

Application Note
AP-DOC-046

Extended Functions of DiskOnChip Driver Based on
TrueFFS® Version 5.0

JULY-2001
91-SR-005-11-7L REV 2.0

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 2

Contents
1 Introduction ...3

1.1 Glossary...3

2 Extended Functionality Interface ..5
2.1 Example source code ...7

2.1.2 Windows CE code example ...7

3 Extended Functions argument structures...9
3.1 FL_IOCTL_GET_INFO..9
3.2 FL_IOCTL_DEFRAGMENT ..11
3.3 FL_IOCTL_WRITE_PROTECT...12
3.4 FL_IOCTL_MOUNT_VOLUME ...13
3.5 FL_IOCTL_FORMAT_VOLUME ...14
3.6 FL_IOCTL_DELETE_SECTORS..16
3.7 FL_IOCTL_FORMAT_PHYSICAL_DRIVE ...17
3.8 Hardware Protection..23

3.8.1 FL_IOCTL_BDTL_HW_PROTECTION ... 24
3.8.2 FL_IOCTL_BINARY_HW_PROTECTION .. 26

3.9 FL_IOCTL_OTP ..26
3.10 Unique ID..28

3.10.1 FL_IOCTL_CUSTOMER_ID.. 28
3.10.2 FL_IOCTL_UNIQUE_ID.. 29

3.11 FL_IOCTL_NUMBER_OF_PARTITIONS ...29
3.12 FL_IOCTL_INQUIRE_CAPABILITIES...29
3.13 FL_IOCTL_SET_ENVIRONMENT_VARIABLES..30
3.14 FL_IOCTL_PLACE_EXB_BY_BUFFER..32
3.15 FL_IOCTL_WRITE_IPL ...33
3.16 FL_IOCTL_DEEP_POWER_DOWN_MODE..34
3.17 FL_IOCTL_BDK_OPERATION ...35

3.17.1 BDK_INIT_READ.. 36
3.17.2 BDK_READ .. 36
3.17.3 BDK_INIT_WRITE ... 37
3.17.4 BDK_WRITE ... 37
3.17.5 BDK_ERASE .. 38
3.17.6 BDK_CREATE .. 38
3.17.7 BDK_GET_INFO... 39

Additional Information and Tools...40

How to Contact Us..41

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 3

1 Introduction
The basic function of TrueFFS is to provide disk emulation using the DiskOnChip. To do this, TrueFFS
provides a standard block-device interface, consisting in essence of the capability for reading and
writing logical sectors. This capability is enough to enable file-systems and operating systems to access
the DiskOnChip as a storage device.

In addition to the standard storage device functionality, the TrueFFS driver, based on TrueFFS SDK,
provides extended functionalities. These functionalities go beyond simple data storage capabilities and
include features like: format the media, Read/Write protect, Binary partitions access, Flash
defragmentation and other options. All these unique functionalities are available in all TrueFFS based
drivers through the standard IO control command of the native file system.

In many operating systems the IOCTL mechanism is the only way you may access a driver running in
kernel mode from your applications running in user mode.

All TrueFFS based drivers have the same internal extended functionalities mechanism. However various
OS constrains force several variations to the external interface. This document describes the core
interface on which specific appendixes supply the variations. These appendixes are included with the
installation manuals (or readme files) of the OS specific drivers.

1.1 Glossary

Definition Description

Socket Socket is a physical location where a DiskOnChip device can reside.

Physical Drive\Physical Device Physical drive is a DiskOnChip device placed in a socket.

Partition\Volume Partition is a part of a physical drive handled as an independent unit.
A partition can be either a BDTL (Block Device Translation Layer)
partition (i.e. a logical drive partition) or a Binary partition.
A physical device can contain up to 4 partitions of any type, provided
one of them is a BDTL partition.

Logical Drive \ BDTL Partition \
BDTL Volume

A BDTL (Block Device Translation Layers) partition is a partition
formatted and supported by one of TrueFFS’ Translation Layers,
making it capable of supporting a block device driver and file-system.
This partition is accessed by your OS file system through the
TrueFFS driver, and is also called the flash disk partition (in simple
terms – it is the partition used as a disk).

Binary Partition \ Binary Volume Partition on the DiskOnChip that usually contains executable code
(usually OS loader or boot code). These partitions are not accessed
through the file system regular calls, but through its device IO
controls.

TL Translation Layer

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 4

Definition Description

Binary Sub-Partition

All of the Binary Partition blocks are marked with a unique signature.
Since TrueFFS-SDK (OSAK) 4.1 a dedicated routine enables
changing this signature for a contiguous subset of the partition’s
blocks, thus creating several separated areas within the Binary
Partition. Each such area is called a Binary sub-partition. When first
formatted the Binary Partition contain a single sub-partition.

Firmware Space \ EXB Space

M-System provides an EXB file that containing a driver for x86 BIOS
platforms. The file can be placed on the DiskOnChip using the
Dformat DOS utility or through one of the driver extended functions.
Once placed on the media the DiskOnChip will automatically hook
int13 as a BIOS expansion and will register as a normal FAT hard-
drive.

IPL Initial Program Loader – This code usually performs minimal system
initialization and loads the SPL (see below).

SPL Secondary Program Loader – This code loads and runs the code
found in the first binary partition of the DiskOnChip (the default SPL,
intended for x86, loads the TrueFFS BIOS driver).

Quick mount DiskOnChip Millennium Plus and DiskOnChip 2000 TSOP can be
formatted with the quick mount feature. This option saves the RAM
conversion table to the flash before dismounting therefore allowing
quicker mount time on the next power up.
The tables are protected by EDC and a “dirty flag” mechanism,
making sure the media is not mounted with bad conversion tables.
The downside is slower dismount and the loss of some media space
(usually one block per BDTL partition). This feature is usually not
needed unless mounting time is critical and the DiskOnChip device
is large.

OTP area (or block) One Time Programming Area – A 6KB ROM-Like block that
automatically locks up forever after one write operation is performed
in it.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 5

2 Extended Functionality Interface
The TrueFFS driver implements the interface of the extended functionalities through your file system
device IO control calls. The device IO control interface can vary from one file system to another, but the
general interface has the following 2 steps:

1) Getting a the TrueFFS driver descriptor:

Drive Handle = File System Get Drive Handle Call (Device Driver Name & Parameters);

2) Initiating an Extended function call:

File System Call Status = File System Io Control Call (Driver Handle , IO Request Packet);

The first step (Getting the Drive Handle) is file system dependent. Its result is a descriptor of the
TrueFFS driver that can be used by the device IO control call.

The second step (Initiating an Extended function call) has several attributes common to all File Systems:

File System Call Status – This value indicates whether the call was successfully passed to the driver
and whether the driver took responsibility for the call. It usually does not specify the operation status.
The operation status is returned as part of the IO Request Packet using standard TrueFFS status codes.
The complete set of the TrueFFS status codes is available in the IO control H file (flIOCTL.H, included
with each driver package).

File System Io Control Call – The function name used to invoke a file system extended functionality
(device IO control) call.

IO Request Packet – All TrueFFS extended functionalities receive the following IO request packet:

typedef struct {
FLHandle irHandle;
unsigned irFlags;
FLSimplePath FAR1 * irPath; /* Not used */
void FAR1 * irData;
long irLength; /* Not used */
long irCount; /* Not used */

} Ioreq

• irHandle - A handle identifying the Partition on which an operation should be performed. When there is only

one logical drive no ambiguity can occur, and the drive handle parameter should be 0. This drive handle is
composed of the physical drive number (Bits 0-3) and the partition number (Bits 4-7).

o As both the Binary Partitions and the BDTL partitions are numbered from 0, a Binary
Partition can have the same handle as a BDTL partition on the same physical drive.
Therefore, Binary and BDTL operation are always handled using different calls, thus
avoiding ambiguity.

• irFlags – This field controls the type of your extended function. Every extended function is
represented by a code defined as enumerated type defined in FLIOCTL.H.

typedef enum{ FL_IOCTL_GET_INFO = FL_IOCTL_START,

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 6

FL_IOCTL_DEFRAGMENT,

FL_IOCTL_WRITE_PROTECT,

FL_IOCTL_MOUNT_VOLUME,

FL_IOCTL_FORMAT_VOLUME,

FL_IOCTL_BDK_OPERATION,

FL_IOCTL_DELETE_SECTORS,

FL_IOCTL_READ_SECTORS, /* Not implemented */

FL_IOCTL_WRITE_SECTORS, /* Not implemented */

FL_IOCTL_FORMAT_PHYSICAL_DRIVE,

FL_IOCTL_FORMAT_LOGICAL_DRIVE, /* Not implemented */

FL_IOCTL_BDTL_HW_PROTECTION,

FL_IOCTL_BINARY_HW_PROTECTION,

FL_IOCTL_OTP,

FL_IOCTL_CUSTOMER_ID,

FL_IOCTL_UNIQUE_ID,

FL_IOCTL_NUMBER_OF_PARTITIONS,

FL_IOCTL_INQUIRE_CAPABILITIES,

FL_IOCTL_SET_ENVIRONMENT_VARIABLES,

FL_IOCTL_PLACE_EXB_BY_BUFFER,

FL_IOCTL_WRITE_IPL,

FL_IOCTL_DEEP_POWER_DOWN_MODE

} flIOctlFunctionNo;

The constant FL_IOCTL_START defines the number of the first extended function code to be
used by TrueFFS. Typically, each operating system defines a range of extended function codes
that are reserved for its use. FL_IOCTL_START is therefore defined outside this range (see the
OS driver installation manual for more info).

• irData – This field should contain a pointer to an flIOctlRecord record. The flIOctlRecord record
contains pointers to your specific extended function input and output records:

typedef struct {
 void FAR1 *inputRecord;
 void FAR1 *outputRecord;
} flIOctlRecord;

Section 3 of this document describes in details the specific input and output records of each
extended function.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 7

2.1 Example Source Code
Calling extended functions depends on the operating system, and is described in detail in the relevant
Application Note for each specific TrueFFS driver.

2.1.2 Windows CE Code Example
The following example shows the code invoking a write-protect extended function under Windows CE.

Note that CE requires separated input and output buffers and the exact control function number as
specific arguments of the “Device IO Control”. This interface is a bit different from the one described
above.

The IO Request Packet is not a part of the I/O control call. It is replaced by:
• The inputRecord structure pointer.
• The outputRecord structure pointer.
• The irFlags field.
The irHandle is supplied as an argument to the binding stage (getting the drive handle).

include <stdio.h>

include “flioctl.h”

unsigned realBytes;

HANDLE hDriver;

flWriteProtectInput inputRecord;

flOutputStatusRecord outputRecord;

/* Binding the DiskOnChip driver */

hDriver = CreateFile(TEXT("DSK1:"),

GENERIC_READ|GENERIC_WRITE,

0,

NULL,

OPEN_EXISTING,

0,

NULL);

/* Preparing the input buffer */

strcpy(inputRecord.Key, “AAAAAAAA”); /* Write-protect Key */

inputRecord.type = FL_PROTECT; /* Type of write protect command */

/* Activating the write protect function */

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 8

if(DeviceIoControl(hDriver , /* Driver handle */

 FL_IOCTL_WRITE_PROTECT /* Extended function code */

 &inputRecord, /* Input buffer */

 sizeof(inputRecord), /* Input buffer size */

 &outputRecord, /* Output buffer */

 sizeof(outputRecord), /* Output buffer size */

 & realBytes, /* Return buffer size */

 NULL) == FALSE) /* Overlapped handle not needed */

{

/* Failure – Print the return status */

printf(“Failed Write-Protect. Status = %d\n”, outputRecord.status);

}

TrueFFS driver data structures are defined in FLIOCTL.H and described in the section below.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 9

3 Extended Functions Argument Structures

This section describes each of the extended functions purpose, usage and relevant I/O structures. As
explained in Section 2, all extended function receive a common flIOctlRecord pointing to the respective
input and output records:

typedef struct {

 void FAR1 *inputRecord;
 void FAR1 *outputRecord;

} flIOctlRecord;

The status of the IO control call is returned in the output records of the TrueFFS driver (FLStatus field).
FlOK (0) indicates success while any other status indicates some kind of a failure.

Note: File System Call Status indicates whether the call was successfully passed to the driver and whether the driver took
responsibility for the call. It does not specify the operation status. The operation status is one of the outputRecord fields using
standard TrueFFS status codes.

3.1 FL_IOCTL_GET_INFO
Returns general information on the specific BDTL partition, the DiskOnChip socket address, software
version, high- level and low-level geometry and estimated lifetime of the media.

A VolumeInfoRecord structure is returned to a user buffer containing the information.

The VolumeInfoRecord structure is defined as:

typedef struct {

unsigned long logicalSectors; /* number of logical sectors in the BDTL partition (including
hidden sectors and boot sectors */

unsigned long bootAreaSize; /* boot area size of the entire drive (combines all binary partitions) */

unsigned long baseAddress; /* physical base address of the memory window */

unsigned short flashType; /* JEDEC id of the flash */

unsigned long physicalSize; /* physical size of the media in bytes */

unsigned short physicalUnitSize; /* flash erasable block size in bytes */

char DOCType; /* DiskOnChip types defined in flioctl.h */

FL_NOT_DOC - 0 - Not DiskOnChip

FL_DOC - 1 - DiskOnChip 2000

FL_MDOC - 2 - DiskOnChip Millennium

FL_DOC2000TSOP - 3 - DiskOnChip 2000 TSOP

FL_MDOCP - 5 - DiskOnChip Millennium Plus

char lifetime; /* lifetime indicator for the partition (1-10) */

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 10

 /* 1 - the media is fresh */

 /* 10 - the media is close to the end of its life */

char driverVer[10]; /* driver version (NULL terminated string) */

char OSAKVer[10]; /* TrueFFS version that driver is based on (NULL terminated string) */

 /*The following values are of the specific partition */

unsigned long cylinders; /* Media...... */

unsigned long heads; /* geometry...... */

unsigned long sectors; /* parameters...... */

} VolumeInfoRecord; /* end struct */

VolumeInfoRecord Parameters

logicalSectors Number of logical sectors.

bootAreaSize Number of physical bytes (not necessarily all usable) reserved for Binary
Partition. For more information, see the section 5.1 of this manual.

baseAddress Physical address in host memory where DiskOnChip window is located.

physicalSize Amount of raw Flash memory available, in bytes.
The total amount of storage space available for data storage will be lower due to
formatting overhead, and presence of a Binary Partition.

physicalUnitSize Size of erasable flash blocks, in bytes.

DOCType Family of products to which this DiskOnChip belongs: DiskOnChip 2000 (DIP
& DIMM), DiskOnChip Millennium, DiskOnChip 2000 TSOP and
DiskOnChip Millennium Plus.

lifetime Since the DiskOnChip is a flash memory, it is limited by the number of erase
cycles. This parameter indicates the “lifetime status” (1 through 10), where
1 Indicates the media is fresh, and
10 Indicates that media is close to its end of life.
Note that this value is only an estimate based on general lifetime statistics.

driverVer Version number of TrueFFS driver for this specific operating system.

NOTE: this is not the TrueFFS SDK version number.

OSAKVer TrueFFS SDK version that TrueFFS driver is based on.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 11

cylinders Media geometry parameter: number of cylinders.

heads Media geometry parameter: number of heads

sectors Media geometry parameter: number of sectors per track.

Input record:

DO NOT CARE

Output record:

typedef struct {

VolumeInfoRecord info; /* VolumeInfoRecord is defined in flioctl.h */

FLStatus status;} flDiskInfoOutput;

3.2 FL_IOCTL_DEFRAGMENT
Regular writing to the flash makes periodic space reclamation, or garbage collection, necessary.
TrueFFS performs such space reclamation automatically, usually on an immediate-need basis. This
process takes time and slows down both the average and maximum time to perform a write operation.

The defragmentation process, performs early flash space reclamation. If an application needs to write a
burst of data and has some idle time before the burst arrives, it can write the data more quickly when
applying an early defragmentation call.

If it is necessary to write some data without interruption for space reclamation, defragmentation should
be done before starting the write operation. The minimum number of bytes specified should include
about 20% extra for FAT and BDTL overhead. For example, if you need to write a 16 KB file, specify
about 40 sectors as a defragmentation target.

This function accepts as a parameter the minimum number of sectors that need to be available for
immediate write. If the current amount of free writeable space is greater than this parameter, the function
returns immediately. If not, it performs garbage collection operations until the amount of free space is at
least equal to the quantity requested or there is no more reclaimable space left on the media.

If the amount of desired free space is unknown, a quick garbage collection procedure can be invoked by
setting number of sectors needed to be –1. The amount of space that will be reclaimed in this procedure
depends on the physical geometry of the media and the distribution of the data on the media. However, it
is guaranteed to perform garbage collection in the most efficient manner (that is, the best “space
reclaimed to time of operation” ratio).

In all cases, the call will return the actual number of free writable sectors currently available.
Note: This number is not the same as the free space on the volume, but represents only the amount of Flash memory that is
in the erased state. A volume may be empty of files, yet have no free writeable sectors whatsoever.

To find the currently available space, request a defragmentation for 0 (zero) sectors. Defragmentation is
not performed, however, the current number of free sectors is returned. Request a large number of

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 12

sectors to perform a general defragmentation of the volume. In this case, defragmentation completes
with a failing status, since the number requested cannot be achieved.

Input record:
typedef struct {
long requiredNoOfSectors; /* Minimum number of sectors to make available; */
 /* if -1 then a quick garbage collection operation is invoked*/

} flDefragInput;

Output record:

typedef struct {

long actualNoOfSectors; /* Actual number of sectors available */

FLStatus status;} flDefragOutput;

3.3 FL_IOCTL_WRITE_PROTECT
TrueFFS includes a Key-controlled write-protection feature for DiskOnChip (software protection). Once
a DiskOnChip is protected by the Key, it assumes read-only mode. Removing a Key can be done by an
authorized user who knows the current Key.

The Key consists of 8 bytes (64-bit), each of which may be any 8-bit code character (264 combinations).
The Key is stored on the Flash disk in a manner that is both scrambled and hidden. That is, the Key is
encrypted, and it is not possible to read the Flash disk to see the encrypted Key. If the Key is lost or
forgotten by the authorized user, the Flash disk can become writable again by downloading all data from
it, reformatting it, and uploading it. A new Key can then be enforced.

The same procedure can also be performed by unauthorized users. In this case however, the authorized
user is able to determine that the Key was removed or changed.

A Key-protected DiskOnChip is available to an unauthorized user in read-only mode. All data may be
read, but not written or modified. An authorized user can write to the Flash disk by temporarily
disabling the write-protection (unlock) or permanently removing it (unprotect), depending on the
parameters involved. In case the protection was temporarily removed both dismounting the DiskOnChip
and system reset will cause the DiskOnChip to return to read-only mode.

The DiskOnChip, as shipped by M-Systems, are by default not Key-protected.

Note: This protection is not as strong as the hardware protection supported by DiskOnChip Millennium Plus devices.

Input record:

typedef struct {

unsigned char type; /* Type of operation: FL_PROTECT / FL_UNPROTECT / FL_UNLOCK */

long Key[2]; /* 8 bytes Key */

} flWriteProtectInput

#define FL_PROTECT 0 - Make the DiskOnChip write-protected.

#define FL_UNPROTECT 1 - Permanently remove the write-protection.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 13

#define FL_UNLOCK 2 - Temporarily remove the write-protection.

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

3.4 FL_IOCTL_MOUNT_VOLUME
This function remounts the DiskOnChip. Remounting consists of discarding all in-memory control
information kept by the TrueFFS driver, and rebuilding it. The remount consists of a low-level BDTL
mount.

This function is not needed except in special circumstances. One of the most common uses of this
function is when a user application accesses and modifies the DiskOnChip not via the file system or the
TrueFFS driver API. An example of such an application is using the standalone DiskOnChip format
utility “DFORMAT”. In such a situation the TrueFFS driver is not updated with the DiskOnChip
changes, and every further operation would be unreliable or even harmful. Forcing the TrueFFS driver
to remount the driver will get updated with the changes, and enables it to operate reliably.

Input record:

typedef struct {

unsigned char type;

} flMountInput;

#define FL_MOUNT 0

#define FL_DISMOUNT 1

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

Note: Non valid arguments will force mounting of the DiskOnChip (identical to FL_MOUNT).

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 14

3.5 FL_IOCTL_FORMAT_VOLUME
This extended function is left for backwards compatibility with previous versions of TrueFFS SDK
(former name TrueFFS-OSAK). Whenever possible use FL_IOCTL_FORMAT_PHYSICAL_DRIVE
instead.

FL_IOCTL_FORMAT_VOLUME formats a volume, writing a new and empty file-system. All existing data is
destroyed. Optionally, a low-level (flash translation layer) formatting is done.

Input record:

typedef struct {

unsigned char formatType; /* Type of format*/

formatParams FAR1 fp; /* Format parameters structure*/

} flFormatInput;

Options for formatType:

#define FAT_ONLY_FORMAT 0 - Perform FAT formatting only without the low-level format.

#define TL_FORMAT 1 – Perform both low-level and FAT format.

#define TL_FORMAT_IF_NEEDED 2 – Perform low-level and FAT format only if the current FAT
format is invalid.

#define TL_FORMAT_ONLY 8 – Performa low-level format only.

typedef struct

{

 /* TL formatting section */

 long int bootImageLen;

 /* Space to reserve for a boot-image at the start of the

 medium. The BDTL volume will begin at the next higher

 erase unit boundary */

 unsigned int percentUse;

/* The Translation Layer (TL) performance depends on how full the flash media is, becoming slower as
the media comes closer to 100% full. It is possible to avoid the worst-case performance (at 100% full)
by formatting the media to less than 100% capacity, thus guaranteeing free space at all times. This will
sacrifice some capacity. The standard value used is 98 */

 unsigned int noOfSpareUnits;

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 15

/* BDTL partitions need at least one spare erase unit to function as a read/write media. That unit is
normally taken from the transfer units specified by the percentUsed field, but it is possible to specify
additional units (which takes more media space). The advantage of specifying spare units is that if all
the transfer units become bad and inerasable, the spare unit enables TrueFFS to continue its read/write
functionality. Conversely, if no spare units are available the media may switch into read-only mode. The
standard value used is 1 */

 unsigned long vmAddressingLimit; /* NOR flash formatting (not relevant for DiskOnChip)*/

 FLStatus (*progressCallback)(int totalUnitsToFormat,int totalUnitsFormattedSoFar);

 /* Progress callback routine; will be called if not NULL.

 The callback routine is called after erasing each unit,

 and its parameters are the total number of erase units

 to format and the number erased so far.

 The callback routine returns a Status value. A value of

 OK (0) allows formatting to continue. Any other value

 will abort the formatting with the returned status code. */

 /* DOS formatting section */

 char volumeId[4];

 /* Volume identification number */

 char* volumeLabel;

 /* Volume label string. If NULL, no label */

 unsigned int noOfFATcopies;

 /* It is customary to format DOS media with 2 FAT copies.

 The first copy is always used, but more copies make it

 possible to recover if the FAT becomes corrupted (a

 rare occurrence). On the other hand, this slows down

 performance and uses media space.

 The standard value to use is 2 */

 /* NOR flash formatting section (not relevant to DiskOnChip) */

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 16

 unsigned int embeddedCISlength;

 char* embeddedCIS;

}FormatParams;

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

3.6 FL_IOCTL_DELETE_SECTORS
Marks one or more consecutive absolute sectors as logically deleted. This function is required only in
special circumstances. The reason for activating this function is that TrueFFS write performance
depends to some degree on the amount of free space on the flash disk. A flash disk that is close to being
full will show slower write performance. This is the result of the necessity to perform space reclamation
(e.g. garbage collection) more often.

This function is used to increase the amount of logically free space by informing TrueFFS of absolute
sectors that it considers used, but actually no longer contain useful data, that is, they can be deleted.

Typically, this function is beneficial for systems that use a non-FAT file system. If the file-system code
is available, it is possible to identify the places where the file-system marks disk areas as logically
deleted, and inform TrueFFS of this explicitly. In this case the customer is able to add a call to function
FL_IOCTL_DELETE_SECTORS after deleting logical sectors.

Note: This special handling is not necessary when using a FAT file system (sometimes also called a DOS file system), since
the TrueFFS driver is automatically aware of space management on FAT file systems.

Input record:

typedef struct {

long firstSector; /* First logical sector to delete */

long numberOfSectors; /* Number of sectors to delete */

} flDeleteSectorsInput;

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 17

3.7 FL_IOCTL_FORMAT_PHYSICAL_DRIVE
Formats a DiskOnChip. This extended functionality call allows the full range of functionalities
introduced by TrueFFS 5.0 and the new M-Systems devices the Millennium Plus and DiskOnChip 2000
TSOP:

1) Divide the device into Binary partitions and BDTL partitions.

2) Perform a low-level binary format and BDTL format.

3) Protect up to two partitions of any kind.

4) Place quick mount format.

5) Place firmware boot file (or just leave space for it in the first binary partition).

6) Write an empty FAT file system onto BDTL partitions.

Notes:

• Formatting destroys all existing data.

• Formatting leaves all the BDTL volumes in the dismounted state, so that a mounting call is
necessary afterwards.

• Millennium Plus and DiskOnChip 2000 TSOP support up to 4 partitions of any combination, Binary
and BDTL, as long as there is at least one BDTL partition (Other devices support only one BDTL
and one Binary partition).

• All H/W protection keys must be inserted before calling this routine.

• Some of the features introduced by TrueFFS 5.0 are ignored unless the irFlags field is set with the
proper flag. The specific flags are mentioned in their proper fields.

• Formatting is controlled by a set of parameters defined in a FormatParams2 structure.

Input record:

typedef struct {
FormatParams2 fp; /* Format parameters structure */

unsigned char formatType; /* Type of format as defined in flioctl.h */

} flFormatPhysicalInput;

Options for formatType:

#define TL_QUICK_MOUNT_FORMAT 1 – Apply the quick mount format

#define TL_LEAVE_BINARY_AREA 8 – Leave the previous Binary partition unchanged

The FormatParams2 record is defined as follows:

typedef struct

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 18

{

unsigned char percentUse;

 /* BDTL performance depends on how full the flash media is,

 becoming slower as the media becomes closer to 100% full.

 It is possible to avoid the worst-case performance

 (at 100% full) by formatting the media to less than 100%

 capacity, thus guaranteeing free space at all times. This

 of course sacrifices some capacity. The standard value

 used is 98 */

unsigned char noOfBDTLPartitions;

 /* Indicates the number of BDTL partitions (1 to 4). */

unsigned char noOfBinaryPartitions;

/* Indicates the number of Binary partitions (0 to 3). 0 will cause formatting with no Binary
partitions. This value is ignored if the TL_LEAVE_BINARY_AREA flag is set. */

BDTLPartitionFormatParams* BDTLPartitionInfo;

 /* BDTL partition information array (see definition bellow) */

BinaryPartitionFormatParams * binaryPartitionInfo;

 /* Binary partition information array (see definition bellow) */

/*****************************/

/* Special format features section */

/*****************************/

void * exbBuffer;

 /* A buffer containing the EXB file. Optionally this file can

 contain only the first 512 bytes of the file while the rest

 will be sent using consecutive calls to FL_IOCTL_PLACE_EXB_BY_BUFFER */

unsigned long exbBufferLen; /* Size of the given EXB buffer */

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 19

unsigned long exbLen; /* The specific size to leave for the EXB */

unsigned short exbWindow; /* Set explicit DiskOnChip window base */

word exbFlags; /* A combination of the following flags. */

#define INSTALL_FIRST 1 - Make the device the first hard drive

#define QUIET 4 - Do not show titles while BIOS expansion is found

#define INT15_DISABLE 8 - Disable INT15 hooking

#define FLOPPY 0x10 - Make device assume drive A: (This will not make it bootable)

#define SIS5598 0x20 - Support Windows NT platforms with SIS5598 VGA Chipset

#define EBDA_SUPPORT 0x40 - Support BIOS with EBDA.

#define NO_PNP_HEADER 0x80 - Do not place the PNP header

#define LEAVE_EMPTY 0x100 - Leave empty space for placing the specific firmware late

unsigned char cascadedDeviceNo;

 /* Reserved for individual cascaded device formatting 0..n. For

 this value to have any affect the TL_SINGLE_CHIP_FORMATTING flag

 should be set in the flags field. This option is not currently implemented */

unsigned char noOfCascadedDevices;

 /* This field must be supplied in order to perform a format of

 a single chip that will be eventually assembled as a cascaded

 device. The field should specify the number of DiskOnChips

 that will be eventually cascaded on the target platform.

 This option is currently not implemented */

FLStatus (*progressCallback)(int totalUnitsToFormat,

 int totalUnitsFormattedSoFar);

 /* Progress callback , will be called if not NULL.

 The callback routine is called after erasing each unit,

 and its parameters are the total number of erase units

 to format and the number erased so far.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 20

 The callback routine returns a Status value. A value of

 OK (0) allows formatting to continue. Any other value

 will abort the formatting with the returned status code. */

The BDTLPartitionFormatParams record describes the individual BDTL partitions:

typedef struct

{

unsigned long length;

 /* The size of the usable storage space. The size will be

 rounded upwards to a multiplication of a block size.

 The size of the last partition will be calculated automatically,

 but if the requested size is greater then the remaining space

 an error code will be returned. Requesting zero size for any

 partition but the last will generate an flBadParameters status. */

unsigned int noOfSpareUnits;

 /* BDTL needs at least one spare erase unit in order to function

 as a read/write media. It is possible to specify more than one

 spare unit, which takes more media space. The advantage of

 specifying more than one spare unit is that if one of the flash

 erase units becomes bad and inerasable in the future, then one

 of the spare units can replace it. In that case, a second spare

 unit enables TrueFFS to continue its read/write functionality,

 whereas if no second spare unit is available the media goes into

 read-only mode. The standard value used is 1 */

unsigned char flags;

#define TL_FORMAT_FAT 2 /* Add FAT format on the media */

#define TL_OLD_FORMAT 4 /* Try formatting with 1 sector per cluster */

unsigned char volumeId[4]; /* DOS partition identification number */

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 21

unsigned char* volumeLabel; /*DOS partition label string. If NULL, no label */

unsigned char noOfFATcopies;

 /* It is customary to format DOS media with two FAT copies. The

 first copy is always used, but more copies make it possible

 to recover if the FAT becomes corrupted (a rare occurrence).

 On the other hand, this slows down performance and uses media

 space. The standard value used is 2. */

unsigned char protectionKey[8]; /* The key for the protection*/

unsigned char protectionType;

 /* PROTECTABLE - 1 - Must be added for any protection attribute */

 /* READ_PROTECTED - 2 - Protect against read operations */

 /* WRITE_PROTECTED - 4 - Protect against write operations */

 /* LOCK_ENABLED - 8 - Enables the hardware lock signal */

 /* CHANGEABLE_PROTECTION - 64 - Protection type can be changed */

}BDTLPartitionFormatParams;

The BinaryPartitionFormatParams record describes the individual BDTL partitions:

typedef struct

{

unsigned long length; /* Required number of usable bytes on the partition.*/

unsigned char sign[4]; /* signature of the binary partition to format. */

unsigned char signOffset;

 /* offset of the signature. This value should always be 8, but it

 can also accept 0 for backwards compatibility reasons. Note that

 if the offset is 0 EDC\ECC is neutralized */

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 22

unsigned char protectionKey[8]; /* The key for the protection*/

unsigned char protectionType;

 /* PROTECTABLE - 1 - Must be added for any protection attribute */

 /* READ_PROTECTED - 2 - Protect against read operations */

 /* WRITE_PROTECTED - 4 - Protect against write operations */

 /* LOCK_ENABLED - 8 - Enables the hardware lock signal */

 /* CHANGEABLE_PROTECTION - 64 - Protection type can be changed */

}BinaryPartitionFormatParams;

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 23

3.8 Hardware Protection
The extended functionality calls described in this section perform hardware read/write protection related
operations, and consequently can be used only with DiskOnChip devices that have the required
hardware support (currently DiskOnChip Millennium Plus only).

Different functions handle Binary and BDTL partitions. The usage is identical only that BDTL partitions
use FL_IOCTL_BDTL_HW_PROTECTION while binary partition use
FL_IOCTL_BINARY_HW_PROTECTION.

Method of operation

The DiskOnChip Millennium Plus enables you to define two partitions that will be key protected (in
hardware), against any combination of read or write operations. Defining their size and protection
attributes (read/write/changeable/lock), is done in the media formatting stage (DFORMAT utility or the
format extended function call). You may define one partition as “changeable” i.e. its password and
attributes are fully configurable (from read to write, both or none and vise versa) at any time. Note that
“un-changeable” partition attributes cannot be changed unless the media is reformatted.

The DiskOnChip Millennium Plus has an additional H/W safety mechanism. If the Lock option is
enabled (using one of the extended functions), and the Lock pin of the DiskOnChip is set, then the
protected partition will have an additional H/W lock preventing the use of the key, i.e. not even using
the correct key will provide access to the protected partitions.

A good analogy to the way the DiskOnChip hardware protection works would be the following:

You can decide whether or not to install a lock on your door (this is done in the DFORMAT stage) and
whether you want to add a safety chain on it (Lock enabled). However at any given point in time you
can decide whether to leave the “key” inside (insert key) allowing free access or removing it, leaving the
door closed. No protection violation operation can be done without inserting the key. If you installed a
safety chain on your door you can always use it (assert the DiskOnChip LOCK pin) therefore preventing
access even if someone has the correct key or even if the key is currently inserted. If the safety chain
was not installed during the format stage (or later on when the partition is changeable) then the
DiskOnChip LOCK pin is ignored by the H/W protection logic.

Note: The target volume does not have to be mounted before calling a H/W protection routine.

Each protected partition has its own unique attributes: key, read\write protection and the HW LOCK
signal enable state (the safety chain). TrueFFS exports several routines that enable changing these
attributes: change key, change protection type (read\write protected) and change hardware LOCK state
(enabled or not).

A change of any of these attributes causes a reset of the protection mechanism and consequently the
removal of all the devices protection keys. Care should be taken to avoid interference between different
protected partitions. For example, a key inserted into one partition will be removed when another
partition is instructed to change its protection attributes (changing key for example).

The only way to write or read from a read or write protected partition is to use the insert key call (not
even format will remove the protection). This is also true for modifying its attributes (key, read, write
and lock enable state).The key is removed in each one of the following events:

• Power down.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 24

• Change one of the protection attributes (not necessarily to the same partition).

• Write operation to the IPL area using FL_IOCTL_WRITE_IPL.

• Removing of the protection key through the use of the functionalities.
Note: In order to make a partition changeable the specific flag must be added to the protectionType field of the format
record. Without it, functions attempting to change protection attributes will return error codes.

Note: If the partition is protected and the LOCK pin is asserted and enabled, there is no way to remove the protection by
software (not even by the disable lock call). The DiskOnChip LOCK pin must be negated first.

Note: Only one partition in a device can be changeable.

3.8.1 FL_IOCTL_BDTL_HW_PROTECTION

Not all DiskOnChip devices support the H/W protection feature. To find out, call the function
FL_IOCTL_INQUIRE_CAPABILITIES with option SUPPORT_HW_PROTECTION

As of the writing of these lines the only device with H/W protection features is the DiskOnChip
Millennium Plus.

The hardware protection extended function is subdivided into sub-functions. All of the sub-functions use
the same record for input and output.

Input record:

typedef struct {

unsigned char protectionType;/* See PROTECTION_GET_TYPE table bellow */

unsigned char key[8]; /* The key */

Unsigned char type; /* One of the following flags: */

#define PROTECTION_INSERT_KEY - 0 - Insert key (disabling protection)

#define PROTECTION_REMOVE_KEY - 1 - Remov key (restoring protection)

#define PROTECTION_DISABLE_LOCK - 2 - Do not enable the H/W LOCK pin

#define PROTECTION_ENABLE_LOCK - 3 - Enable the H/W LOCK pin

#define PROTECTION_GET_TYPE - 4 - Get the current protection status

#define PROTECTION_CHANGE_KEY - 5 - Change the protection key

#define PROTECTION_CHANGE_ TYPE - 6 - Change the protection type (read \ write protected)

} flProtectionInput;

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

Note: Some protection operations return values in the flProtectionInput record.

Following are the action types and the required arguments in the flProtectionInput record:

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 25

PROTECTION_INSERT_KEY

Inserts the key to a protected area

FlProtectionInput Parameters

key The key to be inserted

Note: Inserting a wrong key to a partition that already has a key inserted does not fail.

PROTECTION_REMOVE_KEY

Remove the key from a protected partition

PROTECTION_DISABLE_LOCK

Disable the DiskOnChip LOCK pin signal effect on the Key.

PROTECTION_ENABLE_LOCK

Enables the DiskOnChip LOCK pin signal effect on the Key.

PROTECTION_CHANGE_KEY

Change the Key of a protected partition.

FlProtectionInput Parameters

key The new Key for the protection area

CHANGE_PROTECTION_TYPE

Change the protection type.

FlProtectionInput Parameters

PROTECTABLE 1 Must be added for the operation to succeed.

READ_PROTECTED 2 Partition is protected against read operation

protectionType

WRITE_PROTECTED 4 Partition is protected against write operation

PROTECTION_GET_TYPE

Gets a protected partition status

FlProtectionInput Parameters

type Action type

PROTECTABLE 1 The partition can be protected protectionType

READ_PROTECTED 2 Partition is protected against read
operation

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 26

WRITE_PROTECTED 4 Partition is protected against write
operation

LOCK_ENABLED 8 The hardware LOCK signal is enabled

LOCK_ASSERTED 16 The hardware LOCK signal is currently
asserted

KEY_INSERTED 32 Protection is temporarily removed

CHANGEABLE_PROTECTION 64 The protection attributes of the partition
can be changed without a full
reformatting of the media

FlProtectionOutput

status flOK – succeeded
flNotProtected – not a protected partition

3.8.2 FL_IOCTL_BINARY_HW_PROTECTION

This IOCTL function is identical to the function FL_IOCTL_BDTL_HW_PROTECTION, only for
Binary Partitions.

3.9 FL_IOCTL_OTP
The functions described in this section perform standard operations on the OTP area. Not all M-Systems
devices support this feature. To find out, call the function FL_IOCTL_INQUIRE_CAPABILITIES with
option SUPPORT_OTP_AREA (see inquire capabilities extended functionality).

The DiskOnChip Millennium Plus has a ROM-Like hardware feature (referred to as “OTP”). This
feature provides a dedicated 6KB area on the flash that can be programmed once and then locked
forever (by the DiskOnChip hardware). Writing to the OTP section can be done only once (EDC is
automatically added) after which the area is H/W protected against write and erase operations. The total
size of the area , the actually used size and the locked state of the area can be retrieved in addition to
normal read of the area.

The OTP extended function is subdivided into sub functions.

A pointer to flOtpInput structure is passed to all of the OTP sub-functions. The same record is sent both
as input and as output.

Input record:

typedef struct {

unsigned long length; /* Length to read/write/size in bytes */

unsigned long usedSize; /* The written size of the area in bytes */

unsigned char lockedFlag; /* The area condition (LOCKED_OTP) */

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 27

unsigned char FAR1* buffer; /* pointer to user buffer */

word type; /* One of the types bellow */

} flOtpInput; /* flOtpOutput is the same */

#define OTP_SIZE 1 - Get OTP statistics.

#define OTP_READ 2 – Read from the OTP area.

#define OTP_WRITE_LOCK 3 - Write and permanently lock the OTP area.

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

OTP_SIZE

Get size of the OTP area.

FlOtpInput Parameters

type OTP_SIZE

FlOtpOutput

status flOK – succeeded

length The length of the OTP area in bytes

usedSize The used size of the OTP area in bytes

lockedFlag The area current state:
#define LOCKED_OTP 1 – The area is currently locked.

OTP_READ

Read from OTP area to a user buffer

FlOtpInput Parameters

type OTP_READ

length The length to read in bytes

usedSize The offset of the first byte to read

buffer Pointer to user buffer to read into

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 28

FlOtpOutput

status

flOK – succeeded
flDataError – EDC/ECC error

flBadLength – size exceeds OTP area size

OTP_WRITE_LOCK

Write to OTP area, add EDC/ECC and lock the customer OTP.

FlOtpInput Parameters

type OTP_WRITE_LOCK

length The length to write in bytes

buffer Pointer to user buffer to write from

FlOtpOutput

status flOK – succeeded
flDataError – EDC/ECC error
flHWProtection – OTP was already locked

flBadLength – size exceeds OTP area size

3.10 Unique ID
Each DiskOnChip Millennium Plus device has a unique 16 bytes ID number. The number is randomly
generated and is guaranteed to be unique to this DiskOnChip device alone (i.e. no two DiskOnChip
Millennium Plus units in the world are the same!). When ordering large quantities of DiskOnChip units,
a 4 bytes customer ID signature can be burned into them (in the FAB). Both ID’s are hardware protected
against write and erase operation.

3.10.1 FL_IOCTL_CUSTOMER_ID

Returns the H/W embedded customer ID. Not all M-Systems devices support this feature. To find out
call the function FL_IOCTL_INQUIRE_CAPABILITIES with option SUPPORT_CUSTOMER_ID
(see inquire capabilities extended functionality).

Returns 4 bytes customer ID information.

As of the writing of these lines the only device with the Customer ID feature is the DiskOnChip
Millennium Plus.

Input record:

DO NOT CARE

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 29

Output record:
{

unsigned char id[4] ;
FLStatus status;

} flCustomerIdOutput;

3.10.2 FL_IOCTL_UNIQUE_ID

Returns the H/W embedded unique device ID. Not all M-Systems devices support this feature. To find
out, call the function FL_IOCTL_INQUIRE_CAPABILITIES with option SUPPORT_UNIQUE_ID
(see inquire capabilities extended functionality).

Returns 16 bytes chip ID information.

As of the writing of these lines the only device with the Device ID features is the DiskOnChip
Millennium Plus.

Input record:

DO NOT CARE

Output record:
{

unsigned char id[16] ;
FLStatus status;

} flJUniqueIdOutput;

3.11 FL_IOCTL_NUMBER_OF_PARTITIONS
Returns the number of BDTL Partitions in a specific device.

Input record:

DO NOT CARE

Output record:
typedef struct {
 unsigned char noOfPartitions;
 FLStatus status;

} flCountPartitionsOutput;

3.12 FL_IOCTL_INQUIRE_CAPABILITIES
Returns if the current hardware and software support a specific feature.

Input record:

typedef struct {

 flCapability capability; /* See flags below */

} flCapabilityInput;

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 30

Output record:

typedef struct {

 flCapability capability; /* See flags bellow */

 FLStatus status;

} flOutputStatusRecord;

 CAPABILITY_NOT_SUPPORTED - 0

 CAPABILITY_SUPPORTED - 1

 SUPPORT_UNERASABLE_BBT - 2

 SUPPORT_MULTIPLE_BDTL_PARTITIONS - 3

 SUPPORT_MULTIPLE_BINARY_PARTITIONS - 4

 SUPPORT_HW_PROTECTION - 5

 SUPPORT_HW_LOCK_KEY - 6

 SUPPORT_CUSTOMER_ID - 7

 SUPPORT_UNIQUE_ID - 8

 SUPPORT_DEEP_POWER_DOWN_MODE - 9

 SUPPORT_OTP_AREA - 10

 SUPPORT_WRITE_IPL_ROUTINE - 11

3.13 FL_IOCTL_SET_ENVIRONMENT_VARIABLES
TrueFFS based driver support several runtime configuration variables.

For each of these options there is a global variable inside the driver that dictates the driver behavior.
These global variables are called environment variables. It is required to set the values of the
environment variables before the first mount and then not to change them again.

3.13.1 Using Translation Layer Cache

Turning on this option improves performance, but requires additional RAM resources.

The drivers Flash Translation Layer uses a small part of each flash unit for control information. This
control information allows accessing the data stored on the DiskOnChip as a Virtual Block Device.

If the variable is set to 1, then the TL keeps in RAM an identical table of the necessary control
information. Whenever it is necessary to read a table’s entry, the TL can read it from the RAM, saving
time by not having to read that sector from the DiskOnChip.

0 – cache disabled.

1 – cache enabled.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 31

3.13.2 Using the Function flUseisRAM

During the DiskOnChip mount process, a test is made to see if the memory address where the
DiskOnChip resides behaves like RAM. Since flash media does not behave like RAM, this function can
detect if the DiskOnChip is located at the address where it is supposed to be, or not.

The testing for RAM is simple. It reads and stores the value that is written in the supposed DiskOnChip
address, writes a new value to the address, and reads again. If the new value is there, the memory
address behaves like RAM and the mount process stops (restoring the previous values). If the old value
is still there, the media does not behave like RAM and the mount process continues. Usually this test is
harmless, but in some cases the direct memory access can cause problems. If this is the case the test
should be skipped.

0 – Skip test.

1 – Perform test.

3.13.3 Using 8-bit Access to the DiskOnChip

This option defines the type of access to the DiskOnChip. When set to 1 the access is 8 bit, and when set
to 0 the access is 32 bit. This is not to say that the DiskOnChip actually supplies the full 32 bit at once.
But usually a request for 32bit is much faster then a ‘for’ loop of single bytes.

0 – 32 bit access.

1 – 8 bit access.

3.13.4 Combining all Drives into a Multi-DOC

TrueFFS SDK 5.0 introduces the Multi-DOC feature. The Multi-DOC feature can combine several
devices into a single large media. This feature formats multiple TrueFFS supported devices to form a
single large media.

The low-level format process of the combined devices can be done separate, but it is recommended to
perform the format on the already combined target devices, allowing the proper BPB (Boot Partition
Block) to be written. High- level format, such as FAT file system format, must be done on the combined
Multi-DOC device in order to allocate the proper media size.

Physical calls like “Get Customer and Unique ID”, “Read/Write and size of OTP area”, “Deep Power
Down Mode” and “Physical Media Information” will ignore the Multi-DOC feature and access one of
the devices.

Binary routines will ignore the Multi-DOC feature, except for the format routine, which will restrict the
Binary Partition(s) to the first device.

H/W protection routines will work as if the device is a single device. Protecting BDTL partition requires
that all of the devices support H/W protection, while Binary Partitions require only the first device to
support H/W protection since the Binary Partitions are restricted to the first device.

#define FL_MULTI_DOC_NOT_ACTIVE 0

#define FL_MULTI_DOC_ACTIVE 1

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 32

3.13.5 Set Driver Policy

This option defines the internal TL algorithms.

#define FL_DEFAULT_POLICY 0 - for the default optimum configuration.

#define FL_COMPLETE_ASAP 1 - TrueFFS SDK will try to complete the current

command as fast as possible, ignoring all future
considerations.

Input record:

typedef struct {

FLEnvVars varName; /* Enum describing the variable */

int varValue; /* New variable value */

} flEnvVarsInput;

The varValue is an enumerator type defined as:

typedef enum { /* Variable types */

 FL_IS_RAM_CHECK_ENABLED = 1,

 FL_NFTL_CACHE_ENABLED = 2,

 FL_DOC_8BIT_ACCESS = 3,

 FL_MULTI_DOC_ENABLED = 4,

 FL_SET_POLICY = 5,

} FLEnvVars;

Output record:

typedef struct {

int prevValue; /* The previous value of the variable */

FLStatus status;

} flEnvVarsOutput;

3.14 FL_IOCTL_PLACE_EXB_BY_BUFFER
Place an EXB file (firmware file) on to the media using small buffers.

Note: The first buffer must be at least 512 bytes long.

Note: Binary operations to Binary Partition 0 (except for remove \ insert key) will reset the process.

Note Only M-Systems EXB files are supported by this routine.

Note: Calling this routine with a partition number other than 0 will return an flBadDriveHandle error code.

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 33

Input record:

typedef struct {

byteFAR1* buf; /* Buffer of EXB file */

unsigned long bufLen; /* Buffer length */

word exbWindow /* Explicitly set device window. 0 will automatically set window */

word exbFlags /* A combination of EXB flags see bellow: */

} flPlaceExbInput;

INSTALL_FIRST 1 Make the device the first hard drive

QUIET 4 Do not show titles while BIOS expansion
is found

INT15_DISABLE 8 Disable INT15 hooking

FLOPPY 16 Make device assume drive A: (This will
not make it bootable)

SIS5598 32 Support Windows NT platforms with
SIS5598 VGA Chipset

EBDA_SUPPORT 64 Support BIOS with EBDA.

NO_PNP_HEADER 128 Do not place the PNP header

exbFlags

LEAVE_EMPTY 256 Leave firmware area empty.

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

3.15 FL_IOCTL_WRITE_IPL
Write data to the IPL area (see glossary for details) of the Millennium Plus and DiskOnChip 2000 TSOP
devices. Other DiskOnChip have other means for this purpose.
• DiskOnChip 2000 does not have a writable IPL area.
• Millennium 8MB uses the first 512 bytes of flash as the IPL data. This area can be written to using

the Binary partition extended functionalities.
To find out if your device support the write IPL extended functionality call the function
FL_IOCTL_INQUIRE_CAPABILITIES with option SUPPORT_WRITE_IPL_ROUTINE (see inquire
capabilities extended functionality).

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 34

Input record:
unsigned char FAR1* buf; /* IPL data buffer */
word bufLen; /* IPL data buffer length */
} flIplInput;

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

3.16 FL_IOCTL_DEEP_POWER_DOWN_MODE
Changes the power consumption mode of a DiskOnChip Millennium Plus device.

To verify that your device support this feature call the function FL_IOCTL_INQUIRE_CAPABILITIES
with option SUPPORT_DEEP_POWER_DOWN_MODE

(see inquire capabilities extended functionality).

Note: Once in power down the DiskOnChip device boot detection mechanism is disabled. This means that if you platform
uses M-System BIOS expansion driver and your system initiated a reset command without asserting the DiskOnChip reset
pin the driver will not be loaded.

Input record:

typedef struct {

unsigned char state; /* DEEP_POWER_DOWN– low power consumption

 otherwise - regular power consumption*/

} flPowerDownInput;

#define DEEP_POWER_DOWN 1

Output record:

typedef struct {

FLStatus status;
} flOutputStatusRecord;

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 35

3.17 FL_IOCTL_BDK_OPERATION
The functions described in this section perform standard operations on a Binary Partition
(read/write/erase/create/get size of binary partitions). Such partition cannot be accessed by the file
system, and is reserved for customer use. The most common use for this partition is to store system boot
code or OS image file. Operations on Binary Partition blocks do not affect the file system activity and
will not slow down performance. For a full description, see BOOT SDK Developer’s Guide.

The BDK extended functions are subdivided into sub-functions.

Input record:

typedef struct {
unsigned char type; /* One of the operation types mentioned bellow: */
BDKStruct bdkStruct; /* parameters for Binary operations see bellow */
} flBDKOperationInput;

#define BDK_INIT_READ 0
#define BDK_READ 1
#define BDK_INIT_WRITE 2
#define BDK_WRITE 3
#define BDK_ERASE 4
#define BDK_CREATE 5
#define BDK_GET_INFO 6

The BDKStruct is common to all of the sub-functions and is defined as follows:

typedef struct {

unsigned char oldsign[4]; /* Signature of the Binary partition to work on */

unsigned char newsign[4]; /* Signature of the new Binary partition to create */
 /* (relevant only for bdkCreate) */

unsigned char signoffset; /* Offset of the signature */

unsigned long startingBlock; /* First block in the partition to operate on */

unsigned long length; /* Number of bytes to read/write or number of blocks to erase */

unsigned char flags; /* Option flags: activate EDC/ECC mechanism, */
 /* write full or partial partition */

unsigned char FAR2 bdkBuffer; /* Read/write buffer */

} BDKStruct;

Output record:

typedef struct {

FLStatus status;

} flOutputStatusRecord;

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 36

Note: Some binary operations return values in the bdkStruct input record.

3.17.1 BDK_INIT_READ

Performs an initialization procedure on the Binary Partition before BDK_READ is called.

This function checks that the read operation about to be performed on the Binary Partition is within the
sub partition’s “already written” boundary. This function must be called before any BDK_READ
operation, and it is followed by a sequence of BDK_READ calls. If the flag EDC is on, the error
detection and correction (EDC/ECC) mechanism is activated.

Note: Read operations beyond the FFFF mark fail in the initialization stage, with status flNoSpaceInVolume . For further
explanation of BDK_COMPLETE_IMAGE_UPDATE , refer to the Boot SDK developers guide.

BDKStruct Parameter

StartingBlock Unit number from which to start the read
operation (counting from zero)

Length Number of bytes to read

OldSign Signature of sub partition

flags EDC

signOffset Offset of the sub partition signature (0 or 8)

Returns

FLStatus 0 on success, non-zero on failure

3.17.2 BDK_READ

Reads from a sub partition of a Binary Partition.

BDK_INIT_READ must be called immediately before this operation. The length parameter in the
BDKStruct must not cause a read operation from 2 different erasable blocks. To avoid such
complications, it is recommended to keep the length parameter at a flash page size (512 bytes for
interleave-1 and 1024 bytes for interleave-2) and if possible use full erasable blocks.

BDKStruct Parameters

length Number of bytes to read

bdkBuffer Pointer to a buffer that receives
the binary data

Returns

FLStatus 0 on success, non-zero on failure

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 37

3.17.3 BDK_INIT_WRITE

Performs an initialization procedure before BDK_WRITE is called.

BDK_INIT_WRITE checks that the write operation about to be performed on the Binary Partition is
within the sub partition boundary. It must be called before calling BDK_WRITE. If the flag EDC is on,
the error detection and correction (EDC/ECC) mechanism is activated.

BDKStruct Parameters

startingBlock Unit number from which to start the write
operation

length Number of bytes to write

oldSign Signature of sub partition

EDC flags

BDK_COMPLETE_IMAGE_UPDATE

signOffset Offset of the partition signature (0 or 8)

Returns

FLStatus 0 on success, non-zero on failure

3.17.4 BDK_WRITE

Writes to a sub partition of a Binary Partition.

BDK_INIT_WRITE must be called immediately before this operation. The length parameter in the
BDKStruct must not cause a write operation to 2 different erasable blocks. To avoid these complications,
it is recommended to keep the length parameter at a flash page size (512 bytes for interleave-1 and 1024
bytes for interleave-2).

BDKStruct Parameters

Length Number of bytes to write

oldSign Signature of the sub partition to write into

bdkBuffer Pointer to a buffer containing the binary data to write.

flags ERASE_BEFORE_WRITE – block will be erased before
it is written

Returns

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 38

FLStatus 0 on success, non-zero on failure

3.17.5 BDK_ERASE

Erase sequential blocks in a sub partition of a Binary Partition. The signature indicating the sub partition
remains and only the data is erased.

BDKStruct Parameters

startingBlock Block number of the sub partition where the erase
operation starts

length Number of blocks to erase

oldSign Signature of the sub partition to erase

signOffset Offset of the sub partition’s signature (0 or 8)

Returns

FLStatus 0 on success, non-zero on failure

3.17.6 BDK_CREATE

Create a new, empty sub partition in a Binary partition by overwriting an existing sub partition. The new
partition is always created at the beginning of the old one. If the new sub partition is larger than the old
one, an error status is returned.

For example, if you start with a 4MB sub partition having signature “AAAA” and create on top of it a
1MB sub partition having signature “BBBB”, the result is a 1MB sub partition having signature
“BBBB” followed by a 3MB sub partition having signature “AAAA”.
Note: If a partition with the same signature already exists, it might be hard to tell which is the first of the two. To avoid
complications, save the data of the old partition and rewrite it after the creation of the new “enlarged” partition.

Note: The bdkCreate function (like any other Binary partition function) cannot cross the Binary partition boundaries.

BDKStruct Parameters

length Length, in erasable blocks, of the sub partition to
create

oldSign Signature of existing sub partition

newSign Signature of sub partition to create

signOffset The offset of the sub partition’s signature (0 or 8)

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 39

Returns

FLStatus 0 on success, non-zero on failure

3.17.7 BDK_GET_INFO

Returns the number of Binary partitions in the physical drive, the total size of a specific sub partition
and its used size.

BDKStruct Parameters

oldSign Signature of sub partition to find its length

signOffset Offset of the sub partition’s signature (0 or 8)

startingBlock Block of the sub-partition to start the search

Returns

FLStatus 0 on success, non-zero on failure

Ioreq Parameters

irLength Binary Partition physical length in bytes

BDKStruct Parameters

length Used virtual size of the sub partition in bytes

startingBlock Virtual size of the sub-partition in bytes

flags Number of Binary Partitions

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 40

Additional Information and Tools
Additional information about DiskOnChip, including application notes, data sheets, and utilities can be
found at http://www.m-sys.com.

Additional tools and documents are listed in the following table:

Document/Tool Description

DiskOnChip Millennium Plus Data Sheet Data Sheet
DiskOnChip 2000 TSOP Data Sheet Data Sheet
DiskOnChip Millennium Data Sheet DiskOnChip Millennium Data Sheet

DiskOnChip 2000 Data Sheet DiskOnChip 2000 Data Sheet
AP-DOC-017 Application Note - Designing with the DiskOnChip in

Windows CE.

IM-DOC-020 BOOT SDK Developer’s Guide
Driver Installation Manuals Manuals for specific OSs are enclosed with the driver

package in PDF format.
AP-DOC-031 Application Note - Designing with the DiskOnChip

Millennium in a PC Environment
AP-DOC-030 Application Note - Designing with the DiskOnChip

Millennium in a RISC Environment
AP-DOC-039 Application Note – On board Programming of the

DiskOnChip TSOP
DiskOnChip Utilities DiskOnChip Utilities User Manual
DiskOnChip-GANG DiskOnChip GANG Programmer User Manual

DiskOnChip EVB DiskOnChip Evaluation Board

 Extended Functions of TrueFFS Driver for DiskOnChip

91-SR-005-11-7L Rev 2.0 41

How to Contact Us
Internet: http://www.m-sys.com

E-mail: info@m-sys.com

USA Office:
M-Systems Inc.
8371 Central Ave, Suite A
Newark CA 94560
Phone: +1-510-494-2090
Fax: +1-510-494-5545

Taiwan Office:
Room B, 13 F, No. 133 Sec. 3
Min Sheng East Road
Taipei, Taiwan
R.O.C.
Tel: +886-2-8770-6226
Fax: +886-2-8770-6295

Korea Office:
18th FL, Kyoung Am Bldg.
157-27, Samsung-Dong
Kangnam-Ku, 135-090
Seoul, Korea
Phone: +82-2-565-5355
Fax: +82-2-555-3612

Japan Office:
M-Systems Japan Inc.
Arakyu Bldg., 5F
2-19-2 Nishi-Gotanda Shinagawa-ku
Tokyo 141-0031
Phone: +81-3-5437-5739
Fax: +81-3-5437-5759

China Office:
25A International Business Commercial Bldg.
Nanhu Rd., Lou Hu District
Shenzhen, China 518001
Phone: +86-755-519-4732
Fax: +86-755-519-4729

Europe & Israel Office:
M-Systems Ltd.
7 Atir Yeda St.
Kfar Saba 44425, Israel
Tel: +972-9-764-5000
Fax: +972-3-548-8666

M-Systems assumes no responsibility for the use of the material described in this document. Information
contained herein supersedes previously published specifications on this device from M-Systems.
M-Systems reserves the right to change this document without notice.

