
Building Existing Software with the EMAC OE
SDK
It is very common to need to be able to build existing software projects for the target hardware rather than
developing the software from scratch. This feature is especially important in an open source environment, where
countless libraries and utilities are available for use and often times need to be compiled to match the target
architecture. Fortunately, EMAC OE SDK toolchains are standard GCC packages designed and configured to make
this process as easy as possible. In addition, most software projects are developed to allow for cross-platform
development.

This guide provides an overview of the most common tasks associated with compiling existing software projects
using the SDK. Note, however, that build methods differ significantly depending on the project design. Refer to the
project documentation or support for information on how to cross-compile the software; the EMAC OE SDK can
be treated as a standard GCC toolchain in this respect. Table 1 below denotes some conventions used in this guide.

Table 1. Conventions Used

/path/to/sdk/ Indicates the directory where the EMAC OE SDK is located.

EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/

The name of the SDK directory;
this will differ depending on what architecture is us ed.
XX is the major vers ion
YY is the minor vers ion
ZZ is the current revis ion
The major and minor vers ion numbers
will match the vers ion of OE for
which the SDK was created. The current
vers ion is 4.0.

Makefile-based Projects

Some projects have a build system based on a set of makefiles that are responsible for compiling and packaging the
software. In general, configuring these projects to compile using the EMAC OE SDK is a simple process. In some
instances, the software designers may have included a variable in the makefile which allows a cross-compiler
prefix setting. In other cases, the CC and other makefile variables can be modified to direct make to compile using
the EMAC OE SDK.

It may be advantageous to add the cross-compiler bin directory to the system PATH variable temporarily before
compiling to simplify Makefile modifications. This can be done with a command such as the following:

 $ export PATH=$PATH:/path/to/sdk/EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/gcc-4.2.4-arm-linux-gnueabi/bin

Note that running the command above will only affect the current terminal session.

MTD Utilities Project Example

The MTD Utilities project (mtd-utils) is a good example of a Makefile-based build system that can easily be built
using the EMAC OE SDK. Follow the steps below to accomplish this task.

The instructions in this section are valid as of the master git branch on 4/09 /11. Future source changes may
impact the required steps for compilation.

Begin by downloading the mtd-utils source code. Assuming that git is installed on the development
system, run the following command to get the most recent version. Note that this version will be different
from the stable release installed on EMAC OE systems by default.

1.

linux:esdk:existing_build - EMAC DokuWiki

1 of 5

 $ git clone git://git.infradead.org/mtd-utils.git

After downloading the source, navigate to the source directory (mtd-utils) and open Makefile in the
top-level directory. This file defines various make targets and compilation flags used to compile the source.
Notice that the file common.mk is sourced with the line include common.mk. This is similar to the
global.properties file in the EMAC OE SDK.

2.

Close the Makefile editor and open the common.mk file. At the top of the file, CC, AR, and RANLIB are defined
using the CROSS variable, which is not set in either common.mk or Makefile. An exert is shown below:

CC := $(CROSS)gcc
AR := $(CROSS)ar
RANLIB := $(CROSS)ranlib

If the CROSS variable is defined when make is run, the specific toolchain to use can be specified. Also note
that CFLAGS is defined using a ?= assignment, which means that the assignment will only be made if
CFLAGS is undefined:

CFLAGS ?= -O2 -g

3.

Close common.mk without making any changes.4.
In order to compile the source correctly, the CROSS and CFLAGS variables should be defined. The tuning flags
for the target architecture to be added to the CFLAGS variable should be used from the ARCHFLAGS variable in
the global.properties file of the EMAC OE SDK. The following steps utilize tuning flags for an armv5te
processor-based system. Although the path to the SDK toolchain could be included directly in the CROSS
variable in this instance, this example works by adding the SDK toolchain to the system PATH variable. The
path and prefix used will differ depending on the target architecture of the EMAC OE SDK; refer to
global.properties in the SDK to determine the correct settings. The DESTDIR variable controls where the
files are put when running the install make target. The WITHOUT_XATTR flag must be set to disable features
of the software that are not available on EMAC OE.

Before compiling, several source changes are required to match the setup of the SDK. These include
changing references from lzo2 to lzo, and changing the lzo include prefix. Run the following
commands from the mtd-utils directory to make these changes:

$ for file in `find . -name Makefile`; do sed -i 's:lzo2:lzo:g' $file; done
$ for file in `find . -name '*.c'`; do sed -i 's:lzo/::g' $file; done

1.

Run the following commands to set the variables:

$ export PATH=$PATH:/path/to/sdk/EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/gcc-4.2.4-arm-linux-gnueabi
$ export CROSS=arm-linux-gnueabi-
$ export CFLAGS="-O2 -g -march=armv5te -mtune=arm926ej-s"
$ export DESTDIR=Install
$ export WITHOUT_XATTR=1

2.

5.

Once the environment has been set up, make can be used to compile the source code:

$ make all

The code should compile successfully with no errors. If compilation is not successful, check the steps above
to ensure that all of the required changes have been made.

6 .

After successfully compiling the project, the install make target can be used to package all of the software7.

linux:esdk:existing_build - EMAC DokuWiki

2 of 5

into the Install directory as specified by the DESTDIR variable:

$ make install
$ ls -R Install
Install:
usr

Install/usr:
sbin share

Install/usr/sbin:
docfdisk flash_erase flash_lock flash_unlock jffs2dump nanddump nftldump rfddump sumtool
doc_loadbios flash_eraseall flash_otp_dump ftl_check mkfs.jffs2 nandtest nftl_format rfdformat
flashcp flash_info flash_otp_info ftl_format mtd_debug nandwrite recv_image serve_image

Install/usr/share:
man

Install/usr/share/man:
man1

Install/usr/share/man/man1:
mkfs.jffs2.1.gz

While the procedure in this example is specific to mtd-utils, many makefile-based projects will require similar
steps for cross-compiling.

Autotools-based Projects

The GNU build system is known as Autotools. Autotools is a group of applications that are designed to provide a
configurable build system to allow compilation on different platforms and environments. A configure script and
set of input files are used to generate makefiles based on options passed to the configure script and deduced from
the system environment. This includes tests for compiler options, library functions, install configuration, and
other assorted variables.

The configure script is the most important step in building an autotools-based project. Although available options
for configure vary depending on the project design, there are common options shared between most autotools
projects.

libConfuse Example Project

The libConfuse project is a simple C library written for parsing configuration files. It uses an autotools build
system for configuration. The steps below demonstrate how to build libConfuse and should be used as an example
for building other autotools-based projects.

The source code for the libConfuse project can be downloaded as described on the project website
http://www.nongnu.org/confuse/ (http://www.nongnu.org/confuse/) . For this example, release 2.7 is used:
http://savannah.nongnu.org/download/confuse/confuse-2.7.tar.gz (http://savannah.nongnu.org/download
/confuse/confuse-2.7.tar.gz) . After downloading the source, extract the archive and navigate to the
top-level directory of the project (i.e. confuse-2.7).

1.

Read through the README and INSTALL files for information on the project and general information on how
to build it. Also, look at the help output from configure to see a summary of the available options:

$./configure --help

2.

Before beginning, the system PATH variable should be changed to include the SDK toolchain as in the
makefile-based project example. The CFLAGS variable should also be set. If the CC variable is set, it should be
set to arm-linux-gnueabi-gcc (or the appropriate value for the target); if not set the compiler name will be

3.

linux:esdk:existing_build - EMAC DokuWiki

3 of 5

detected from the options passed to configure. The CFLAGS architecture tuning values should be set
according to the global.properties file in the EMAC OE SDK. The DESTDIR variable determines where the
files will be installed to when the install make target is run. DESTDIR must be an absolute path for the
libConfuse project, so the current working directory is added to the variable using the pwd command. The
following commands are an example of how to set up the environment correctly:

$ export CFLAGS="-O2 -march=armv5te -mtune=arm926ej-s"
$ export DESTDIR=`pwd`/Install

After setting the environment, configure can be run with the appropriate options to configure the build
system and generate the makefiles. The code below shows an example configuration used by EMAC OE. Be
sure to set the host and target correctly based on the architecture:

$./configure --build=i686-linux --host=arm-linux-gnueabi --target=arm-linux-gnueabi \
 --prefix=/usr --exec_prefix=/usr --bindir=/usr/bin --sbindir=/usr/sbin \
 --datadir=/usr/share \
 --infodir=/usr/share/info \
 --mandir=/usr/share/man --enable-shared

The configuration should complete successfully. If any problems are reported that result in an error, check
the environment settings and configure options again.

4.

Now that configure has generated all of the makefiles for the project, make can be used to compile the
source code:

$ make all

If any errors are encountered during compilation, examine the output of configure and make sure that all
of the environment variables and configure options were specified correctly.

5.

Once compilation is complete, the install target can be used to package all of the necessary files together
so that they can be transferred to the target board.

6 .

linux:esdk:existing_build - EMAC DokuWiki

4 of 5

$ make install
$ ls -R Install
Install:
usr

Install/usr:
include lib share

Install/usr/include:
confuse.h

Install/usr/lib:
libconfuse.a libconfuse.la libconfuse.so libconfuse.so.0 libconfuse.so.0.0.0 pkgconfig

Install/usr/lib/pkgconfig:
libconfuse.pc

Install/usr/share:
locale

Install/usr/share/locale:
fr sv

Install/usr/share/locale/fr:
LC_MESSAGES

Install/usr/share/locale/fr/LC_MESSAGES:
confuse.mo

Install/usr/share/locale/sv:
LC_MESSAGES

Install/usr/share/locale/sv/LC_MESSAGES:
confuse.mo

Note that not all of the files installed would be necessary to install on the board, such as the man pages and
pkgconfig information.

See Also

TODO

» time » emac_oe_development » esdk » install » configure » example » new » debug » linux_start »
existing_build

linux/esdk/existing_build.txt · Last modified: 2011/04/27 10 :12 by tstratman
Except where otherwise noted, content on this wiki is licensed under the following license:CC
Attribution-No Derivative Works 3.0 Unported (cc-by-nd)

linux:esdk:existing_build - EMAC DokuWiki

5 of 5

