
EMAC OE SDK New Project
The EMAC OE SDK is a complete development kit for creating C/C++ applications for EMAC products. The SDK
can be used to compile code anywhere in the development system. This procedure explains the process of creating
and building a new project within the SDK.

Table 1. Conventions Used

/path/to/sdk/
Placeholder indicating the directory
where the EMAC OE SDK is located.

EMAC-OE-arm-linux-gnueabi-SDK_XX.YY.rZZ.tar.bz2
EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/

XX is the major vers ion.
YY is the minor vers ion.
ZZ is the current revis ion.
The major and minor vers ion numbers
will match the vers ion of OE for
which the SDK was created. The current
vers ion is 4.0.

New Project Procedure

This guide assumes that the EMAC OE SDK has been installed and configured. It also assumes a basic familiarity
with the C programming language and that a basic text editor is available. The example code calculates the
perimeter of a right triangle given the length of its longest edge and the angle between that edge and one of the
other edges.

Set Up the Project

The first step in creating an EMAC OE project is creating a project directory in /path/to/sdk/EMAC-OE-arm-linux-
gnueabi-SDK_XX.YY/projects.

$ mkdir /path/to/sdk/EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/projects/example

Creating the project in this directory is necessary in order for the global.properties include and the path
variables in global.properties to be correct. If it is created in any other directory, then the make targets will fail
without modifications on the Makefile that go beyond the scope of this guide.

Write the C Code

This guide uses the C code from Listing 1 as an example. It is simple enough that the basic familiarity with C
expected of those viewing this guide precludes the need for explanation. As a general step in application
development using the EMAC OE SDK, the C files in this step should be saved in the project's top-level directory. In
this case, example.c should be saved as /path/to/sdk/EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/projects/example
/example.c.

Listing 1. example.c

example.c

linux:esdk:new - EMAC DokuWiki

1 of 5

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define HYP 10.0
#define DEG 30.0

int main(void)
{

float opp, adj;

opp = HYP * sin(DEG);
adj = HYP * cos(DEG);

printf("Hypotenuse: \t%3.2f\n", HYP);
printf("Angle: \t\t%3.2f\n", DEG);
printf("Opposite Side: \t%3.2f\n", opp);
printf("Adjacent Side: \t%3.2f\n", adj);
printf("%3.2f + %3.2f + %3.2f = %3.2f \n", HYP, opp, adj, (HYP + opp + adj));

exit(EXIT_SUCCESS);

}

Modify the Makefile

Now that the C file has been written, it is time to copy a suitable Makefile from one of the example projects. The
following command will accomplish this:

$ cd /path/to/sdk/EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/projects/example/
$ cp ../hello/Makefile ./

The project is almost ready to be compiled. However, there are a few lines in the Makefile which must be modified
before this can happen. First, the CFILES and TARGET variables in the Makefile must be modified to suit this
project:

CFILES=example.c instead of CFILES=hello.c
TARGET=example instead of TARGET=hello

This tells the Makefile that the source file used is example.c. This variable can be assigned a space-delimited list of
C files. In the example there is only one file so this is not a concern.

The last change that must be made to this Makefile is that we need to modify LIBFLAGS to reflect the use of the
math library for the trigonometric functions in the C file. Add the following line to the Makefile:

LIBFLAGS+=-lm

Where in the Makefile this line is added does not matter, though it makes sense to group it with the other variable
declarations.

Listing 2 shows the complete modified makefile for the example.c project.

Listing 2. Modified Example Makefile

Makefile

linux:esdk:new - EMAC DokuWiki

2 of 5

include ../global.properties

TARGET=example
CFILES=example.c

LIBFLAGS+=-lm

OBJS=$(CFILES:.c=.o)
DEPS=$(OBJS:.o=.d)

all: $(TARGET)

$(TARGET): $(OBJS) Makefile

$(CC) $(VERBOSE) $(OBJS) $(OFLAGS) $(LIBFLAGS) $(SLIBS) -o $@

%.o: %.c

$(CC) $(VERBOSE) $(CFLAGS) -o $@ -c $<

clean:

$(RM) *.o *.gdb $(TARGET) $(DEPS)

upload: all

$(WPUT) $(TARGET) ftp://$(LOGIN):$(PASSWORD)@$(TARGET_IP)/../../tmp/$(TARGET)

-include $(DEPS)

In global.properties there are also variables which must be modified in order for all the make targets to
accomplish their purpose. For instructions on how to do this, please refer to the Remote Upload Set Up Guide.

Cross-Compile with the EMAC OE SDK

Now it is time to use GNU make to compile the example source code into an application that can be run on the
target machine. Makefile-based development with the EMAC OE SDK is a powerful tool which enables the
customer to compile code for the target EMAC product on the Linux development machine. Once a project has
been set up as described above, development can begin using the GNU make targets as described below.

First, set the current directory to the one containing the Makefile, then execute the make targets as shown in
Listing 3. For a description of each make target, read the bullet items below.
Listing 3. Example Make Target Invocation

linux:esdk:new - EMAC DokuWiki

3 of 5

$ cd /path/to/sdk/EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/projects/example/

Target 1
$ make clean
rm -f *.o *.gdb example example.d

Target 2
$ make all
../../gcc-4.2.4-arm-linux-gnueabi/bin/arm-linux-gnueabi-gcc -Wall -MMD -g -march=armv5te -mtune=arm926ej-s
../../gcc-4.2.4-arm-linux-gnueabi/bin/arm-linux-gnueabi-gcc example.o -lm -o example

Target 3
$ make upload
wput --reupload --dont-continue sentence ftp://root:emac_inc@10.0.2.41/../../tmp/example
--16:52:48-- `app_name'
 => ftp://root:xxxxx@10.0.2.41:21/../../tmp/example
Connecting to 10.0.2.41:21... connected!
Logging in as root ... Logged in!
Length: 13,774

16:52:48 (example) - `350.6K/s' [13774]

FINISHED --16:52:48--
Transfered 13,774 bytes in 1 file at 107.3K/s

make clean removes all object, dependency, and executable files generated by previous invocations of make.
It literally “cleans” the directory as shown in Listing 1, Target 1.
make all resolves dependencies for the source code necessary to cross-compile the target file. The gcc and
g++ binaries used are specified in global.properties as relative paths to the /path/to/sdk/EMAC-OE-arm-
linux-gnueabi-SDK_XX.YY/projects/example/ directory. This is why the source files must be kept in their
own directory within /path/to/sdk/EMAC-OE-arm-linux-gnueabi-SDK_XX.YY/projects. Listing 1, Target 2
demonstrates a successful make all invocation.
make upload uses wput to send example to the remote machine. This requires the remote EMAC product
have network connection whose IP is available to the development machine. This IP address must be set as
the value of the TARGET_IP variable in global.properties. Listing 1, Target 3 demonstrates a successful
make upload invocation with TARGET_IP set to 10 .0 .2.41.

Optional global.properties Modifications

In order to debug applications effectively, the -g debug flag must be specified when running the compiler. This is
set up to occur automatically by its inclusion in the global.properties CFLAGS variable. However, this can
actually be harmful to the application's performance since keeping the debug symbols in the executable bloats its
size. In a typical general-purpose computer this may not be noticeable, but for embedded systems there are
typically memory and disk limitations. For production or release versions of an application EMAC recommends
modifying the global.properties CFLAGS variable to replace -g with -g0 which tells the compiler not to include
debug information in the executable.

Next Steps

Once the target binary has been compiled, the project is ready to be debugged.

See Also

EMAC Software Development Kit
Install EMAC OE SDK
Configure EMAC OE SDK
Example Projects
New Project

linux:esdk:new - EMAC DokuWiki

4 of 5

Debugging With gdbserver

» boot_process » emac_oe_gadget » time » emac_oe_development » esdk » install » configure » example »
linux_start » new

linux/esdk/new.txt · Last modified: 2011/03/14 10 :53 by wwarren
Except where otherwise noted, content on this wiki is licensed under the following license:CC
Attribution-No Derivative Works 3.0 Unported (cc-by-nd)

linux:esdk:new - EMAC DokuWiki

5 of 5

