERRLIB_CORE_BIOS_STRING_NOT_FOUND
00000512 ERRLIB_RESERVED512
Watchdog Functions
00001024 ERRLIB RESERVED1024
GPIO Functions (N/A)
SMBus Functions
00001400 ERRLIB_SMB_MAX BLOCK_SIZE MUST_WITHIN_32
IIC Functions
00001600 ERRLIB_11C_GETCPUFREQ_ FAIL
VGA Control Functions (N/A)
Hardware Monitor Functions
00002000 ERRLIB_HWM_ CHECKCPUTYPE_FAIL
00002001 ERRLIB_HWM_ FUNCTION_UNSUPPORT
00002002 ERRLIB_HWM_FUNCTION_CURRENT_UNSUPPORT
00002003 ERRLIB_HWM_FANDIVISOR_INVALID
00002048 ERRLIB RESERVED2048
Reserved Functions
00004096 ERRLI1B_RESERVED4096
00008192 ERRLIB_RESERVED8192

104 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

Driver Error Code

Error Code Error Type

00000000 ERRDRV_SUCCESS

Common to all Drivers
00010000 ERRDRV_CTRLCODE
00010001 ERRDRV_LOGIC
00010002 ERRDRV_INBUF_INSUFFICIENT
00010003 ERRDRV_OUTBUF _INSUFFICIENT
00010004 ERRDRV_STOPTIMER_FAILED
00010005 ERRDRV_STARTTIMER_FAILED
00010006 ERRDRV_CREATEREG_FAILED
00010007 ERRDRV_OPENREG_FAILED
00010008 ERRDRV_SETREGVALUE_FAILED
00010009 ERRDRV_GETREGVALUE_FAILED
00010010 ERRDRV_FLUSHREG_FAILED
00010011 ERRDRV_MEMMAP_FAILED

Core Driver (N/A)
Watchdog Driver (N/A)
GPIO Driver
00011200 ERRDRV_GPIO_PIN_DIR_CHANGED
00011201 ERRDRV_GPIO_PIN_INCONFIGURABLE
00011202 ERRDRV_GPIO_PIN_OUTPUT_UNREADABLE
00011203 ERRDRV_GPIO_PIN_INPUT_UNWRITTABLE
00011204 ERRDRV_GPIO_INITIAL_FAILED
00011205 ERRDRV_GPIO_GETINPUT_FAILED
00011206 ERRDRV_GPIO_SETOUTPUT_FAILED
00011207 ERRDRV_GPIO_GETSTATUS_10_FAILED
00011208 ERRDRV_GPIO_SETSTATUS_OUT_FAILED
00011209 ERRDRV_GPIO_SETDIR_FAILED
SMBus Driver

00011400 ERRDRV_SMB_RESETDEV_FAILED
00011401 ERRDRV_SMB_TIMEOUT
00011402 ERRDRV_SMB_BUSTRANSACTION_FAILED
00011403 ERRDRV_SMB_BUSCOLLISION

105 of 106

Trusted ePlatfurm Services

ADVANTECH

Susi Library Reference

00011404 ERRDRV_SMB_CLIENTDEV_NORESPONSE
00011405 ERRDRV_SMB_REQUESTMASTERMODE_FAILED
00011406 ERRDRV_SMB_NOT_MASTERMODE
00011407 ERRDRV_SMB_BUS ERROR
00011408 ERRDRV_SMB BUS_STALLED
00011409 ERRDRV_SMB NEGACK_DETECTED
00011410 ERRDRV_SMB_TRANSMITMODE_ACTIVE
00011411 ERRDRV_SMB_TRANSMITMODE_INACTIVE
00011412 ERRDRV_SMB_STATE_UNKNOWN
IIC Driver
00011600 ERRDRV_11C_RESETDEV_FAILED
00011601 ERRDRV_11C_TIMEOUT
00011602 ERRDRV_11C_BUSTRANSACTION_FAILED
00011603 ERRDRV_11C_BUSCOLLISION
00011604 ERRDRV_I11C_CLIENTDEV_NORESPONSE
00011605 ERRDRV_11C_REQUESTMASTERMODE_FAILED
00011606 ERRDRV_11C_NOT_MASTERMODE
00011607 ERRDRV_I11C_BUS_ERROR
00011608 ERRDRV_11C_BUS _STALLED
00011609 ERRDRV_11C_NEGACK_DETECTED
00011610 ERRDRV_11C_TRANSMITMODE_ACTIVE
00011611 ERRDRV_11C_TRANSMITMODE_INACTIVE
00011612 ERRDRV_11C_STATE_UNKNOWN
VGA Control Driver

00011800 ERRDRV_VC_ FINDVGA_ FAILED
00011801 ERRDRV_VC_FINDBRIGHTDEV_FAILED
00011802 ERRDRV_VC_VGA_ UNSUPPORTED
00011803 ERRDRV_VC_BRIGHTDEV_UNSUPPORTED

Hardware Monitor Driver (N/A)

106 of 106

