
Debugging Using gdbserver
Sometimes a program has no technical errors that cause the compile to fail but fails to meet the developer's
expectations when run. This is typically due to algorithm or data structure design errors which can be difficult to
find with just visual inspection of the code. Because of this, it can be beneficial to run a debugger targeting the
binary resulting from the compile process. Debugging is the process of watching what is going on inside of another
program while it is running. When a program is compiled with debug symbols included in the binary, it is possible
to observe the source code and corresponding assembly while running the debugger.

When working with embedded systems the binary is usually compiled on a development machine with a different
CPU architecture than what is on the target machine. This can be a problem when, as is typically the case, the
target machine lacks the system resources to run a debugger. In these cases, it is possible to use the GNU
debugger, or GDB, on the development machine to remotely debug the target machine provided it has a program
called gdbserver. All EMAC OE builds are packaged with gdbserver to simplify the setup process for developers.

This guide is intended to build a basic understanding of how to use gdbserver with EMAC products. It is not
intended as a general guide to debugging computer programs. For help with that, see the GDB man pages on the
development system or read this manual (http://sourceware.org/gdb/current/onlinedocs/gdb.html) on debugging
with GDB.

Table 1. Conventions Used

target_program
The name of the application being debugged.
This is the res ult of Makefile build proces s .

target_machine
Connection information for the target machine.
This can either be a s erial port (ie. /dev/ttyS2)
or a TCP connection in the form of HOST:PORT.

/path/to/sdk/
Repres ents the development s ys tem path to the
EMAC OE SDK.

Setup

Using gdbserver involves setting up both the target machine and the development machine. This requires that the
binary application be present on both development and target machines. The development machine copy of the
application must be compiled with debug flags whereas this is not strictly necessary for the target machine. See
the Optional ''global.properties'' Modifications Section on the New EMAC OE SDK Project Guide for more
information. See the EMAC OE Getting Started Guide for more information on how to connect to the target
EMAC product using a serial port or Ethernet connection.

Target Machine

Because EMAC OE builds are distributed with gdbserver, installation is not a concern. The only setup necessary is
to run gdbserver with target_program:

If the target application is already running, use the attachpid option to connect gdbserver to the
application as shown below. The PID argument can be determined using pidof.

$ gdbserver target_machine --attach PID
$ pidof PID

1.

If the target application is not already running, the name of the binary may be included as an argument to
the gdbserver program call.

$ gdbserver target_machine target_program [ARGS]

2.

linux:esdk:debug - EMAC DokuWiki

1 of 9

This establishes a gdbserver port on the target machine that listens for incoming connections from GDB on the
development machine. In debug terminology, gdbserver is “attached” to the process ID of the program being
debugged. The next step is to run GDB on the development machine using the target_program.

Development Machine

First, cd to the directory where the target executable is stored.1.
Run the EMAC OE SDK GDB:

$ /path/to/sdk/EMAC-OE-arm-linux-gnueabi-SDK_4.0/gcc-4.2.4-arm-linux-gnueabi/bin/arm-linux-gnueabi-gdb target_program

2.

Run the following commands in GDB to prepare for the debug session:

(gdb) target remote target_machine

3.

Note that the location of the GDB in the toolchain may differ from what is shown above depending on which
version of the SDK is used.

Sample GDB Session

This example GDB session uses the EMAC OE SDK example project named pthread_demo. It consists of the single
source file pthread_demo.c. The program is called with a single integer argument indicating how many reader
threads the user wishes to create. The following describes the tasks of the main thread:

The main thread performs user input validation. It prints a usage message according to1.
The main thread initiates a new thread that uses the generator() function to perform the following tasks:

Checks to see if the number of reader threads matches the number of times a reader thread has
acquired the mutex lock and performed its task. If the two values do match, then the generator
thread unlocks the mutex, breaks out of the while loop and moves on to line 167 to gracefully exit.
If the two values do not match, then the generator thread continues through the rest of the while
loop described in steps 2.2 and 2.3.

1.

Generates random data to be stored in the data struct shared by all the threads. To do this, it
protects the data struct with the use of a mutex variable.

2.

Sleeps after giving up its lock on the mutex so that another thread might have a change to acquire
the lock.

3.

2.

After creating the generator thread the main thread iteratively as many reader threads as indicated by the
single integer argument. Each reader thread performs the following tasks:

Waits for a chance to acquire the mutex lock. Once the mutex lock is acquired, it prints the value of
the random number generated by the generator thread in its last run.

1.

Increments an integer in the data struct to indicate that it has completed its task.2.
Gives up its lock on the mutex and exits.3.

3.

After creating the prescribed number of reader threads, the main thread then waits for each thread created
to exit gracefully.

4.

The main thread exits.5.

The SDK version of pthread_demo.c works according to the description above with a MAX_THREAD value of 100 .
However, for the purpose of this example debug session it is instructive to use a faulty version of the same
program. Replace lines 75-80 in pthread_demo.c with the code snippet shown in Listing 1 below.
Listing 1. pthread_demo.c Modification

linux:esdk:debug - EMAC DokuWiki

2 of 9

 if ((data.num_threads < 1) || (data.num_threads > MAX_THREAD)) {
 fprintf(stderr,
 "The number of thread should between 1 and %d\n",
 MAX_THREAD);
 exit(EXIT_FAILURE);
 }

Useful GDB Commands

The following is a brief description of some essential GDB commands. Each description is followed by a link to the
official GDB documentation page that has more specific information about what the command does and how to
use it. Please note that the official GDB documentation is targeted for the latest GDB release which at the time of
writing this documentation is 7.2. The version of GDB that EMAC distributes with the OE products, however, is
version 6 .8. Because of this, the links to documentation below may provide slightly different information. The
biggest difference between the two version of GDB, however, is in the support for debugging programs with
multiple threads. This is reflect in the documentation as well. Because of this, EMAC has set up ftp access to GDB
6.8 documentation on its web server. It is highly recommended that the GDB 6 .8 documentation be referenced in
cases where the program does not seem to support commands or options specified in the current official
documentation.

start/run
These commands are used to start the debugged program with the only difference being that start
automatically pauses execution at the beginning of the program's main function whereas run must be told
explicitly where to pause using the breakpoint command listed below.
See Debugging with GDB, Section 4.2: Starting your Program (http://sourceware.org/gdb/current
/onlinedocs/gdb.html#Starting)
kill
Used to kill the currently-running instance of target_program.
See Debugging with GDB, Section 4.9 : Killing the Child Process (http://sourceware.org/gdb/current
/onlinedocs/gdb.html#Kill-Process)
print
Used to print the value of an expression.
See Debugging with GDB, Section 10 : Examining Data (http://sourceware.org/gdb/current/onlinedocs
/gdb.html#Data)
list
List contents of function or specified line.
See Debugging with GDB, Section 9 : Examining Source Files (http://sourceware.org/gdb/current
/onlinedocs/gdb.html#Source)
layout
This is a TUI (Text User Interface) command that enables the programmer to view multiple debug views at
once including source code, assembly, and registers.
See Debugging with GDB, Section 25.4: TUI Commands (http://sourceware.org/gdb/current/onlinedocs
/gdb.html#TUI-Commands)
disassemble
This command allows the programmer to see assembler instructions.
See Debugging with GDB, Section 9 .6 : Source and Machine Code (http://sourceware.org/gdb/current
/onlinedocs/gdb.html#Machine-Code)
break This command specified a function name, line number, or instruction at which GDB is to pause
execution.
See Debugging with GDB, Section 5.1: Breakpoints (http://sourceware.org/gdb/current/onlinedocs
/gdb.html#Breakpoints)
next/nexti, step/stepi
Allow the programmer to step through a program without specifying breakpoints. The next/nexti
commands do not step into functions but instead run through function calls entirely, stopping on the next
line the the same stack frame; step/stepi, on the other hand, do step into function calls, stopping on the
first line in the next stack frame. The difference between step/next and stepi/nexti is that the i indicates

linux:esdk:debug - EMAC DokuWiki

3 of 9

instruction-by-instruction stepping.
See Debugging with GDB, Section 5.2: Continuing and Stepping (http://sourceware.org/gdb/current
/onlinedocs/gdb.html#Continuing-and-Stepping)
continue
Used to continue program execution from the address where it was last stopped.
See the Debugging with GDB link for next/step for more information about the continue command.
bt
Short for backtrace, which displays to the programmer a brief summary of execution up to the current
point in the program. This is useful because it shows a nested list of stack frames starting with the current
one.
See Debugging with GDB, Section 8.2: Backtrace (http://sourceware.org/gdb/current/onlinedocs
/gdb.html#Backtrace)

Session Walk-through

This debug session walk-through assumes that the program has been compiled using the modified source code
above and that both the target machine and the development machine have been set up according to the above
Setup section. The walk-through is divided into multiple “lessons” with the intent of first introducing the use of
the commands described above and then actually running GDB to debug a known programming problem. Each
lesson may be run independently of the others, but it is recommended that each be run in order starting from
Lesson 1 for the first time through.

Lesson 1: Navigation and Code Display

This lesson assumes that gbserver has been run as in the Target Machine Setup section above with an ARG value
of 3. Other values are fine so long as they fall within the range of 1 to 100 . The number '3' was arbitrarily chosen
to avoid having to use a symbolic variable in the explanations below.

Type b main to set a breakpoint at the main function in the source code.1.
Type continue. This will cause the program to continue from the breakpoint set by GDB at startup. The
program was passed an argument of 3, indicating that three threads should be created.

2.

Type b 73 to set a breakpoint at line 73 in the source code, which should be the line containing
data.num_threads = atoi(argv[1]);. The letter 'b' is an alias for break.

3.

Type continue. The program will continue execution up until line 73 in the source code. At this point, type
layout split to view a split screen containing both the source code and the assembly-level machine
instructions. Both screens show the program's current location in execution. The assembly-level display
shows what the target's processor is actually executing at that point in the source code as shown in the
source-level display. To view either of these without the other type layout asm for just assembly-level and
layout src for just source-level.

4.

Type nexti. This will cause the program to execute the next instruction in the current stack frame which
is a mov instruction beginning to prepare the current stack for a call to the library function atoi(). The
details of this process are beyond the scope of this tutorial; essentially, the program needs to store
information about the current execution location in the stack for when the atoi() function finishes. Type
ni (alias for nexti) three more times. You should end up on a bl instruction in the assembly view as shown
in Listing 2 below. The source layout should still show the program on line 73.
Listing 2. GDB Assembly Layout

B+ |0x887c <main+112> ldr r3, [r11, #-84] │
 |0x8880 <main+116> add r3, r3, #4 ; 0x4 │
 |0x8884 <main+120> ldr r3, [r3] │
 |0x8888 <main+124> mov r0, r3 │
 >|0x888c <main+128> bl 0x86e0 <atoi> │

Note that the assembly may look different depending on the target architecture.

5.

linux:esdk:debug - EMAC DokuWiki

4 of 9

Type stepi. This will cause the program to move into the next stack frame and GDB to show the
assembly-level instructions of the atoi() call. Since the library containing atoi() was likely not compiled
with debug symbols, the source-level layout will show the message [No Source Available].
Note that if you had instead typed nexti the program would have executed all the relevant instructions in
atoi() and paused only on the next instruction in the current stack frame.

6 .

Type bt. This will cause the program to display a human-readable version of the current stack. Each stack
“frame” is represented by the name of the function call it represents with that function's location in
memory. Type bt full to get a list of the variables local to each stack frame.

7.

Type finish. This will cause the current stack frame to return and execution to pause on the next
instruction of the previous stack frame.

8.

Type kill. This will cause the current process to be killed by gdbserver at the target machine. gdbserver
will also terminate at this point. In order to start a new remote debug session, start gdbserver as described
in the Target Machine Setup section and re-run step 3 of the Development Machine Setup section.

9 .

Lesson 2: Finding the Bug

Though this sample is contrived, it is still useful to demonstrate how to find a design mistake in an otherwise
well-written (no errors or warnings) program. These types of mistakes typically have to do with the array
boundary miscalculations, logic and comparison operator mistakes, or other simple mistakes. For the sake of
demonstration, assume that the actual mistake is unknown. This lesson assumes that gdbserver has just been
started as in the Target Machine Setup above with an ARG value of 5.

Before starting the program in the debugger again, run it by itself on the target machine to see what the
actual program output is:

$ /tmp/pthread_demo 5
The number of thread should between 1 and 100
$

The program was given an input of '5' yet the output message seems to indicate that this is out of range
which is obviously not true.

1.

Start the debugger again and connect to the target machine as described in the Setup section.2.
Type b main to set a breakpoint at the main function in the source code.3.
Type continue. This will cause the program to continue from the breakpoint set by GDB at startup.4.
Type n. This will cause the program to step to the next line of source code. The reason for using n rather
than s or one of the instruction stepping commands is because the erroneous output indicates that the
coding mistake is in the programmer's source code rather than the c library functions atoi() or
fprintf(). In other words, staying within the top-level stack frame and observing the program source code
step through seems like a good place to start looking for programming mistakes. Later passes through the
code can be used to step into functions called from within that stack frame if the first pass proves
unsuccessful.

5.

Continue to type n until one of the program's exit() calls is reached, but do not actually step into that
exit() call. Judging by the program's output above, this should bring you to the conditional block that
checks the value of the local variable n used to store the output of atoi() as shown in Listing 3. Note that
once execution reaches line 79 of the source code, GDB will display the output of the fprintf() function
from like 76 . This may cause display problems within the text-based UI library that GDB uses which will
require the command refresh to fix.
Listing 3. GDB Source Layout

6.

linux:esdk:debug - EMAC DokuWiki

5 of 9

B+ |75 if ((data.num_threads < 1) || (data.num_threads < MAX_THREAD)) { |
 |76 fprintf(stderr, |
 |77 "The number of thread should between 1 and %d\n", |
 |78 MAX_THREAD); |
 >|79 exit(EXIT_FAILURE); |
 |80 } |

Type p/d data→num_threads. p is an alias for print, /d tells GDB to treat the expression requested as an
integer in signed decimal, and data→num_threads is the element num_threads within the struct
thread_data data data structure. This should provide the following output:

(gdb) p/d data->num_threads
$6 = 5

Note that the integer part of “$6” will increment with each call to the gdb command print. The above
output confirms that the argument '5' was successfully passed to the program and read into a variable to
be tested, indicating that one of the logical tests for the current conditional block contains a mistake. This
merits a closer look at line 75:

B+ |75 if ((data.num_threads < 1) || (data.num_threads < MAX_THREAD)) { |

Line 75 consists of a conditional test which is the logical OR of two arithmetic tests involving the values
of data.num_threads, '1', and MAX_THREAD. The first test is true the input integer is less than
1–(data.num_threads < 1). The second tests whether the input integer is less than the symbolic constant,
MAX_THREAD–(data.num_threads < MAX_THREAD). Judging by the name of this constant and the result of the
test (we know it resolves to true because the value of data.num_threads in this case is not less than one),
we can see that the comparison operator used is the culprit. The correct interpretation is that it should be
'>' rather than '<'.

7.

Type kill.8.

This was a simple problem to solve but the method used above could apply in any situation where source code
compiles and runs without errors yet provides varied or unexpected output.

Lesson 3: Debugging With Threads

Do not fix the programming mistake found in Lesson 2. This lesson will cover the use of the jump command to
skip blocks of code and commands specific to debugging multi-threaded programs. Before getting started, see
Debugging with GDB: 5. Stopping and Starting Multi-thread Programs. TODO: upload gdb 6 .8 documentation to
the emac webserver then link to it here

This lesson assumes that gdbserver has just been started as in the Target Machine Setup above with an ARG value
of 7.

Start the debugger again and connect to the target machine as described in the Setup section.1.
Type set scheduler-locking on. This command enables GDB to lock all threads save for the currently-
selected thread from running when the step/stepi or next/nexti commands are given.

2.

Set all the breakpoints that you will need for this session:
Type b main to set a breakpoint at the main function in the source code.1.
Type b 75. This will set a break point at the conditional block that checks the value of the
program's single integer argument. If you recall from Lesson 2, this is the conditional which
evaluates incorrectly in the modified version of the application.

2.

Type b 143. This will set a breakpoint in the variable assignment in the generator function. Careful
examination of the source code will show that this function is called from a thread created by the

3.

3.

linux:esdk:debug - EMAC DokuWiki

6 of 9

main thread of execution but never from the main thread itself.
Type b 129. This will set a breakpoint in the variable assignment of the reader function. As with
the generator function, any time the reader function is called it will be inside a thread that is not
the main thread.

4.

Type b 135. This will set a breakpoint just after the fflush(stdout) statement in the reader
function.

5.

Type b 97. This will set a breakpoint in the main thread after the generator thread has been created
but before the main thread begins creating reader threads.

6 .

Type b 119. This will set a breakpoint after the main thread iteratively creates the reader threads.7.
Optional: You may want to run the layout split command so that you can see both the assembly and the
source code during the debug session.

4.

Type continue then hit 'Enter' once. This will bring you to line 75 in the source code.5.
Type j 81. This is an alias for jump 81 that tells GDB to have the program jump to line 81 of the source
code and resume execution at the first assembly instruction represented by line 81 of the source code. This
line is labeled <main.c+196>. Note that the program effectively no longer checks the input it receives.

6.

Type i th. This will cause GDB to display a list of the application's threads currently in memory. Take a
moment to consider what is happening in the program. We know that in Step 2 of this lesson we used set
scheduler-locking to tell GDB to effectively only allow the currently-selected thread of execution to be
affected by the GDB step and next commands. Others will wait at their respective breakpoints until
explicitly told by the programmer to execute the next line of source code or instruction. The next
breakpoint that main reaches occurs after the generator thread is created. This means that there are
currently two threads of execution, the main thread paused at line 97 and the generator thread paused at
line 143.

7.

Type thread 2. This will select the generator thread.8.
Type thread apply 2 n. This will tell the generator thread to execute the next line of source code and
pause again on the line following that. Without typing any other commands into the GDB prompt, hit
'Enter' seven more times. This should bring you to line 165 of the source code:

usleep(1);

Notice the output of the program on the remote terminal on which gdbserver was run. Standard output
on that terminal should show the output from the printf() call on line 154.

9 .

Type thread 1. This will select the main thread.10 .
Type continue. This will cause the main thread to continue execution while generator remains paused at
line 165. main pauses again at line 119 , once the 7 reader threads have been created. Recall from step 3.4
that b 129 set a breakpoint in the reader function so that the reader threads would pause at line 129 .

11.

Type i th. This is an alias for info threads. This causes GDB to print out all the threads currently in
memory. Notice that there are three types of threads, main, generator, and reader. The info threads
command also shows that the reader threads are all paused at line 129 , the generator thread is paused at
line 165, and the main thread is paused at line 119 .

12.

Type thread 5. This will select the third reader thread.13.
Type thread apply 5 n. Then press 'enter' seven times. This will cause the third reader thread to complete
its task and exit gracefully using the pthread_exit() function.

14.

Type thread 1. This will select the main thread.15.
Type p data. This will show the current state of the data structure that was passed to each thread. Note
that each thread contains a pointer to the same data structure. This requires the use of what is known as a
mutex (MUTual Exclusion) variable which is used to protect the data structure from concurrent
modifications. In other words, any time the data structure is read or written to by one of the threads, they
must first call the function pthread_mutex_lock() to ensure that no other thread currently “has” the lock.
When a thread is done with the shared data structure, it calls the function pthread_mutex_unlock() to
make the lock available to other threads. Notice that nothing about the mutex's inclusion in the data
structure requires it to be used in order to read or write to the data structure. This means that any
programmer who wishes to use threads to implement concurrent programming must pay close attention to

16 .

linux:esdk:debug - EMAC DokuWiki

7 of 9

code that accesses shared data structures to ensure concurrent modifications do not occur.
Perform the previous four steps for as many of the reader threads as you want. Notice that each one prints
a message to standard out providing information about the state of the shared data variable at the time
that it has the lock. By switching to the generator thread once the mutex variable is unlocked, that code
can be stepped through to generate a new random number for the data structure. IMPORTANT: Do not
execute a line of source code containing a call to pthread_mutex_lock() without first ensuring that the
mutex variable is unlocked. To do this, carefully perform the following steps:

Type p data→lock. This will show the values of the mutex variable in the data structure variable.
Make note of the value of the owner field.

1.

Type i th. This will show the current list of threads in the program. What follows is a possible
output from these two commands:

(gdb) p data->lock
$3 = {__data = {__lock = 1, __count = 0, __owner = 1288, __kind = 0, __nusers = 1, {__spins = 0, __list = {__next = 0x0}}},
 __size = "\001\000\000\000\000\000\000\000\b\005\000\000\000\000\000\000\001\000\000\000\000\000\000", __align = 1}
(gdb) i th
 9 Thread 1289 reader (arg=0xbeddec8c) at pthread_demo.c:129
 8 Thread 1288 reader (arg=0xbeddec8c) at pthread_demo.c:134
 7 Thread 1287 reader (arg=0xbeddec8c) at pthread_demo.c:129
 6 Thread 1286 0x00008b04 in reader (arg=0xbeddec8c) at pthread_demo.c:129
 3 Thread 1283 0x00008b04 in reader (arg=0xbeddec8c) at pthread_demo.c:129
* 2 Thread 1282 generator (arg=0xbeddec8c) at pthread_demo.c:165
 1 Thread 1281 0x00008a64 in main (argc=2, argv=0xbeddee24) at pthread_demo.c:119
(gdb)

Analysis of this output requires the understanding that the third column of the i th output
indicates that particular thread's process ID. The important part of the p data→lock output is the
owner field, whose value will always either be zero or correspond to the process ID of one of the
currently-running threads. In this case, the lock→__owner field clearly indicates that thread 8
currently owns the data→lock mutex variable. This would indicate that thread 8 should be stepped
through until it has called the pthread_mutex_unlock() function before stepping into a call to
pthread_mutex_lock() in any other function.
To summarize, always ensure that the owner field of the mutex variable is equal to zero before using
pthread_mutex_lock() while debugging. If the lock is currently owned by another thread, GDB will
hang until sent an interrupt signal which will require that the entire debug process be started over.

2.

17.

The walktrhough is complete. There are two ways to end the debug session gracefully:
Type monitor exit, kill (confirm with 'y'), then quit.
Type set scheduler-locking off, delete, thread 1, continue, then monitor exit, kill (confirm
with 'y'), quit. This will allow the program to finish executing before ending the session.

18.

GNU GDB Documentation

Again, for more information on how to debug with GDB, refer to the GDB Manual (http://sourceware.org
/gdb/current/onlinedocs/gdb.html) . This is a valuable resource for anyone just learning to debug software and will
go into much greater detail than is possible in this guide.

Next Steps

If you have not done so already, be sure to check out the EMAC OE SDK Example Projects or learn to create your
own New Project.

Also, give the EMAC Eclipse IDE a try. Sometimes it is simpler to use an IDE for large projects, especially with the
ability to automate the makefile creation process.

See Also

linux:esdk:debug - EMAC DokuWiki

8 of 9

EMAC Software Development Kit
Install EMAC OE SDK
Configure EMAC OE SDK
Example Projects
New Project
Debugging With gdbserver

» emac_oe_gadget » time » emac_oe_development » esdk » install » configure » example » new » linux_start »
debug

linux/esdk/debug.txt · Last modified: 2011/03/22 11:32 by wwarren
Except where otherwise noted, content on this wiki is licensed under the following license:CC
Attribution-No Derivative Works 3.0 Unported (cc-by-nd)

linux:esdk:debug - EMAC DokuWiki

9 of 9

