

SUSI Library

User’s Manual

Version 1.1

Advantech Co., Ltd.
No. 1, Alley 20, Lane 26, Reuiguang Road,

Neihu District, Taipei, Taiwan 114, R.O.C.

 Susi Library Reference

2 of 84

Copyright Notice
This document is copyrighted, 2006, by Advantech Co., Ltd. All rights are reserved.
Advantech Co., Ltd. reserves the right to make improvements to the products
described in this manual at any time. Specifications are thus subject to change without
notice.

No part of this manual may be reproduced, copied, translated, or transmitted in any
form or by any means without the prior written permission of Advantech Co., Ltd.
Information provided in this manual is intended to be accurate and reliable. However,
Advantech Co., Ltd., assumes no responsibility for its use, or for any infringements
upon the rights of third parties which may result from its use.

All the trade marks of products and companies mentioned in this data sheet belong to
their respective owners.

Copyright © 1983-2006 Advantech Co., Ltd. All Rights Reserved

Part No.
Version: 1.1

Printed in Taiwan 2006-10-05

 Susi Library Reference

3 of 84

Version History

Date Version Part no Remark

2006-7-27 1.0 New Release

2006-9-29 1.1 Add hardware monitoring support for

SOM-4472/SOM-4475/SOM-4481/SOM-4486

 Susi Library Reference

4 of 84

Table of Contents
INTRODUCTION..6
ENVIRONMENTS ..9
PACKAGE CONTENTS...10
INSTALLATION ... 11

WINDOWS XP... 11
WINDOWS CE ..21

SAMPLE PROGRAMS...22
WINDOWS GRAPHICS MODE..22

SusiDemo.exe..22
GPIO..23
I2C ..25
SMBus...26
VGA Control ...29
Watchdog..30
HWM..31
SusiInit ...32
SusiUnInit ..33
SusiGetVersion...34
SusiGetBIOSVersion..35
SusiGetPlatformName ...36
SusiIICAvailable ..37
SusiIICReadByte..38
SusiIICWriteByte...39
SusiIICWriteReadCombine ...40
SusiIICReadByteMulti...41
SusiIICWriteByteMulti ..42
SusiIOAvailable ...43
SusiIOCount...44
SusiIOInitial ...45
SusiIORead ..46
SusiIOReadMulti ...47
SusiIOWrite ...48
SusiIOWriteMulti...49
SusiSMBusAvailable ...50
SusiSMBusReadByte...51

 Susi Library Reference

5 of 84

SusiSMBusReadByteMulti ..52
SusiSMBusReadWord..53
SusiSMBusWriteByte ..54
SusiSMBusWriteByteMulti ...55
SusiSMBusWriteWord...56
SusiVCAvailable..57
SusiVCGetBright ...58
SusiVCGetBrightRange...59
SusiVCScreenOff...60
SusiVCScreenOn ...61
SusiVCSetBright..62
SusiWDAvailable...63
SusiWDDisable..64
SusiWDGetRange ..65
SusiWDSetConfig..66
SusiWDTrigger ..67
SusiHWMAvailable ...68
SusiHWMGetFanSpeed...69
SusiHWMGetTemperature...70
SusiHWMGetVoltage...71

APPENDIX A – PLATFORM SUPPORT LIST ...71
WINDOWS XP...72
WINDOWS CE ..75

APPENDIX B - GPIO PINS ASSIGNMENT..77
APPENDIX C - BACKLIGHT ON/OFF SUPPORT..81
APPENDIX D – HARDWARE MONITORING FLAGS.......................................82

 Susi Library Reference

6 of 84

Introduction
To make hardware easier and convenient to access for programmers, Advantech
releases a suite of API (Application Programming Interface) in the form of a program
library. The program Library is called the “Secured and Unified Smart
Interface” Library and it is also referred to as the Susi Library hereafter.
Customer should purchase the Advantech Software Library license stickers from
Advantech prior to ship or distribute his/her developed software based on the Susi
Software Library. Each CPU board or computer system should have an Advantech
Embedded Software IP - Library license sticker properly affixed on it before
shipping/distributing or any commercial purpose.

In modern operating systems, user space applications cannot access hardware directly.
Drivers are required to access hardware. User space applications access hardware
through drivers. Different operating systems usually define different interface for
drivers. It means that user space applications call different functions for hardware
access in different operating systems. To provide a uniform interface for accessing
hardware, an abstraction layer is built on top of the drivers and the Susi is such an
abstraction layer. The Susi provides a uniform API for application programmers to
access the hardware functions in different operating systems and on different
Advantech hardware platforms.

Application programmers should invoke the functions exported by the Susi instead of
calling the drivers directly. The benefit of using the Susi is portability. The same set of
API is defined for different Advantech hardware platforms. Besides, the same set of
API is implemented in different operating systems including Windows XP and
Windows CE. This user’s manual describes some sample programs and the API in the
Susi. The hardware functions currently supported by the Susi can be grouped into a
few categories including Watchdog, I2C, SMBus, GPIO, HWM and VGA control.
Each category of the API in the Susi is briefly described below.

The GPIO API

General Purpose Input/Output (GPIO) is a flexible parallel interface that allows a
variety of custom connections. Supports Digital I/O Devices. You can control cash
drawers , LED light or buttons with GPIO.

 Susi Library Reference

7 of 84

The I2C API

I2C is a bi-directional two wire bus that was developed by Philips for use in their
televisions in the 1980s and it is used in various types of embedded systems nowadays.
The strict timing requirements defined in the I2C protocol has been taken care of by
the Susi. Instead of asking application programmers to figure out the strict timing
requirements in the I2C protocol, the I2C API in the Susi can be used to control I2C
devices just like invoking other function calls. Therefore, the development process of
your products can be sped up by using the Susi. Besides, the Susi provides a
consistent programming interface for different Advantech boards. That means user
programs using the Susi are portable among different Advantech boards as long as the
boards and the Susi provide the required functionalities.

The SMBus API

The System Management Bus (SMBus) is a two-wire interface defined by Intel ®
Corporation in 1995. It is based on the principles of operations of I2C and it is used in
personal computers and servers for low-speed system management communications.
It can be seen in many types of embedded systems. As with other API in the Susi, the
SMBus API is available on many platforms including Windows XP and Windows CE.

The VGA Control API

There are two kinds of VGA control APIs, backlight on/off control and brightness
control, in the Susi. Backlight on/off control can allow a developer to turn on or turn
off the backlight. Our API allows a developer to turn on /off the backlight and to
control brightness smoothly.

The Watchdog API

A watchdog timer (abbreviated as WDT) is a hardware device which triggers an
action, e.g. rebooting the system, if the system does not reset the timer within a
specific period of time. The WDT API in the Susi provides developers with functions
such as starting the timer, reset the timer, and set the timeout value if the hardware
supports customized timeout value.

 Susi Library Reference

8 of 84

The Hardware Monitor API

The hardware monitor (abbreviated as HWM) is a system health supervision
capability achieved by placing certain I/O chip along with sensors for inspecting the
target of interests for certain condition indexes, such as fan speed, temperature, and
voltage...etc.

However, due to the common flaw of inaccuracy among all commercial available
hardware monitoring chips, Advantech, your trusted ePlatform provider, has
developed an unique scheme for hardware monitoring - achieved by using a dedicated
micro-processor with algorithms specifically designed for providing a accurate,
real-time and reliable data content, therefore, to help protect your system in a more
reliable manner.

 Susi Library Reference

9 of 84

Environments
The Susi supports many different operating systems including:

• Windows CE .NET
• Windows XP Embedded
• Windows XP Pro or Home Edition

Many hardware boards from Advantech are supported by the Susi. Please refer to
Appendix A for the list of the hardware platforms currently supported by the Susi.
Note that the list may be changed without notification. For an updated list of
supported platforms, please check the web site at www.advantech.com. Should you
have any questions about your Advantech boards, please contact us by phone call or
e-mail.

 Susi Library Reference

10 of 84

Package Contents
The Susi Library supports two operating systems including Windows CE and
Windows XP. After the library package is extracted, you can find the directories and
files listed in the table below.

Directory Contents

\

• SusiAPI.pdf

Please refer to this document for installation and
application development.

• Change History.html

Revision history of Susi.

\Change History.Files Required files for Change History.html

\Include

• Susi.h

A header file of Susi export functions. The header
file of Susi is operating system independent, so
developers can include it into their own projects
on Windows CE or Windows XP.

\WindowsCE\Library

• Susi.lib

Library for developing the applications on
Windows CE.

• Susi.dll
Dynamic library for Susi on Windows CE.

\WindowsCE\Demo

• SusiDemo.EXE

Demo program on Windows CE.
• Susi.dll

Dynamic library for Susi on Windows CE.
\WindowsCE\Demo\SRC Source code of the demo program on Windows CE.

\WindowsXP

• Setup.EXE

An installer, include driver installation and library,
for Susi on Windows XP. For a completeness of
Setup.exe, please refer to the subsection
Installation:Windows XP.

 Susi Library Reference

11 of 84

Installation
The Susi supports many different operating systems. Each subsection below describes
how to install the Susi and related software in a specific operating system. Please refer
to the subsection matching your operating system.

Windows XP
In windows XP, you can install library, drivers and demo programs into the platform
easily by using the installation tool, i.e. Susi Library Installer. After the installer is
executed, the Susi Library and related files for Windows XP can be found in the target
directory where you chose when installation. The files are listed in the following
table.

Directory Contents

\Library

• Susi.lib

Library for developing the applications on
Windows XP.

• Susi.dll
Dynamic library for Susi on Windows XP.

\Demo

• SusiDemo.EXE

Demo program on Windows XP.
• Susi.dll

Dynamic library for Susi on Windows XP.

\Demo\SRC Source code of the demo program on Windows XP.

The following section of [Installation] illustrates all the process of installation.

*Note: The version of Susi Library Installer shows on each screen shot below

should depend on your own version.
[Installation]

1. Extract Susi.zip.
2. Double-click the "Setup.exe" file.

 Susi Library Reference

12 of 84

3. The installer searches for a previous installation of Susi Library. If it locates one,
a screen shot opens asking whether you want to modify, repair or remove the
software. If a previous version is located, please see the section of [Maintenance
Setup]. If it is not located, the following screen shot opens. Click Next.

V 1.1

4. The License Agreement screen shot as the following displays.

Read the license agreement carefully. If you accept the terms of the agreement,
click 『I accept the terms of the License Agreement』. If you do not accept the
terms, click 『I do not accept the terms of the License Agreement』. Click Next.

 Susi Library Reference

13 of 84

5. The Setup Type screen shot opens. If you choose Complete type, all features of
Susi Library are selected and installed into the target platform. If you choose
Custom type, you can select required features of Susi Library to install into your
platform yourself. Click Next.

6. The Choose Install Folder screen shot opens. It indicates the path of the folder
where Susi Library will be installed. If you want to install Susi Library in another
location, click Change. If you do not want to change the default installation folder,
please click Next directly.

 Susi Library Reference

14 of 84

7. If you decide to change the installation folder above, the Choose Folder screen
shot shows.

You can choose or type the path of desired installation folder and then click OK to
return to the Choose Install Folder screen shot. After you have verified the
location where Susi Library will be installed, click Next.

8. If you choose Custom Type on Setup Type screen shot, the Select Feature
screen shot shows. Select the features you want to install. Click Next.

 Susi Library Reference

15 of 84

9. The Confirm screen shot opens.

If you want to review or change any of your installation setting, please click Back.
If all setting is correct, click Install.

10. The Setup Status screen shot opens.

The installer starts to install all features of Susi Library you selected. When the
installation is being processed, the Installing status bar progresses from empty to
full. If you want to terminate the installation, click Cancel.

 Susi Library Reference

16 of 84

11. If you have selected driver features, the Complete and Reboot screen shot opens
when all features are installed. Because some drivers are able to be active after
rebooting, you can choose 『Yes, I want to restart my computer』 now to reboot
right away. Otherwise, you can reboot later by choose 『No, I will restart my
computer later』. Click Finish to reboot or exit the installer.

12. If you do not select any driver feature, the Complete screen shot opens when all
features are installed. Click Finish to exit the installer.

 Susi Library Reference

17 of 84

[Maintenance Setup]

1. Extract Susi.zip.
2. Open the 『SusiInstaller』 folder and then double-click the "Setup.exe" file.
3. The installer searches for a previous installation of Susi Library. If a previous

version is not located, please see the section of [Installation]. If it is located, the
Maintenance Type screen shot opens.

It asking whether you want to modify, repair or remove the software. Please
choose one and then click Next.

 Susi Library Reference

18 of 84

4. If you choose Modify on Maintenance Type screen shot, the Select Feature
screen shot opens. It means the installed feature if the feature is marked.

If you want to add some features, click them to mark. On the contrary, if you
want to remove some features, click them to disable marks. Click Next.

5. The Setup Status screen shot opens.

The installer starts to install or remove all features of Susi Library you selected.
When the installation is being processed, the Installing status bar progresses from
empty to full. If you want to terminate the installation, click Cancel.

6. If you choose Repair on Maintenance Type screen shot, the Setup Status screen

 Susi Library Reference

19 of 84

shot opens later. It reinstall all installed again.

7. If you choose Remove on Maintenance Type screen shot, the dialog opens.

If you want to all installed features, click Yes. Otherwise, Click No.

8. If you have selected to install driver features on Modify or Repair type of
Maintenance Type, the Complete and Reboot screen shot opens when all
features are installed. Because some drivers are able to be active after rebooting,
you can choose 『Yes, I want to restart my computer』 now to reboot right
away. Otherwise, you can reboot later by choose 『No, I will restart my
computer later』. Click Finish to reboot or exit the installer.

 Susi Library Reference

20 of 84

9. If you have not selected to install any driver feature, the Complete screen shot
opens when all features are installed. Click Finish to exit the installer.

 Susi Library Reference

21 of 84

Windows CE
In windows CE, there are three ways to install Susi Library, you can install manually
or use Advantech CE-Builder to install the library or just copy the programs and the
library into the compact flash card.

Express Installation:
You can use Advantech CE-Builder to help you put the library into the image.

 First, you click the My Component tab.
 In this tab, you click Add New Category button to add a new category, ex

Susi Library.
 Then you can add a new file in this category, and upload the Susi.dll for this

category.
 After doing these steps, you can just select the Susi Library category you

created for every project.

Manual Installation:
You can add the Susi Library into the image by editing any bib file.

 First you open project.bib in the platform builder.
 Add this line to the MODULES section of project.bib

Susi.dll $(_FLATRELEASEDIR)\Susi.dll NK SH
 If you want to run the window-based demo, add following line:

SusiTest.exe $(_FLATRELEASEDIR)\SusiTest.exe
 If you want to run the console-based demo, add following lines:

Watchdog.exe $(_FLATRELEASEDIR)\Watchdog.exe NK S
GPIO.exe $(_FLATRELEASEDIR)\GPIO.exe NK S
SMBUS.exe $(_FLATRELEASEDIR)\SMBUS.exe NK S

 Place the three files into any files directory.
 Build your new Windows CE operating system.

 Susi Library Reference

22 of 84

Sample Programs
The sample programs demonstrate how to incorporate the Susi into your program.
There are sample programs for two categories of operating system, i.e. Windows XP
and Windows CE. The sample programs run in graphics mode in Windows XP and
Windows CE. The sample programs are described in the subsections below.

Windows Graphics Mode
There are sample programs of Windows graphics mode for two categories of
operating system, i.e. Windows CE and Windows XP. Each demo application contains
an executable file SusiDemo.exe, a shared library Susi.dll and source
codes within the release package. The files of Windows CE and Windows XP are
not compatible with each other.
SusiDemo.exe is an executable file and it requires the shared library, Susi.dll,
to demonstrate the Susi functions. The source codes of SusiDemo.exe also have two
versions, i.e. Windows CE and Windows XP, and must be compiled under Microsoft
Visual C++ 6.0 on Windows XP or under Microsoft Embedded Visual C++ 4.0 on
Windows CE. Developers must add the header file Susi.h and library Susi.lib
to their own projects when they want to develop something with Susi.

SusiDemo.exe
The SusiDemo.exe test application is an application which used all functions of
the Susi Library. It has five major function blocks: Watchdog, GPIO, SMBus, I2C
and VGA control. The following screen shot shows when you execute
SusiDemo.exe. You can click function tabs to select test functions respectively.
Some function tabs will not show on the test application if your platform does not
support such functions. For a completeness of support list, please refer to Appendix
A. We describe steps to test all functions of this application.

 Susi Library Reference

23 of 84

GPIO

 Susi Library Reference

24 of 84

When the application is executed, it will display GPIO information in the GPIO
INFORMATION group box. It displays the number of input pins and output pins.
You can click radio button to choose to test either single pin function or multiple
pins function. The GPIO pins assignments of the supported platforms are located
in Appendix B.

 Test Read Single Input Pin
 Click the radio button of Single-Pin.
 Key in the pin number to read the value of the input pin. Pin number is

started from '0'.
 Click READ GPIO DATA button and then the status of GPIO pin will

be displayed in (R/W)Result field.

 Test Read Multiple Input Pin
 Click the radio button of Multiple-Pins.
 Key in the pin number from ‘0x01’ to ‘0x0F’ to read the value of the

input pin. The pin numbers are bitwise-ored, i.e. bit 0 stands for GPIO
0, bit 1 stands for GPIO 1, etc. For example, if you want to read pin 0,
1, and 3, the pin numbers should be ‘0x0B’.

 Click READ GPIO DATA button and then the statuses of GPIO pins
will be displayed in (R/W)Result field.

 Test Write Single Output Pin
 Click the radio button of Single-Pin.
 Key in the pin number you want to write. Pin number is started from

'0'.
 Key in the value either '0' or '1' in (R/W)Result field to write the output

pin you chose above step.
 Click the WRITE GPIO DATA button to write the GPIO output pin.

 Test Write Multiple Output Pins

 Click the radio button of Multiple-Pins.
 Key in the pin number from ‘0x01’ to ‘0x0F’ to choose the multiple pin

numbers to write the value of the output pin. The pin numbers are
bitwise-ored, i.e. bit 0 stands for GPIO 0, bit 1 stands for GPIO 1, etc.
For example, if you want to write pin 0, 1, and 3, the pin numbers
should be ‘0x0B’.

 Key in the value in (R/W)Result field from ‘0x01’ to ‘0x0F’ to write the
value of the output pin. The pin numbers are bitwise-ored, i.e. bit 0

 Susi Library Reference

25 of 84

stands for GPIO 0, bit 1 stands for GPIO 1, etc. For example, if you
want to set pin 0 and 1 high, 3 to low, the pin number should be ‘0x0B’,
and then you should key in the value ‘0x0A’ to write.

 Click the WRITE GPIO DATA button to write the GPIO output pins.

I2C

When the application is executed, you can read or write a byte of data through I2C
devices. All data must be read or written in hexadecimal system.

 Read a byte

 Key in the slave device address in Slave address field.
 Key in the register offset in Register Offset field.
 Click the READ A BYTE button and then a byte of data from the device

will be shown on the Result field.

 Write a byte
 Key in the slave device address in Slave address field.
 Key in the register offset in Register Offset field.
 Key in the desirous of data in Result field to write to the device.
 Click the WRITE A BYTE button and then the data will be written to

the device through I2C.

 Susi Library Reference

26 of 84

SMBus

When the application is executed, you can click radio button to choose to test each
access mode, i.e. Access a byte, Access multiple bytes and Access a word. All data
must be read or written in hexadecimal system except the number of bytes of
Access multiple bytes mode must be written in decimal system. You can test the
functionalities of watchdog as follows:

 Read a byte
 Click the radio button of Access a byte.
 Key in the slave device address in Slave address field.
 Key in the register offset in Register Offset field.
 Click the READ SMBus DATA button and then a byte of data from the

device will be shown on the Result field.

 Write a byte
 Click the radio button of Access a byte.
 Key in the slave device address in Slave address field.
 Key in the register offset in Register Offset field.
 Key in the desirous of data in Result field to write to the device.

 Susi Library Reference

27 of 84

 Click the WRITE SMBus DATA button and then the data will be written
to the device through SMBus.

 Read a word

 Click the radio button of Access a word.
 Key in the slave device address in Slave address field.
 Key in the register offset in Register Offset field.
 Click the READ SMBus DATA button and then a word of data from the

device will be shown on the Result field.

 Write a word
 Click the radio button of Access a word.
 Key in the slave device address in Slave address field.
 Key in the register offset in Register Offset field.
 Key in the desirous of data, such as 0x1234, in Result field to write to

the device.
 Click the WRITE SMBus DATA button and then the data will be written

to the device through SMBus.

 Read Multiple bytes
 Click the radio button of Access multiple bytes.
 Key in the slave device address in Slave address field.
 Key in the register offset in Register Offset field.
 Key in the desirous of the number of bytes, such as 3, in the right side

field of the radio button of Access multiple bytes. The number must be
written in decimal system.

 Click the READ SMBus DATA button and then all data from the device
will be divided from each other by commas and be shown on the Result
field.

 Write Multiple bytes
 Click the radio button of Access multiple bytes.
 Key in the slave device address in Slave address field.
 Key in the register offset in Register Offset field.
 Key in the desirous of the number of bytes, such as 3, in the right side

field of the radio button of Access multiple bytes. The number must be
written in decimal system.

 Susi Library Reference

28 of 84

 Key in all of the desirous of data in Result field in hexadecimal format
and divided by commas, for example, 0x50,0x60,0x7A.

 Click the WRITE SMBus DATA button and then all of the data will be
written to the device through SMBus.

 Susi Library Reference

29 of 84

VGA Control

When the application is executed, it will display two blocks of VGA control
functions. The application can turn on or turn off the screen shot freely, and it also
can tune the brightness of the panels if your platform is being supported. You can
test the functionalities of VGA control as follows:

 Screen on/off control
 Click the radio button of ON or push the key F11 can turn on the panel

screen.
 Click the radio button of OFF or push the key F12 can turn off the

panel screen.
 The display chip of your platform must be in the support list in

Appendix A, or this function can not work.

 Brightness control
 Move the slider in increments, using either the mouse or the direction

keys, or click the UP button to increase the brightness.
 Move the slider in decrements, using either the mouse or the direction

keys, or click the DOWN button to decrease the brightness.

 Susi Library Reference

30 of 84

Watchdog

 When the application is executed, it will display watchdog information in the

WATCHDOG INFORMATION group box. It displays max timeout, min timeout,
and timeout step in milliseconds. For example, a 1~255 seconds watchdog will
has 255000 max timeout, 1000 min timeout, and 1000 timeout step. You can test
the functionalities of watchdog as follows:

 Set the timeout value 3000 (3 sec.) in SET TIMEOUT field and set delay
value 2000 (2 sec.) in SET DELAY field, then click the START button. The
Timeout Countdown field will countdown the watchdog timer and displays
5000 (5 sec.).

 Before the timer countdown to zero, you can reset the timer by click the
REFRESH button. After you click this button, the Timeout Countdown
field will display the value of SET TIMEOUT field.

 If you want to stop the watchdog timer, you just click the STOP button.

 Susi Library Reference

31 of 84

HWM

When the application is executed by clicking button Monitor, it will display hardware
monitoring data values. If certain data value is not supported in the platform, the
correspondent data field will show as color gray with value 0.

 Susi Library Reference

32 of 84

Susi Library Reference
SusiInit

Initialize the Susi Library.

BOOL SusiInit(void);

Parameters
No parameter.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application must call SusiInit() before calling other functions. The function
will return FALSE if the driver on Windows XP is not properly installed or not
working.

 Susi Library Reference

33 of 84

SusiUnInit

Uninitialize the Susi Library.

BOOL SusiUnInit(void);

Parameters
No parameter.

Return Value

TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application must call SusiUnInit() before it terminate. After calling
SusiUnInit(), application cannot call other functions anymore except
SusiGetVersion(). Calls to SusiInit() and SusiUnInit() should
be paired.

 Susi Library Reference

34 of 84

SusiGetVersion

Returns the version number of Susi Library.

void SusiGetVersion(WORD *major, WORD *minor);

Parameters
major

[out] Point to a variable in which this function returns the major version
 number of Susi.

minor

[out] Point to a variable in which this function returns the minor
 version number of Susi.

Return Value
No return value.

Remarks
This function returns the version number of Susi. It’s suggested to call this
function first and compare major number with the constant SUSI_VER_MJ in
header file.

 Susi Library Reference

35 of 84

SusiGetBIOSVersion

Get the version of the current BIOS.

int SusiGetBIOSVersion(TCHAR *BIOSVersion, BYTE size);

Parameters
BIOSVersion

[out] Point to a variable in which this function returns the version of the
 BIOS.

size

[in] Specifies the size in bytes allocated for the first parameter
 BIOSVersion.

Return Value
value Meaning
< 0 The function fails
0 The function succeeds
> 0 If the parameter, size, is less than the real length of the

BIOS version, it will return the correct value.

Remarks

The platform name can not be got correctly if:
1. The BIOS is not the released version.
2. The driver SusiCore.sys is not properly installed or not working on

Windows XP.

 Susi Library Reference

36 of 84

SusiGetPlatformName

Get the name of the current platform.

int SusiGetPlatformName(TCHAR *Platformname, BYTE size);

Parameters
PlatformName

[out] Point to a variable in which this function returns the name of the
 platform.

size

[in] Specifies the size in bytes allocated for the first parameter
 PlatformName.

Return Value

value Meaning
< 0 The function fails
0 The function succeeds
> 0 If the parameter, size, is less than the real length of the

platform name, it will return the correct value.

Remarks

The platform name can not be got correctly if:
1. The BIOS is not the released version.
2. The driver SusiCore.sys is not properly installed or not working on

Windows XP.

 Susi Library Reference

37 of 84

SusiIICAvailable

Query whether I2C driver is available.

BOOL SusiIICAvailable(void);

Parameters
No parameter.

Return Value
TRUE (nonzero) if I2C driver is present.
FALSE (zero) otherwise.

Remarks
Query whether I2C driver is available in the platform. Application is suggested to
call SusiIICAvailable() to make sure I2C driver is present before calling
I2C functions.

 Susi Library Reference

38 of 84

SusiIICReadByte

Read a byte of data from the target slave device, which exists on I2C.

BOOL SusiIICReadByte(BYTE SlaveAddress,

BYTE RegisterOffset, BYTE *Result);

Parameters
Slaveaddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be read.

Registeroffset

[in] Specifies the offset of the address register belongs to the target
 slave device, which should be represented as the hexadecimal
 format.

Result

[out] Get a byte of data from the target slave device.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress and
RegisterOffset, of the target slave device on I2C to read. If the specified
value is invalid, the return value is FALSE.

 Susi Library Reference

39 of 84

SusiIICWriteByte

Write a byte of data to the target slave device exists on I2C.

BOOL SusiIICWriteByte(BYTE SlaveAddress,

BYTE RegisterOffset, BYTE Result);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be written.

RegisterOffset

[in] Specifies the offset of the address register belongs to the target
 slave device, which should be represented as the hexadecimal
 format.

Result

[in] Write a byte of data to the target slave device, which should be
 represented as the hexadecimal format.

Return Value

TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress and
RegisterOffset, of the target slave device on I2C to write. If the specified
value is invalid, the return value is FALSE.

WARNING: Use this function with great care to prevent PERMANENT
DAMAGE TO YOUR SYSTEM.

 Susi Library Reference

40 of 84

SusiIICWriteReadCombine

Write bytes of data to the target slave device exists on I2C, and then read bytes
from it.

BOOL SusiIICWriteReadCombine(BYTE SlaveAddress,

BYTE *WriteBuf, DWORD WriteLen,

BYTE *ReadBuf, DWORD ReadLen);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be written.

WriteBuf

[in] Write bytes of data from the target slave device.

WriteLen

[in] Specifies the number of bytes of data to be written.
ReadBuf

[out] Get bytes of data from the target slave device.
ReadLen

[in] Specifies the number of bytes of data to be read.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress, WriteBuf,
WriteLen, ReadBuf and ReadLen of the target slave device on I2C to read.
If the specified value is invalid, the return value is FALSE.

WARNING: Use this function with great care to prevent PERMANENT
DAMAGE TO YOUR SYSTEM.

 Susi Library Reference

41 of 84

SusiIICReadByteMulti

Read bytes of data from the target slave device exists on I2C.

BOOL SusiIICReadByteMulti(BYTE SlaveAddress,

BYTE *ReadBuf, DWORD ReadLen);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be written.

ReadBuf

[out] Get bytes of data from the target slave device.
ReadLen

[in] Specifies the number of bytes of data to be read.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress, ReadBuf,
and ReadLen of the target slave device on I2C to read. If the specified value is
invalid, the return value is FALSE.

 Susi Library Reference

42 of 84

SusiIICWriteByteMulti

Write bytes of data to the target slave device exists on I2C.

BOOL SusiIICWriteByteMulti(BYTE SlaveAddress,

BYTE *WriteBuf, DWORD WriteLen);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be written.

WriteBuf

[in] Write bytes of data from the target slave device.

WriteLen

[in] Specifies the number of bytes of data to be written.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress, WriteBuf, and
WriteLen of the target slave device on I2C to read. If the specified value is
invalid, the return value is FALSE.

WARNING: Use this function with great care to prevent PERMANENT
DAMAGE TO YOUR SYSTEM.

 Susi Library Reference

43 of 84

SusiIOAvailable

Query whether GPIO driver is available.

BOOL SusiIOAvailable(void);

Parameters
No parameter.

Return Value

TRUE (nonzero) on success.
FALSE (zero) otherwise.

Remarks
Query whether GPIO driver is available in the platform. Application is suggested
to call SusiIOAvailable() to make sure GPIO driver is present before
calling GPIO functions.

 Susi Library Reference

44 of 84

SusiIOCount

Query how many GPIO pins are supported.

BOOL SusiIOCount(WORD *inCount, WORD *outCount);

Parameters
inCount

[out] Point to a variable in which this function returns the input GPIO
 pins count.

outCount

[out] Point to a variable in which this function returns the output GPIO
 pins count.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application can call this function to get the number of input and output GPIO
pins supported in this platform.

 Susi Library Reference

45 of 84

SusiIOInitial

Initialize all the output pins of GPIO.

BOOL SusiIOInitial(DWORD statuses);

Parameters
statuses

[in] Bitwise-ored status of assigned pins. Set related bit of assigned
 pin to 1 will set the pin active (high). Otherwise, set the pin
 inactive (low).

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Initialize all the output pins at first. The other GPIO related functions will return
FALSE if the applications have not called SusiIOInitial(). The value of
writing to the output pins must be confirmed no influence on the system.
The parameter statuses are bitwise-ored. Bit 0 stand for GPIO 0, bit 1 stand for
GPIO 1, etc. For example, if there are 8 output pins in your platform, and you
want to set pin 0, 1 and 3 high, rest to low, the statuses parameter should be
0x0000000B.

 Susi Library Reference

46 of 84

SusiIORead

Read current status of one GPIO pin.

BOOL SusiIORead(BYTE pin, BOOL *status);

Parameters

pin

[in] Specifies the GPIO pin demanded to be read. Begin from 0.
status

[out] If the pin is active (high), status is nonzero. If the pin is inactive
 (low), status is zero.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid input pin number to read. If the specified pin is
invalid, the return value is FALSE.

 Susi Library Reference

47 of 84

SusiIOReadMulti

Read current statuses of several GPIO pins.

BOOL SusiIOReadMulti(DWORD pins, DWORD *statuses);

Parameters
pins

[in] Specifies the GPIO pins demanded to be read. The pins to read are
 bitwise-ored. Pin number begins from 0.

statuses

[out] Bitwise-ored status of assigned pins. For pins that are not
 specified, the related bit value is useless. For valid assigned pins,
 if the pin is active(high), the bit status is 1, otherwise 0.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Read multiple input pins at the same time. The parameter pins is bitwise-ored.
Bit 0 stand for GPIO 0, bit 1 stand for GPIO 1, etc. For example, if you want to
read pin 0, 1, and 5, the pins parameter should be 0x00000023.

 Susi Library Reference

48 of 84

SusiIOWrite

Set high/low value to one GPIO pin.

BOOL SusiIOWrite(BYTE pin, BOOL status);

Parameters
pin

[in] Specifies the GPIO pin demanded to be written. Begin from 0.
status

[in] Set status to TRUE will set the pin active (high). Otherwise, set
 the pin inactive (low).

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid input pin number to write. If the specified pin is
invalid, the return value is FALSE.

 Susi Library Reference

49 of 84

SusiIOWriteMulti

Set several GPIO pins at the same time.

BOOL SusiIOWriteMulti(DWORD pins, DWORD statuses);

Parameters
pins

[in] Specifies the GPIO pins demanded to be written. The pins to write
 are bitwise-ored. Pin number begin from 0.

statuses

[in] Bitwise-ored status of assigned pins. Set related bit of assigned
 pin to 1 will set the pin active (high). Otherwise, set the pin
 inactive (low).

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Write multiple output pins at the same time. The parameter pins and statuses are
bitwise-ored. Bit 0 stand for GPIO 0, bit 1 stand for GPIO 1, etc. For example, if
you want to set pin 0 and 1 high, 5 to low, the pin parameter should be
0x00000023, and statuses parameter can be 0x00000003.

 Susi Library Reference

50 of 84

SusiSMBusAvailable

Query whether SMBus driver is available.

BOOL SusiSMBusAvailable(void);

Parameters
No parameter.

Return Value
TRUE (nonzero) on success.
FALSE (zero) otherwise.

Remarks
Query whether SMBus driver is available in the platform. Application is
suggested to call SusiSMBusAvailable() to make sure SMBus driver is
present before calling SMBus functions.

 Susi Library Reference

51 of 84

SusiSMBusReadByte

Read a byte of data from the target slave device, which exists on SMBus.

BOOL SusiSMBusReadByte(BYTE SlaveAddress,

BYTE RegisterOffset, BYTE *Result);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be read.

RegisterOffset

[in] Specifies the offset of the address register belongs to the target
 slave device, which should be represented as the hexadecimal
 format.

Result

[out] Get a byte of data from the target slave device.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress and
RegisterOffset, of the target slave device on SMBus to read. If the
specified value is invalid, the return value is FALSE.

 Susi Library Reference

52 of 84

SusiSMBusReadByteMulti

Read multiple bytes of data once from the target slave device, which exists on
SMBus.

BOOL SusiSMBusReadByteMulti(BYTE SlaveAddress,

BYTE RegisterOffset, BYTE *Result, BYTE ByteCount);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be read.

RegisterOffset

[in] Specifies the beginning of the offset of the address register
 belongs to the target slave device, which should be represented as
 the hexadecimal format.

Result

[out] Get the data from the target slave device.
ByteCount

[in] Specifies the number of bytes of data to be read.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Read multiple bytes of data from the offset RegisterOffset of the target
slave device once. Application should specify valid parameters,
SlaveAddress and RegisterOffset, of the target slave device on SMBus
to read. If the specified value is invalid, the return value is FALSE.

 Susi Library Reference

53 of 84

SusiSMBusReadWord

Read a word of data from the target slave device, which exists on SMBus.

BOOL SusiSMBusReadWord(BYTE SlaveAddress,

BYTE RegisterOffset, WORD *Result);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be read.

RegisterOffset

[in] Specifies the offset of the address register belongs to the target
 slave device, which should be represented as the hexadecimal
 format.

Result

[out] Get a word of data from the target slave device.

Return Value

TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress and
RegisterOffset, of the target slave device on SMBus to read. If the
specified value is invalid, the return value is FALSE.

This function does not support PCM-9375 and SOM-4455.

 Susi Library Reference

54 of 84

SusiSMBusWriteByte

Write a byte of data to the target slave device exists on SMBus.

BOOL SusiSMBusWriteByte(BYTE SlaveAddress,

BYTE RegisterOffset, BYTE Result);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be written.

RegisterOffset

[in] Specifies the offset of the address register belongs to the target
 slave device, which should be represented as the hexadecimal
 format.

Result

[in] Write a byte of data to the target slave device, which should be
 represented as the hexadecimal format.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress and
RegisterOffset, of the target slave device on SMBus to write. If the
specified value is invalid, the return value is FALSE.

 Susi Library Reference

55 of 84

SusiSMBusWriteByteMulti

Write multiple bytes of data to the target slave device, which exists on SMBus.

BOOL SusiSMBusWriteByteMulti(BYTE SlaveAddress,

BYTE RegisterOffset, BYTE *Result, BYTE ByteCount);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be written.

RegisterOffset

[in] Specifies the beginning of the offset of the address register
 belongs to the target slave device, which should be represented as
 the hexadecimal format.

Result

[in] Write the data to the target slave device.
ByteCount

[in] Specifies the number of bytes of data is to be written.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Write multiple bytes of data to the target slave device from the offset
RegisterOffset once. Application should specify valid parameters,
SlaveAddress and RegisterOffset, of the target slave device on SMBus
to write. If the specified value is invalid, the return value is FALSE.

 Susi Library Reference

56 of 84

SusiSMBusWriteWord

Write a word of data to the target slave device exists on SMBus.

BOOL SusiSMBusWriteWord(BYTE SlaveAddress,

BYTE RegisterOffset, WORD Result);

Parameters
SlaveAddress

[in] Specifies the device address, in hexadecimal format, demanded to
 be written.

RegisterOffset

[in] Specifies the offset of the address register belongs to the target
 slave device, which should be represented as the hexadecimal
 format.

Result

[in] Write a word of data to the target slave device, which should be
 represented as the hexadecimal format.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application should specify valid parameters, SlaveAddress and
RegisterOffset, of the target slave device on SMBus to write. If the
specified value is invalid, the return value is FALSE.

This function does not support PCM-9375 and SOM-4455.

 Susi Library Reference

57 of 84

SusiVCAvailable

Query whether VGA control driver is available.

int SusiVCAvailable(void);

Parameters
No parameter.

Return Value

If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
Query whether VGA control driver is available in the platform. Application is
suggested to call SusiVCAvailable() to make sure VGA control driver is
present before calling VGA control functions. There are two kinds of the controls
for VGA control, that is, backlight on/off control and brightness
control. This function will return success if one of VGA controls supports
your platform. For a completeness of support platform list, please refer to
Appendix A.

 Susi Library Reference

58 of 84

SusiVCGetBright

Get the present brightness of the CRT panel.

int SusiVCGetBright(BYTE *brightness);

Parameters
brightness

[out] Point to a variable in which this function returns the present
 brightness.

Return Value

If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
This function only supports CRT panels.

 Susi Library Reference

59 of 84

SusiVCGetBrightRange

Get acceptable minimum, maximum timeout and stepping unit of the CRT panel
brightness.

int SusiVCGetBrightRange(BYTE *minimum, BYTE *maximum,

BYTE *stepping);

Parameters
minimum

[out] Point to a variable in which this function returns the acceptable
 minimum brightness.

maximum

[out] Point to a variable in which this function returns the acceptable
 maximum brightness.

stepping

[out] Point to a variable in which this function returns the acceptable
 stepping of brightness between minimum and maximum.

Return Value
If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
Application can call this function to know the hardware dependent parameters of
brightness. For example, if minimum is 0, maximum is 255, and stepping is 5, it
means the brightness can be 0, 5, 10, …, 255 steps.
The display chip of your platform must be in the support list in Appendix C:
Backlight On/Off Support Display Chipsets or this function will
return errors. For a completeness of support platform list, please refer to
Appendix A.

 Susi Library Reference

60 of 84

SusiVCScreenOff

Turn off the backlight.

int SusiVCScreenOff(void);

Parameters
No parameter.

Return Value

If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
The display chip of your platform must be in the support list in Appendix C:
Backlight On/Off Support Display Chipsets or this function will
return errors. For a completeness of support platform list, please refer to
Appendix A.

 Susi Library Reference

61 of 84

SusiVCScreenOn

Turn on the backlight.

int SusiVCScreenOn(void);

Parameters
No parameter.

Return Value

If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
The display chip of your platform must be in the support list in Appendix C:
Backlight On/Off Support Display Chipsets or this function will
return errors. For a completeness of support platform list, please refer to
Appendix A.

 Susi Library Reference

62 of 84

SusiVCSetBright

Set current brightness of the CRT panel.

int SusiVCSetBright(BYTE brightness);

Parameters
brightness

[in] Specifies the value demanded to set the brightness.

Return Value
If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
This function only supports CRT panels. The parameter brightness cannot
exceed the range of the brightness that was specified in the function
SusiVCBrightGetRange.

 Susi Library Reference

63 of 84

SusiWDAvailable

Query whether watchdog is available.

BOOL SusiWDAvailable(void);

Parameters
No parameter.

Return Value

TRUE (nonzero) if watchdog is present.
FALSE (zero) otherwise.

Remarks
Query whether watchdog is available in the platform. Application is suggested to
call SusiWDAvailable() to make sure watchdog is supported before trigger
it.

 Susi Library Reference

64 of 84

SusiWDDisable

Disable the watchdog.

BOOL SusiWDDisable(void);

Parameters
No parameter.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
If watchdog is not longer required, application can call SusiWDDisable() to
disable the watchdog. The return value may be FALSE if the watchdog hardware
can not be stopped.

 Susi Library Reference

65 of 84

SusiWDGetRange

Get acceptable minimum, maximum timeout and stepping unit of watchdog.

BOOL SusiWDGetRange(DWORD *minimum, DWORD *maximum,

DWORD *stepping);

Parameters
minimum

[out] Point to a variable in which this function returns the acceptable
 minimum timeout in milliseconds.

maximum

[out] Point to a variable in which this function returns the acceptable
 maximum timeout in milliseconds.

stepping

[out] Point to a variable in which this function returns the acceptable
 stepping of timeout in milliseconds between minimum and
 maximum.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
Application can call this function to know the hardware dependent parameters of
watchdog. For example, if minimum is 1000, maximum is 63000, and stepping is
1000, it means the watchdog timeout can be 1, 2, 3, …, 63 seconds.

 Susi Library Reference

66 of 84

SusiWDSetConfig

Set configuration to watchdog driver.

BOOL SusiWDSetConfig(DWORD delay, DWORD timeout);

Parameters
delay

[in] Specifies a timer in milliseconds allocated for the delay before
 first timeout period.

timeout

[in] Specifies a timer in milliseconds allocated for the watchdog
 timeout period.

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
This function will enable and activate the watchdog with given parameters. After
watchdog activated, application should periodically call SusiWDTrigger()
within specified timeout milliseconds. Note that acceptable timeout value is
depend on hardware, call SusiWDGetRange() to get the minimum/maximum
timeout and stepping unit.

 Susi Library Reference

67 of 84

SusiWDTrigger

Tell watchdog that application is still working.

BOOL SusiWDTrigger(void);

Parameters
No parameters

Return Value
TRUE (nonzero) on success.
FALSE (zero) on failure.

Remarks
After watchdog is activated, application should call this function continuously to
indicate that it is still working properly. If watchdog is activated, and application
doesn’t call SusiWDTrigger() after timeout milliseconds, system will
reboot.

 Susi Library Reference

68 of 84

SusiHWMAvailable

Query whether hardware monitor is available..

int SusiHWMAvailable ();

Parameters
No parameter.

Return Value

If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
Query whether hardware monitor is available in the platform. Application is
suggested to call SusiHWMAvailable() to make sure hardware monitoring
driver is present before calling its functions.

 Susi Library Reference

69 of 84

SusiHWMGetFanSpeed

This function is capable of either getting target fan speed data from hardware
monitoring sensor, or querying which fans are supported in the platform.

int SusiHWMGetFanSpeed(WORD HWMtype, WORD *retval, WORD*

typesupport = NULL);

Parameters
HWMtype

[in] Specifies a fan flag which to get speed from. For a define list of
possible fan flags, please refer to Appendix D or head file
Susi.h

retval

[out] Point to a variable in which this function returns the fan speed in
RPM

Typesupport

[in/out] If the value is specified as a pointer (non-NULL) to a variable, it
will return the supported fans in flag bitwise-ORed

Return Value
If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
To successfully monitor possible fan speeds in certain platform, call the function
with non-NULL typesupport variable to know which fans are supported.
According to it, call the function and specify the fan flag one by one, to get each
fan speed.

 Susi Library Reference

70 of 84

SusiHWMGetTemperature

This function is capable of either getting target temperature data from hardware
monitoring sensors or querying which sensor subjects are supported in the
platform.

int SusiHWMGetTemperature(WORD HWMtype, float *retval,

WORD* typesupport);

Parameters
HWMtype

[in] Specifies a subject flag which to get temperature from. For a
define list of possible flags, please refer to Appendix D or head
file Susi.h

retval

[out] Point to a variable in which this function returns the temperature in
Celsius

Typesupport

[in/out] If the value is specified as a pointer (non-NULL) to a variable, it
will return the supported sensor subjects in flag bitwise-ORed

Return Value
If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
To successfully monitor temperature change of interest subjects in certain
platform, call the function with non-NULL typesupport variable to know which
sensor subjects are supported. According to it, call the function and specify the
temperature flag one by one, to get each temperature value in Celsius.

 Susi Library Reference

71 of 84

SusiHWMGetVoltage

This function is capable of either getting target voltage data from hardware
monitoring sensor, or querying which voltage targets are supported in the
platform.

int SusiHWMGetVoltage(DWORD HWMtype, float *retval,

DWORD* typesupport);

Parameters
HWMtype

[in] Specifies a flag which to get voltage from. For a define list of
possible flags, please refer to Appendix D or head file Susi.h

retval

[out] Point to a variable in which this function returns the voltage value
in Volt

Typesupport

[in/out] If the value is specified as a pointer (non-NULL) to a variable, it
will return the supported voltage targets in flag bitwise-ORed

Return Value
If the function succeeds, the return value is zero.
If the function fails, the return value is negative error code. For a complete list of
error codes, please refer to Appendix E or head file Susi.h.

Remarks
To successfully monitor possible supported voltage targets in certain platform,
call the function with non-NULL typesupport variable to know which of them
are supported. According to it, call the function and specify the voltage flag one
by one, to get each voltage in Volt.

 Susi Library Reference

72 of 84

Appendix A - Support Platform List
Windows XP

Platform WatchDog GPIO SMBus I2C Brightness
Backlight

On/Off
HWM

AIMB-330 ○ ○ NA NA NA ○ NA

AIMB-340 ○ ○ NA NA NA NA NA

AIMB-640 NA ○ NA NA NA ○ NA

PCA-6751 ○ NA NA NA NA ○ NA

PCA-6753 ○ NA NA NA NA ○ NA

PCA-6770 ○ NA NA NA NA ○ NA

PCA-6772 ○ NA NA NA NA ○ NA

PCA-6773 ○ NA NA NA NA ○ NA

PCA-6774 ○ NA NA NA NA ○ NA

PCI-6870 ○ NA NA NA NA NA NA

PCI-6871 ○ NA NA NA NA ○ NA

PCI-6872 ○ NA NA NA NA ○ NA

PCI-6880 ○ ○ NA NA NA ○ NA

PCI-6881 ○ ○ NA NA NA ○ NA

PCM-3350 ○ ○ NA NA NA ○ NA

PCM-3370 ○ NA NA NA NA ○ NA

PCM-3380 ○ NA NA NA NA ○ NA

PCM-3386 ○ NA NA NA NA ○ NA

PCM-5820 ○ NA NA NA NA ○ NA

PCM-5822 NA NA NA NA NA ○ NA

PCM-5823 ○ NA NA NA NA ○ NA

PCM-5824 ○ NA NA NA NA NA NA

PCM-5825 ○ NA NA NA NA ○ NA

PCM-9371 ○ NA NA NA NA ○ NA

PCM-9372 ○ NA NA NA NA ○ NA

PCM-9373 ○ NA NA NA NA ○ NA

 Susi Library Reference

73 of 84

PCM-9374 ○ ○ NA NA NA ○ NA

PCM-9375 ○ ○ ○ NA ○ ○ NA

PCM-9377 ○ ○ ○ NA NA ○ NA

PCM-9380 ○ ○ NA NA NA ○ NA

PCM-9381 ○ ○ NA NA NA ○ NA

PCM-9386 ○ ○ NA NA NA ○ NA

PCM-9387 ○ ○ NA NA NA ○ NA

PCM-9572 ○ NA NA NA NA ○ NA

PCM-9575 ○ NA NA NA NA ○ NA

PCM-9577 ○ ○ NA NA NA ○ NA

PCM-9578 ○ ○ NA NA NA NA NA

PCM-9579 ○ NA NA NA NA ○ NA

PCM-9580 ○ ○ NA NA NA NA NA

PCM-9581 ○ ○ NA NA NA ○ NA

PCM-9582 ○ ○ NA NA NA ○ NA

PCM-9586 ○ ○ NA NA NA ○ NA

PCM-9587 ○ ○ NA NA NA ○ NA

POS-564 ○ ○ ○ NA NA ○ *3 NA

POS-761 NA ○ ○ NA NA ○ NA

SOM-4450 ○ NA NA NA NA ○ NA

SOM-4455 ○ NA ○ ○ NA ○ NA

SOM-4470 ○ NA ○ NA NA ○ NA

SOM-4472 ○ NA ○ ○ *2 NA ○ ○

SOM-4475 ○ NA ○ ○ *2 NA ○ ○

SOM-4481 ○ NA ○ ○ NA ○ ○

SOM-4486 ○ NA ○ ○ NA ○ ○

SOM-5780 ○ NA ○ ○ ○ ○ NA

Note 1. Please reference Appendix B. for more information of GPIO Pins
Assignment

 Susi Library Reference

74 of 84

Note 2. This function only supports newer versions of SOM-4472 (A3) and
SOM-4475 (A2).

Note 3. This function only supports POS-564 with SMI 720 chipset.

 Susi Library Reference

75 of 84

Windows CE

Platform Watchdog GPIO SMBus I2C Brightness
Backlight

On/Off
HWM

PCA-6751 ○ NA NA NA NA ○ NA
PCA-6772 ○ NA NA NA NA ○ NA
PCA-6773 ○ NA NA NA NA ○ NA
PCM-3341 ○ NA NA NA NA NA NA
PCM-3347 ○ NA NA NA NA ○ NA
PCM-3348 ○ NA NA NA NA NA NA
PCM-3350 ○ ○ NA NA NA ○ NA
PCM-3370 ○ NA NA NA NA ○ NA
PCM-3380 ○ NA NA NA NA ○ NA
PCM-3386 ○ NA NA NA NA ○ NA

PCM-5820 ○ NA NA NA NA ○ NA

PCM-5825 ○ NA NA NA NA ○ NA

PCM-9371 ○ NA NA NA NA ○ NA

PCM-9372 ○ NA NA NA NA ○ NA

PCM-9373 ○ NA NA NA NA ○ NA

PCM-9374 ○ ○ NA NA NA ○ NA

PCM-9375 ○ ○ ○ NA ○ ○ NA

PCM-9377 ○ ○ ○ NA NA ○ NA

PCM-9380 ○ ○ NA NA NA ○ NA

PCM-9381 ○ ○ NA NA NA ○ NA

PCM-9386 ○ ○ NA NA NA ○ NA

PCM-9387 ○ ○ NA NA NA ○ NA

PCM-9575 ○ NA NA NA NA ○ NA

PCM-9577 ○ ○ NA NA NA ○ NA

PCM-9579 ○ NA NA NA NA ○ NA

PCM-9581 ○ ○ NA NA NA ○ NA

 Susi Library Reference

76 of 84

PCM-9586 ○ ○ NA NA NA ○ NA

SOM-4450 ○ NA NA NA NA ○ NA

SOM-4455 ○ NA ○ ○ NA ○ NA

SOM-4470 ○ NA ○ NA NA ○ NA

SOM-4472 ○ NA ○ ○ *2 NA ○ ○

SOM-4475 ○ NA ○ ○ *2 NA ○ ○

SOM-4481 ○ NA ○ ○ NA ○ ○

SOM-4486 ○ NA ○ ○ NA ○ ○

SOM-5780 ○ NA ○ ○ ○ ○ NA

Note 1. Please reference Appendix B. for more information of GPIO Pins
Assignment

Note 2. This function only supports newer versions of SOM-4472 (A3) and
SOM-4475 (A2).

 Susi Library Reference

77 of 84

Appendix B - GPIO Pins Assignment

AIMB-330/ AIMB-340/ AIMB-640
The number of GPIO pins：4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 IN0 Pin-2 +5V
Pin-3 IN1 Pin-4 OUT0 (Max 1A)
Pin-5 IN2 Pin-6 GND
Pin-7 IN3 Pin-8 OUT1 (Max 1A)
Pin-9 GND Pin-10 +12V
Pin-11 Key Pin-12 Key
Pin-13 POUT3 Pin-14 GND
Pin-15 OUT2 Pin-16 +12V

*. It should add the pull-up resistors to OUT0, OUT1 on AIMB-330, AIMB-340 and

AIMB-640.

PCM-3350
The number of GPIO pins：0 Inputs, 2 outputs

Pin of CN20 Signal Pin of CN19 Signal
Pin-1 +5V Pin-1 +5V
Pin-2 OUT0 Pin-2 OUT1

 Susi Library Reference

78 of 84

PCM-9374/ PCM-9375/ PCM-9377/PCM-9380/
PCM-9386/ PCM-9577

The number of GPIO pins：4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 VCC Pin-2 OUT0
Pin-3 IN0 Pin-4 OUT1
Pin-5 IN1 Pin-6 OUT2
Pin-7 IN2 Pin-8 OUT3
Pin-9 IN3 Pin-10 GND

*. It should add the pull-up resistors to the input pins on PCM-9577 for logic level.

PCM-9381/ PCM-9387
The number of GPIO pins：4 Inputs

Pin Signal
Pin-1 VCC
Pin-3 IN0
Pin-5 IN1
Pin-7 IN2
Pin-9 IN3

PCM-9580
The number of GPIO pins：4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 IN0 Pin-2 OUT0
Pin-3 IN1 Pin-4 OUT1
Pin-5 IN2 Pin-6 OUT2
Pin-7 IN3 Pin-8 OUT3
Pin-9 GND Pin-10 GND

 Susi Library Reference

79 of 84

PCM-9581/ PCM-9582/ PCM-9586/ PCM-9587
The number of GPIO pins：4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 IN0 Pin-2 OUT0
Pin-3 GND Pin-4 GND
Pin-5 IN1 Pin-6 OUT1
Pin-7 VCC Pin-8 NC
Pin-9 IN2 Pin-10 OUT2
Pin-11 GND- Pin-12 GND
Pin-13 IN3 Pin-14 OUT3

*. It should add the pull-up resistors to In2, In3, OUT0, OUT1 on PCM-9581 and

PCM-9586.

PCI-6880
The number of GPIO pins：4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 IN0 Pin-2 OUT0
Pin-3 IN1 Pin-4 OUT1
Pin-5 IN2 Pin-6 OUT2
Pin-7 IN3 Pin-8 OUT3
Pin-9 VCC Pin-10 GND

 Susi Library Reference

80 of 84

PCI-6881
The number of GPIO pins：4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 IN0 Pin-2 OUT0
Pin-3 GND Pin-4 GND
Pin-5 IN1 Pin-6 OUT1
Pin-7 +5V Pin-8 NC
Pin-9 IN2 Pin-10 OUT2
Pin-11 GND Pin-12 GND
Pin-13 IN3 Pin-14 OUT3

POS-564/ POS-761
The number of GPIO pins：4 Inputs, 4 outputs

Pin Signal Pin Signal
Pin-1 IN0 Pin-2 +5V
Pin-3 IN1 Pin-4 OUT0*
Pin-5 IN2 Pin-6 GND
Pin-7 IN3 Pin-8 OUT1*
Pin-9 GND Pin-10 +12V
Pin-11 NC Pin-12 NC
Pin-13 OUT3 Pin-14 GND
Pin-15 OUT2 Pin-16 +12V

*. There are two high drive digital outputs, OUT0, OUT1 (24 VDC, 1 A max), two
TTL level digital outputs, OUT2, OUT3 and four digital inputs (TTL level). You
can configure the digital I/O to control the opening of the cash drawer and to sense
the closing of the cash drawer. The above table explains how the digital I/O is
controlled via software programming and how a 12 V solenoid or relay can be
triggered. For completeness, please refer to the user manual of
POS-563/POS-564/POS-761.

 Susi Library Reference

81 of 84

Appendix C - Backlight On/Off Support

Backlight On/Off Support Display Chipsets
 AMD CX5530
 Asiliant (C&T) 6900
 Intel 855GME chip
 SMI Lynx 721 chip
 VIA CLE266 chipset
 VIA VT8606 Twister chip

 Susi Library Reference

82 of 84

Appendix D – Hardware Monitoring Flags

Fan Speed

Flag Value Description
FCPU 1u CPU FAN Speed
FSYS 2u System FAN Speed
F2ND 4u 3rd FAN Speed

// Fan Speed
#define FCPU (1<<0) // CPU FAN Speed
#define FSYS (1<<1) // System FAN Speed

#define F2ND (1<<2) // Other FAN Speed

Temperature

Flag Value Description
TCPU 1u CPU Temperature
TSYS 2u System Temperature

// Temperature
#define TCPU (1<<0) // CPU Temperature
#define TSYS (1<<1) // System Temperature

Voltage

Flag Value Description
VCORE 1u Vcore

V25 2u 2.5V
V33 4u 3.3V

 Susi Library Reference

83 of 84

V50 8u 5V
V120 16u 12V
VSB 32u Voltage of standby

VBAT 64u VBAT
VN50 128u -5V

VN120 256u -12V
VTT 512u VTT

//Voltage
#define VCORE (1<<0) // Vcore
#define V25 (1<<1) // 2.5V
#define V33 (1<<2) // 3.3V
#define V50 (1<<3) // 5V
#define V120 (1<<4) // 12V
#define VSB (1<<5) // Voltage of standby
#define VBAT (1<<6) // VBAT
#define VN50 (1<<7) // -5V
#define VN120 (1<<8) // -12V
#define VTT (1<<9) // VTT

 Susi Library Reference

84 of 84

Appendix E - API Error Codes
The following table provides a list of Susi error codes.

Code Name Description
-10 ERR_SUSI_LIB_INIT_FAIL Susi cannot be initialized.
-11 ERR_SUSI_DRIVER_CONTROL_FAIL The driver on Windows

XP does not work
normally.

-50 ERR_SUSI_BRIGHTNESS_CONTROL_FAIL The brightness inside
control fails.

-51 ERR_BRIGHT_OUT_OF_RANGE The specified brightness is
out of range.

