
Loading Images with U-Boot
U-Boot is the bootloader used on the majority of EMAC ARM-based systems. It is loaded by the processor boot-ROM
or low-level bootstrap code and performs device initialization followed by loading and starting the OS. EMAC has
made modifications to U-Boot to add additional features when necessary. While generally used to load Linux,
EMAC uses U-Boot to load Windows CE and other operating systems.

This section describes basic usage of U-Boot focusing on the process of loading and programming OS images using
U-Boot. More information can be found on the U-Boot homepage at http://www.denx.de/wiki/U-Boot
(http://www.denx.de/wiki/U-Boot)

Accessing the U-Boot Console

By default U-Boot is setup to automatically boot the OS after a set timeout (generally one second). The following
steps will interrupt the boot process and start the U-Boot prompt:

Setup a serial connection with the target board using the settings specified for the hardware. Refer to the
EMAC OE Getting Started Guide or other documentation for more information.

1.

After a serial connection has been established, reboot the board.2.
When initial boot messages are printed to the serial terminal, press Enter in the serial terminal application.
This should bring up the U-Boot prompt as seen below:

U-Boot 2009.06-rc1-svn1357 (Jul 08 2010 - 13:31:57)

EMAC Inc. SOM-9M10/G45M

DRAM: 128 MB
NAND: 256 MiB
DataFlash:AT45DB321
Nb pages: 8192
Page Size: 528
Size= 4325376 bytes
Logical address: 0xC0000000
Area 0: C0000000 to C00041FF (RO) Bootstrap
Area 1: C0004200 to C00083FF Environment
Area 2: C0008400 to C0041FFF (RO) U-Boot
Area 3: C0042000 to C0251FFF Kernel
Area 4: C0252000 to C041FFFF FS
In: serial
Out: serial
Err: serial
Net: macb0
macb0: Starting autonegotiation...
macb0: Autonegotiation complete
macb0: link up, 100Mbps full-duplex (lpa: 0x45e1)
Hit any key to stop autoboot: 0
U-Boot>

3.

U-Boot commands can be entered from this prompt. To see all available commands, type help. Individual
command help can be accessed by running using the command name as an argument to the help
command, help printenv for example. Available commands may differ between systems depending on
implemented features.

4.

The U-Boot Environment

linux:uboot_image_loading - EMAC DokuWiki

1 of 7

The U-Boot environment is stored in a pre-determined area of non-volatile storage. This is generally the same device
that stores the U-Boot image and Linux Kernel. On systems that use raw NAND flash as the primary storage
device, there is generally secondary storage device used for low-level boot images such as U-Boot and the
environment due to the complexities of bad-block handling with NAND flash. Devices using NOR flash typically
use a portion of the NOR flash to store the bootloader and kernel. The flinfo command can provide an idea of the
storage layout on the device, see below for an example:

U-Boot> flinfo
DataFlash:AT45DB321
Nb pages: 8192
Page Size: 528
Size= 4325376 bytes
Logical address: 0xC0000000
Area 0: C0000000 to C00041FF (RO) Bootstrap
Area 1: C0004200 to C00083FF Environment
Area 2: C0008400 to C0041FFF (RO) U-Boot
Area 3: C0042000 to C0251FFF Kernel
Area 4: C0252000 to C041FFFF FS

Standard Environment Variables

U-Boot uses a set of environmental variables to control the operation of the system. There are standard variables
that are used for specific purposes by the system. The user can also add and combine variables to customize the
system operation. The printenv command is used to view the current environment, as shown below:

U-Boot> printenv
baudrate=115200
stdin=serial
stdout=serial
stderr=serial
ethact=macb0
ethaddr=00:50:C2:C9:2B:D6
bootdelay=1
bootargs=console=ttyS0,115200 root=/dev/mtdblock0 mtdparts=atmel_nand:128M(root),-(aux) ro rootfstype=jffs2
bootcmd=cp.b 0xC0042000 0x70000000 0x210000; bootm 0x70000000
kernel_name=uImage-2.6.30
rootfs_name=rootfs.jffs2
filesize=130B194
fileaddr=70000000
ipaddr=10.0.2.24
serverip=10.0.2.60

Environment size: 771/16892 bytes

Table 1 below defines many of the variables above.

Table 1. Standard U-Boot Environmental Variables

Variable name Purpose

baudrate Serial cons ole baud rate.

stdin The device to us e for the cons ole s tandard input.

stdout The device to us e for the cons ole s tandard output.

stderr The device to us e for the cons ole s tandard error output.

ethact Defines the Ethernet device.

ethaddr The MAC addres s .*

bootdelay The number of s econds to wait after loading before running the command s tored in bootcmd.

bootargs Boot argument s tring to be pas s ed to Linux kernel on boot.

linux:uboot_image_loading - EMAC DokuWiki

2 of 7

bootcmd Command(s) to run after loading. This is generally us ed to load and boot the OS.

filesize Automatically s et to the s iz e of the las t file loaded to the s ys tem.

fileaddr Automatically s et to the logical addres s us ed for the las t file loaded to the s ys tem.

ipaddr The s tatic IP addres s to us e for network communications .

serverip The IP addres s of the TFTP s erver on the local network to us e for file trans fer.

*: Once the ethaddr variable has been set, it cannot be erased without clearing the entire environment.

Accessing Variables

To access the value of a variable, use the variable name enclosed in ${}. For example, echo ${bootcmd} will print
the current value of the bootcmd variable. One common use for this is storing variables that refer to the value of
another variable, such as a filename.

Setting Variables

The setenv command is used to set the value of a new or existing variable. For example, the following code would
set the ipaddr variable to a value of 192.168.2.1:

 U-boot> setenv ipaddr 192.168.2.1

When U-Boot loads it makes a copy of the current environment into RAM. Using setenv only changes the volatile
copy of the environment but does not commit the changes to flash. If a change needs to be committed to
non-volatile memory, the saveenv command must be used to save the current environment. This will allow the
changes to be preserved for the next time that U-Boot is loaded.

Transferring Files

Before programming an image to a board, it must be transferred to the system RAM in U-Boot. While this may be
done using storage devices such as USB or SD cards, TFTP is the most common and efficient method. This
requires that you have a TFTP server accessible on the local network. TFTP server setup is beyond the scope of this
document. This section explains the process required to transfer a file using TFTP.

Configuration

In order to load a file using TFTP, U-Boot must be configured to access the local network. Static networking
configuration is recommended, though DHCP can be used on some boards. Typically, the IP address and TFTP
server IP address are the only settings that need to be defined. The netmask and broadcast will be determined from
this information, and no default gateway is required if the server is on the same subnetwork as the board. Before
continuing, determine a valid static network address for your local network; contact your IT department for more
information if required. The example below shows how to set the IP address of the board to 192.168.2.2 and the
TFTP server IP address to 192.168.2.1:

U-Boot> setenv ipaddr 192.168.2.2
U-Boot> setenv serverip 192.168.2.1
U-Boot> saveenv
Saving Environment to dataflash...
U-Boot> reset

Once this has been done, attempt to ping the TFTP server to test the network connection as illustrated below:

U-Boot> ping 192.168.2.1
macb0: link up, 100Mbps full-duplex (lpa: 0x45e1)
Using macb0 device
host 192.168.2.1 is alive

linux:uboot_image_loading - EMAC DokuWiki

3 of 7

Loading to RAM

In order to load the image to RAM, you will need to know the physical address of the RAM device on the system.
Refer to the documentation for your board if you are unsure of this. The standard addresses for some common
EMAC systems are shown in Table 2 below.

Table 2. RAM Physical Addresses

Product RAM Start Addre ss

SoM-9260M 0x20000000

SoM-9G20M 0x20000000

SoM-9G45M 0x70000000

SoM-9M10M 0x70000000

Before transferring a file to the system, make sure that it does not exceed the size of the available RAM.

The tftp U-Boot command is used to transfer files to the system. The command requires two arguments: the
address to load the file to and the filename of the image on the TFTP server. The example below demonstrates
loading an image named uImage-2.6 .30 to the RAM on an SoM-9G45M:

U-Boot> tftp 0x70000000 uImage-2.6.30
macb0: link up, 100Mbps full-duplex (lpa: 0x45e1)
Using macb0 device
TFTP from server 192.168.2.1; our IP address is 192.168.2.2
Filename 'uImage-2.6.30'.
Load address: 0x70000000
Loading: ###
 ###
 ###
 ###
 ############################
done
Bytes transferred = 1472456 (1677c8 hex)
U-Boot> printenv filesize
filesize=1677C8

Note that the filesize variable has been automatically updated to the size of the uImage-2.6.30 file that was
loaded.

Executing from RAM

In some situations, it is advantageous to execute the image directly from RAM after loading with TFTP rather
than saving to flash. This is especially helpful when testing new Linux kernel images. Furthermore, the boot
command can be set such that the image is automatically downloaded and executed on each boot, making testing
more efficient.

After loading a bootable image to RAM, you can execute it directly using the bootm command. For example, after
loading the kernel image above, running bootm 0x70000000 would boot the board using the new image without
saving the image to flash.

To update the bootcmd variable to download the image on each boot, simply replace the command used to load the
image from flash with the TFTP download command. The following example illustrates this process on an
SoM-9G45M module.

linux:uboot_image_loading - EMAC DokuWiki

4 of 7

U-Boot> printenv bootcmd
bootcmd=cp.b 0xC0042000 0x70000000 0x210000; bootm 0x70000000
U-Boot> setenv bootcmd 'tftp 0x70000000 uImage-2.6.30; bootm 0x70000000'
U-Boot> saveenv
Saving Environment to dataflash...

Copying to Flash

The process of copying an image to flash memory differs depending on what type of flash storage device is available
on the system. Many boards have more than one flash device, such as serial dataflash and NAND flash. This
section explains the process of storing an image to non-volatile storage from RAM.

NOR Flash

A combination of the erase and cp commands are used to store an image to a NOR flash device. NOR flash is
directly memory-mapped to the system at a physical address. Also, each image (U-Boot, bootstrap, kernel,
filesystem) must be stored in the correct offset for the system to operate correctly. Refer to the documentation for
your hardware for more information on the correct address ranges to use. The flinfo command can be used to
display the addressing of available flash devices on the system.

After loading an image to RAM, the flash device should be erased and then the image should be copied to the
appropriate offset in the flash. The example below illustrates the commands used to program a new kernel image
to an SoM-9260M module. Note the use of the protect off all command required to unprotect the flash on
some systems.

U-Boot> protect off all
U-Boot> tftp 0x20000000 ${kernel_name}
U-Boot> erase 0x10100000 0x103fffff
U-Boot> cp.b 0x20000000 0x10100000 ${filesize}

Serial DataFlash

Serial DataFlash devices are used on many systems that employ NAND flash as the primary storage device. On
these systems, low-level boot code such as the bootstrap, U-Boot, and OS kernel are primarily stored on the
DataFlash device. Serial DataFlash is an SPI-based NOR flash device. As with NOR flash, the flinfo command
can be used to determine the memory addressing layout of the DataFlash device. The erase command does not
support the DataFlash devices and should not be used before programming an image. The cp command is capable
of copying an image from RAM to DataFlash.

The example below illustrates the commands used to copy a kernel image to the DataFlash device on an
SoM-9G45M module.

U-Boot> tftpboot 0x70000000 ${kernel_name}
U-Boot> cp.b 0x70000000 0xC0042000 ${filesize}

NAND Flash

Generally, NAND flash is used to store only the root filesystem and auxiliary storage partitions of the OS. Storing
an image to NAND flash under U-Boot uses a different set of commands than NOR or DataFlash devices. See help
nand for more information on the available commands for examining and manipulating NAND flash devices. To
gain information on what NAND devices are available on the system, use the command nand info. Programming
a NAND flash device is much faster than programming most other flash devices.

The example below illustrates the process of loading the root JFFS2 filesystem onto an SoM-9G45M device. Note
that the device is erased prior to programming it.

linux:uboot_image_loading - EMAC DokuWiki

5 of 7

U-Boot> nand erase
U-Boot> tftp 0x70000000 ${rootfs_name}
U-Boot> nand write.jffs2 0x70000000 0x0 ${filesize}

Scripting

U-Boot also includes a scripting feature that allows an script file with U-Boot commands to be loaded and
executed. This can make the task of programming multiple systems much more efficient. The mkimage utility is
required on a Linux development system in order to create a valid U-Boot image from a script. This section gives a
brief example of a U-Boot script for programming a Linux kernel and filesystem.

Making a text file with all of the desired commands is the first step in creating a U-Boot script. The example below
is a script used by EMAC to program images to SoM-9260M modules.

echo ===== Setting Environment =====
setenv bootdelay 1
setenv rev sl013-aon-30010
setenv bootargs 'console=ttyS3,115200 root=/dev/mtdblock3 rootfstype=jffs2'
setenv kernel_name ${rev}-uImage
setenv rootfs_name sl013-aon-emac-image-SOM9260M.jffs2
saveenv
echo ===== Loading Kernel =====
protect off all
tftpboot 0x20000000 ${kernel_name}
erase 0x10100000 0x103fffff
cp.b 0x20000000 0x10100000 ${filesize}
setenv kernelsize ${filesize}
echo ===== Loading Root Filesystem =====
tftpboot 0x20000000 ${rootfs_name}
erase 0x10400000 0x11ffffff
cp.b 0x20000000 0x10400000 ${filesize}
setenv bootcmd 'protect off all;cp.b 0x10100000 0x20000000 ${kernelsize};bootm 0x20000000'
saveenv
echo ===== DONE! =====
reset

Once the file has been created and saved, the mkimage utility must be used to create a U-Boot script image. EMAC
uses a shell script to aid in this process as listed below:

script_mkimage.sh

#!/bin/sh

if [! -f "$1"] || [$# -lt 2]
then
 echo "Usage: $0 SCRIPTNAME OUTPUTNAME"
 exit 1
fi

mkimage -T script -C none -A arm -n 'SoM9260 Load Script' -d $1 $2

Note that this script assumes that the mkimage command has been installed in the user's PATH. The script should
be run with the name of the existing text file as the first argument and the desired output filename as the second
argument:

 ./script_mkimage.sh sl013-aon-30010-flash-script sl013-aon-30010-flash-script.img

linux:uboot_image_loading - EMAC DokuWiki

6 of 7

Once an image file has been created, it can be transferred to the board and executed as shown below:

U-Boot> tftp 0x20000000 sl013-aon-30010-flash-script.img
U-Boot> autoscr 0x20000000

Depending on the version of U-Boot used on the system, U-Boot may print a message recommending use of the
source command rather than autoscr.

U-Boot will execute all commands in the script line-by-line until the script has finished, at which point the
U-Boot prompt will be returned to the user. In the example script given above, the script is terminated by a reset
command, so the script will never exit to the U-Boot prompt.

» esdk » getting_started » install » import » qt » install » getting_started » eclipse » linux_start »
uboot_image_loading

linux/uboot_image_loading.txt · Last modified: 2011/01/16 22:39 by tstratman
Except where otherwise noted, content on this wiki is licensed under the following license:CC
Attribution-No Derivative Works 3.0 Unported (cc-by-nd)

linux:uboot_image_loading - EMAC DokuWiki

7 of 7

