

Linux Development
with Eclipse

Manual

REV. 1.2

Copyright © 2007,
EMAC, Inc.

Table of Contents

Table of Contents ... i
Disclaimer .. 1
1 Introduction and Installation .. 2

1.1 Installing Java ..2
1.2 Installing Eclipse..2
1.3 Initial Configuration ..3
1.4 Installing the CDT Plugin ..4
1.5 GCC Versions ..5
1.6 Importing and Creating Projects ..6
1.7 Installing the Target Management Plugin ..7
1.8 Using the Astyle Eclipse Code Formatter ..8

2 Application Development .. 9
2.1 Makefiles ...9
2.2 Creating and Using Make Targets ...10
2.3 Executing Applications..12

3 Remote Debugging ... 13
3.1 Compiling for Debugging ..14
3.2 Establishing a Connection..14
3.3 GDBServer and GDB Versions ...17
3.4 Using GDBServer ..18
3.5 Shell Operation ..18
3.6 Remote Debugging with Eclipse..19

3.6.1 Manually Establishing a Connection ...19
3.6.2 Using the RSE Remote Debugging Tool ...22
3.6.3 The Eclipse Debugging Perspective...23

4 Kernel Modules and RTAI... 24
5 Further Information ... 25
Appendix A.. 26

A.1 Installing Eclipse Manually ..26
A.2 Installing the CDT Plugin ...26
A.3 Installing the RSE Plugins ..27

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 1

Disclaimer

EMAC Inc. does not assume any liability arising out of the application or use of any of its products or
designs. Products designed or distributed by EMAC Inc. are not intended for, or authorized to be used
in, applications such as life support systems or for any other use in which the failure of the product could
potentially result in personal injury, death or property damage.

If EMAC Inc. products are used in any of the aforementioned unintended or unauthorized applications,
Purchaser shall indemnify and hold EMAC Inc. and its employees and officers harmless against all
claims, costs, damages, expenses, and attorney fees that may directly or indirectly arise out of any claim
of personal injury, death or property damage associated with such unintended or unauthorized use, even
if it is alleged that EMAC Inc. was negligent in the design or manufacture of the product.

EMAC Inc. reserves the right to make changes to any products with the intent to improve overall
quality, without further notification.

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 2

1 Introduction and Installation

Eclipse is a full-featured Open Source IDE that can organize the development of software for use on
EMAC products such as the Server In a Box (SIB), Single Board Server (SBS), iPac, and System on
Module (SoM) product lines. Eclipse is a Java based IDE which can be used to develop applications in
many languages and environments.

This document details the installation of the EMAC Eclipse Distribution, compiling and running
applications for the EMAC SIB/SBS and SoM, and remote debugging using GDB and GDBServer using
both the Linux shell and Eclipse. This document applies specifically to Eclipse version 3.2 with Sun
Java 2 version 1.5.0 running on a Debian GNU/Linux system, but is not Debian specific and should
describe operation on other versions of Linux as well. Operation should be similar with more recent
versions of Java as well. Some familiarity with the Linux environment and file system are assumed.

1.1 Installing Java

Because Eclipse depends on Java, ensure that a suitable version of Java has been installed before using
Eclipse. To maintain compatibility with Eclipse and various plugins, EMAC recommends installing Java
2 version 1.5 or higher. EMAC has tested up to version 1.5.0_10.

Minimally, a Java Runtime Environment (JRE) is required for Eclipse. However, a Java Software
Development Kit (JDK) may be required depending on your intended use of Eclipse. See the Eclipse
page at http://www.eclipse.org/ and the Sun Java page at http://sun.java.com/ to determine which Java package
best suits your needs.

Before downloading and installing a new version of Java, check to see if a suitable version is already
present on the machine. The easiest way to do this is by issuing the command java -version at the
shell. Please note that the GNU interpreter for Java bytecode (GIJ) was not fully compatible with
Eclipse at the time of testing.

There are several ways to install a new version of Java. You may install a new version directly from Sun
Microsystems at http://sun.java.com/. Also, a redistributable version of the JRE is located on the EMAC
distribution CD under Development_Kits/EMAC_Open_Tools/Linux, which is known to work with the
EMAC Eclipse Distribution. Download the package required for your platform, unpack it, and place a
link to the executables in your path if necessary. Refer to the Java installation instructions available on
the Java website and in the downloaded package for more information on installing Java.

Finally, test the Java installation with the java -version command to ensure that it has been installed
properly.

1.2 Installing Eclipse

Following a successful Java installation, the Eclipse IDE must be installed on your machine. EMAC
recommends that you install version 3.2, the most recent stable version as of this testing. This will
prevent problems due to untested versions and ensure that the operation of Eclipse matches the
instructions in this document. Versions earlier than Eclipse 3.2 are not compatible with the EMAC

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 3

SDKs. Follow the steps below to install the EMAC Eclipse Distribution. See Appendix A for
instructions regarding manual installation and configuration of Eclipse and Eclipse plugins.

The EMAC Eclipse 3.2 Distribution is available on the distribution CD under Development_Kits/
EMAC_Open_Tools/Linux, or you may download version 3.2 (or the latest tested version) of the EMAC
Eclipse Distribution from the EMAC FTP site at
ftp://ftp.emacinc.com/PCSBC/Development_Kits/EMAC_Open_Tools/Linux/. The EMAC Eclipse Distribution also
includes all of the recommended plugins for developing software using EMAC's SDKs. These include
the C/C++ Development Tools (CDT), Astyle Eclipse Code Formatter for CDT, Remote Systems
Explorer, and the Target Management Terminal SDK.

The EMAC Eclipse Distribution installation process is as follows:

1. Download the EMAC Eclipse Distribution archive file from the CD or FTP site.
2. Uncompress and extract the archive to any location that you would like to install it into. This can

be a system wide installation, such as in /usr/local, or a local installation somewhere in your
home directory for example.

3. Upon extracting the file, there will be a single directory titled eclipse. Navigate to this directory
and read the file README-EMAC for further information about the package as a whole.

4. If you wish to use the Target Management Terminal Plugin, the RXTX Java libraries must be
installed into your Java virtual machine (JVM). EMAC provides a custom script to automate this
process, or you can follow the official RXTX installation instructions described in the file
INSTALL under rxtx-2.1.7-bins-r2. (Note that the installation script has only been tested on
Java 1.5, although it should be valid on other versions). All of the necessary files are located in
the rxtx-2.1-7-bins-r2 directory within the eclipse folder. Execute the rxtx-EMAC-
install.sh script as root from within the rxtx-2.1-7-bins-r2 directory to install RXTX into
your JVM.

5. The Eclipse executable is eclipse, and is located under the eclipse directory. EMAC also
provides a startup script to start Eclipse with a limit of 512MB of virtual memory rather than the
default 256MB. Type ./start_eclipse to execute this script and start Eclipse. Refer to the
Eclipse documentation for more startup options.

6. Place a link to the Eclipse executable somewhere in your path to allow for easier use. Depending
on your configuration, you may want to modify the start_eclipse script to match the needs of
your environment.

1.3 Initial Configuration

After installing Eclipse and running it, you will be prompted for a workspace location. Eclipse uses this
location to store projects and save information about the state of your projects from previous sessions.
Because Eclipse stores this data in the actual workspace, the workspace location must be a valid Eclipse
workspace or a path for Eclipse to create a new workspace. Eclipse will not recognize a folder without
this data as a valid project. Choose a workspace location and continue.

Once Eclipse loads, the Eclipse welcome screen will be shown as in Figure 1. Navigate through the
various options in the top row to become more familiar with Eclipse and its operation.

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 4

The Workbench link on the welcome screen will open the Eclipse Java development perspective, shown
in Figure 2. The Java tab (1) in the upper right hand corner indicates the current perspective. The far left
window (2) is used to navigate the current workspace and project, the center window (3) will display
any open files, and the far right window (4) will display an outline of the current file or executable.
Program output, errors, and other information are displayed in the window at the bottom center of the
screen (5).

1.4 Installing the CDT Plugin

In order to develop applications in C or C++ through Eclipse, you must first install the C/C++
Development Tools Plugin (CDT). If you installed the Eclipse SDK directly from EMAC, the CDT
Plugin is already included. The process of manually installing the Eclipse CDT Plugin is covered in
Appendix A. The process for installing the CDT Plugin can also be applied to most other plugins in a

Figure 2: Eclipse Workbench Components

1

Figure 1: Welcome Screen

2 3 4

5

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 5

similar fashion. For this reason, users who are new to Eclipse might find it beneficial to read through
Appendix A as well.

To open the Eclipse CDT perspective, navigate to the Workbench and attempt to change the Eclipse
perspective to C/C++ by clicking the icon next to the Java tab in the upper right hand corner and
choosing Other as shown in Figure 3.

This will bring up the Open Perspective screen. Choose C/C++ and click OK. Eclipse should now
switch to the C/C++ perspective, changing the windows accordingly.

1.5 GCC Versions

In order to develop applications through Eclipse, you will first need a compiler. Different versions and
configurations of the GNU Compiler Collection (GCC) are required depending on the platform that you
are developing for. EMAC provides software development kits (SDKs) containing these cross-compilers
and other tools through the EMAC FTP site as well as on the CD-ROM included with your product.

If you are developing for the EMAC SoM-5282, look on the CD under SoM/SoM-5282M /Tools. Run
the install script m68k-elf-tools-20031003 (or newer version) to complete the installation. Following
installation, the executables should be located in the directory /usr/local/bin. Next, extract the
SoM5282EM-SDK from the Tools directory directly into your Eclipse workspace.

For the EMAC SIB/SBS, the SDK is located on the CD under EMAC_Linux/SIB
/EMAC_Linux_3/Eclipse_SIB-SDK. Extract SIB-SDK-3.0 (or a newer version) directly into your
Eclipse workspace.

For other supported EMAC products, check the product specific documentation to determine the
location of the toolchain used with your device.

Although they handle libraries differently, the required libraries for the SoM, SIB/SBS, and other
products are built into the respective toolchain to ensure that the correct versions of these libraries are
used. For the SIB/SBS, these are located under the SIB-SDK-3.0/gcc-4.1.1-i486-D/sysroot
directory. For the SoM, the installer places these libraries in the /usr/local/m68k-elf directory on
the host development machine. To ensure compatibility, it is important that the correct libraries are
compiled against when developing software.

Figure 3: Eclipse Perspective Selection

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 6

1.6 Importing and Creating Projects

Having installed the CDT Plugin and the necessary cross GCC version, you are ready to develop
projects in C or C++. EMAC provides sample Eclipse projects that will help to familiarize you with the
Eclipse development process. These projects are located under the provided Software Development Kit
(SDK) for your device as described in section 1.5.

Each EMAC SDK is a valid Eclipse project, and may be imported directly into the Eclipse workspace.
First, switch to the C/C++ perspective if necessary. Right click in the white area of the C/C++ Projects
window in the far left of the screen and select Import. This will bring up a new window to specify the
import type and location. Expand the General list and select Existing Projects into Workspace as shown
in Figure 4.

After clicking Next, you will be prompted for the root directory of the project to import. Select the
appropriate SDK directory and ensure that it is selected under the Projects section. To preserve symbolic
links, make sure that the Copy projects into workspace option is not checked before proceeding. An
example of these settings is shown in Figure 5.

Figure 4: Importing A Project

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 7

Finally, click on Finish, and allow Eclipse to import the project.

When you are ready to develop your own applications, you may create a new project in the existing
workspace by right clicking on the white space in the C/C++ Projects window and selecting New.
Selecting Project will open the project wizard and allow you to customize the project. Create a new C or
C++ Standard Make Project.

Once you have successfully imported an SDK, browse the example projects located in the projects
directory. Double click on a file to open it with the Eclipse editor. Notice the syntax highlighting and
outline that Eclipse provides automatically.

1.7 Installing the Target Management Plugin

The Target Management (TM) Eclipse Project provides a plugin called the Remote System Explorer
(RSE) and the TM Terminal SDK. These extensions allow for integration of remote systems
management and communication into Eclipse and the CDT.

Provided is an Eclipse extension that allows for connections via SSH, Telnet, FTP, and serial terminals
along with integrated remote launching and remote debugging support and much more all from within
Eclipse. The RSE allows for seamless SSH connections supporting copy and paste operations between
the file system on the target board and the local machine as well. The basic RSE plugins and Terminal
SDK are provided with the EMAC Eclipse Distribution and require no further installation steps other
than installing the RXTX libraries as described in section 1.2.

Instructions in Appendix A detail the steps of installing theses plugins manually if you are not using the
EMAC Eclipse SDK.

Figure 5: Selecting an SDK to Import

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 8

Browse the RSE documentation to familiarize yourself with its operation. This should be accessible
through the Help menu under Help Contents. The RSE User Guide link is located in the left pane of the
help window.

1.8 Using the Astyle Eclipse Code Formatter

The Astyle Eclipse Code Formatter Plugin for CDT is also included with the EMAC Eclipse SDK. This
plugin provides a method for improving code standardization and readability by automatically
formatting code based on several styles or custom settings.

In order to use the Astyle Code Formatter, it must first be selected through the CDT preferences settings.
To change these settings, select Preferences... from the Window menu. A new window should be
initiated as shown in Figure 6. Select C/C++ and then Code Formatter. The Astyle Plugin should be
available as an option on the drop down list. Be sure to press Apply after making changes.

After selecting the Astyle Code Formatter Plugin, the settings for the code style to use can be
customized. Select Astyle on the Preferences screen, and choose a code formatting style. Additionally, it
is possible to customize a style using a template. More information regarding this is available from the
Astyle Eclipse project page, which is listed among the links in section 5. Figure 7 shows an example of
the Astyle configuration page.

Figure 6: Code Formatter Selection

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 9

2 Application Development

Developing applications through Eclipse is efficient and simple once you become familiar with the
process. Compiling and building applications through Eclipse relies on makefiles and the make
command, which simplify the use of different cross-compilers and toolchains. This section will detail
the process of compiling and running an application through Eclipse.

Before continuing, ensure that both the Make package and GCC have been installed on the host
development machine. For more information on installing these packages, see the links in section 5.

2.1 Makefiles

The projects in the EMAC SDK provide makefiles with targets for compiling, cleaning, and uploading a
given application. These makefiles can be easily modified for a new application. To locate a makefile,
navigate to one of the example projects within the appropriate SDK. These are generally located in the
projects directory. Simply double click on the file titled Makefile (note the capital M) to open it with the
Eclipse editor.

Notice that the correct GCC and compiler flags have been written into the makefile. Towards the end of
the makefile, you will notice several headings followed by indented lines. Each of these headings is
called a target, and performs a specific function.

The all target will compile all of the specified source code for the given project using the compiler and
compiler flags specified in the makefile. The clean target will delete all files created from the all
target, if they exist. The upload target will transfer the specified files to the device as specified by the

Figure 7: Astyle Plugin Configuration

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 10

TARGET_IP, LOGIN, and PASSWORD entries in the makefile. Editing the wput commands will change the
location of the files on the target board.

From the shell on the host development machine, issuing the command make all, make clean, or make
upload will execute all of the commands in the respective target. For example, issuing the command
make all followed by make upload would first compile the specified source files and then upload the
files to the target board.

For more information on makefiles, see the link in section 5.

2.2 Creating and Using Make Targets

Eclipse requires that a Make Target be created for each target in the makefile in order to execute the
various commands. To do this, first check that your Make Targets view is visible by using the Window
menu and selecting Show View followed by Make Targets. The Make Targets view will be located on
the far right of the screen, as shown in Figure 8.

To create a new Make Target, navigate to the project using the Make Targets view. Right click on the
project and select Add Make Target. This will bring up a new window that will specify the name for the
target and the command to call. An example is shown in Figure 9.

Figure 8: Make Targets View

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 11

Target Name specifies the Eclipse name for the target. There are few constraints on this name, but it is
easiest if it matches the actual target in the makefile. Make Target specifies the target to call in the
makefile. For example, the window above will create a Make Target called all that will call the
command make all when executed.

After creating the Eclipse Make Targets, they will become visible under the project in the Make Targets
view. For instance, after creating targets for make all, make upload, and make clean, Eclipse will
display them all as shown in Figure 10.

Following the creation of an Eclipse Make Target, it may be executed by simply double clicking the
target in the Make Targets view. For example, double clicking all in Figure 10 will compile all of the

Figure 9: Creating a New Make Target

Figure 10: Executing Make Targets

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 12

source files specified in the makefile for the hello project. The Console tab in the bottom center
window will show the output of all commands that are executed.

2.3 Executing Applications

Eclipse can also be used to execute applications on the host development machine. This can be useful
when it is practical to test an application or algorithm on the host machine before uploading it to the
target board for testing, or when the remote target board is not available for testing. Also, this is valuable
when developing companion software to be used in cooperation with the target board.

Eclipse can only execute applications that have been compiled using the compiler for the environment
on the host development machine. In other words, Eclipse will not be able to run applications that have
been compiled with m68k-elf-gcc or other incompatible compilers.

With some applications written for a specific target board, running applications through Eclipse may be
as simple as creating a copy of the original makefile and changing the compiler to the host GCC. In
cases where the program is more platform or device dependent, the code may need to be broken down
and modified considerably before it will compile and execute on the host development machine. In these
instances, it will be more advantageous to test applications for the target board after physically
uploading them and executing the file, using the remote debugging process described in section 3 to
work out any problems with the application.

To create and run applications for use on the host development machine only, simply create a makefile
that calls the GCC version on the host system with the appropriate flags. Follow the same process of
creating and executing Make Targets and makefiles as described in sections 2.1 and 2.2. Also, ensure
that GCC has been installed on your system first. For more information on installing GCC, see the links
in section 5.

After compiling an application using the Eclipse Make Targets, you may run it using the Run menu.
Select Run... and specify how the program should be executed through the configuration screen that
Eclipse will bring up. A sample view is shown in Figure 11.

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 13

Once run, all program input and output is facilitated through the Console tab in the bottom center
window of the Eclipse workbench.

The RSE plugin allows for remote launching and execution of programs on the target board. This
includes uploading the executable, executing it, and piping the program input and output through the
Console window in Eclipse. This functionality is only available for boards with an SSH connection such
as the SIB/SBS.

To use remote launching, right click on a compiled executable and select Run.... Select C/C++ Remote
Application and New Configuration. Create a new connection and specify the proper settings on all of
the tabs. Be sure that the remote path for the executable is set correctly as well. Program output and
input are facilitated through the Console in Eclipse.

(Note: EMAC has found that the upload function in this version of the RSE remote launch is not always
successful at changing the permissions of uploaded files. If remote launch fails, manually set the
executable permissions of the file through a terminal connection to the target board and try again.
Further attempts to upload to the same location should then be successful.)

3 Remote Debugging

When developing applications for an embedded environment, it is important to be able to debug
programs from a remote machine, as this is generally difficult or impossible to do on the embedded
device itself. The combination of the GNU Debugger (GDB) and its companion server (GDBServer)

Figure 11: Run Configuration

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 14

allow for this to be done quite easily and efficiently. Furthermore, Eclipse integrates remote debugging
using this software combination, allowing for an easy to use graphical debugging session.

3.1 Compiling for Debugging

In order to facilitate remote debugging, only the executable must be present on the target board. On the
host machine, however, the source code for the application must be present as well as the executable.

The executable on the host machine must have been compiled with debugging symbols included in order
for GDB to work properly. This is done with the use of the -g option to GCC. Although it is possible to
compile debugging symbols into the remote executable as well, this may cause large applications to
become too big for the embedded device, and will not provide any benefits. The debugging symbols
option should be the only compiler flag that differs when compiling the executables for the target board
and the host machine.

It is also important to ensure that no optimization is preformed during assembly, as this will make
debugging the code nearly impossible. This may be specified with the -O0 (capital “O” followed by
“zero”) option to GCC, but should be implied by default as long as no other optimizations are specified.

Compile and upload the files using the Eclipse Make Targets created in section 2.2. It may be necessary
to modify the Makefile to reflect the required compiler flags. It is also possible to edit the Makefile to
create two executables, one with debugging symbols and one without.

3.2 Establishing a Connection

Before continuing to set up the required software for the debugging session, establish and test a
connection with the remote target board. Ensuring that a reliable connection has been secured between
the host development machine and the target board will make troubleshooting any problems within the
debugging session easier.

This connection can be established via an Ethernet or serial port connection. Ethernet connections are
generally established via SSH, Telnet, FTP, and similar protocols. Serial connections require setting up a
terminal on the target board and connecting to this terminal from the host development machine. Refer
to the documentation for your specific board for information about how to set up a serial terminal.

For the SIB/SBS and other SSH equipped products, Ethernet connections should be established through
the SSH server. This will ensure that all traffic is encrypted. There is also an optional SSH module
available for the SoM-5282. Most SoM products do not currently support SSH connections, requiring
Ethernet connections to be made using Telnet and FTP.

In the past, connections to the target board were generally managed externally to the IDE, forcing the
developer to switch between programs in order to communicate with the device and develop
applications simultaneously. Now, however, solutions to this problem are available through Eclipse with
the use of the Target Management / RSE plugin.

If you have not already created a new user on your target board, you will need to do this before
connecting to the SIB/SBS through the Target Management Plugin because the Eclipse terminal will not

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 15

display the menu system on the SIB properly. Connect to the SIB using SSH and use the menu
configuration system to create a new user. You should then be able to log in through SSH with the new
user name (using a shell command like ssh new_user@192.168.2.101). Leave this connection open
for now to allow access to the shell on the board. It is necessary to have an SSH client installed on your
machine to enable this connection. More information about SSH can be found in the links in section 5.

An SSH key to be used for the newly created user can also be generated. The following instructions will
help you to create a new key to use with the SIB/SBS. To create key pairs for the SoM-5282 with
optional SSH or other SSH equipped boards, the commands may be slightly different. See the
documentation that came with your board for more information about how to do this. To create a new
key on the SIB/SBS, generate a key pair on the host development machine with the command ssh-
keygen -t dsa. Using the system defaults, this should create the files ~/.ssh/id_dsa and
~/.ssh/id_dsa.pub. The .pub file contains the public key, and must be securely copied to the target
board. A command similar to scp ~/.ssh/id_dsa.pub root@192.168.0.101:/home/new_user/ will
then copy the file to the home directory of the newly created user (replace the IP address and directories
with the appropriate values).

The final step in using the new key is to copy it into the keys file. On the SIB/SBS, if the directory
~/.ssh and the file ~/.ssh/authorized_keys do not exist, create them. Next, add the key to the
authorized keys file with the command cat ~/id_dsa.pub >> ~/.ssh/authorized_keys on the
SIB/SBS. Close the SSH session with the SIB/SBS, and attempt to log in as the newly created user. The
password (if any) used in the creation of the public key will be prompted for before login. Delete the
id_dsa.pub file in the new user's home directory on the SIB/SBS.

You are now ready to open a connection with the board through SSH using the Target Management
Plugin. Begin by launching the RSE perspective using the Window menu. Select Open Perspective
followed by Other. Select Remote System Explorer in the new window and click on OK.

When the new perspective opens, you should see the Remote Systems tab to the left of the screen. In this
window, create a new SSH Only connection as shown in Figure 12. This will bring up a new screen that
will allow you to configure the connection. Ensure that the host name or IP address of the target board is
entered correctly in the Host Name field.

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 16

The newly created connection should now appear in the Remote Systems window on the left of the
screen. Monitor this connection with Eclipse by right clicking on the connection and selecting Show in
table. Also, right click on the connection and select Monitor. You should see the connection added to the
windows at the bottom center of the screen. Finally, right click on the connection and select Connect.

The system should then prompt for your user name and password. Enter the user name and password for
the user created earlier in this section. The resulting configuration should be similar to the following
screen shot. You will also want to open the local connection to allow browsing of the local file system
and shells. This connection should be opened automatically. Figure 13 shows the completed setup.

You may use the Sftp files link to browse, edit, copy, and paste files to and from the file system on the
target board as if they were located on the development host. From the other perspectives, connections

Figure 13: Remote System Explorer

Figure 12: Creating a New Connection

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 17

may be monitored and established by activating the various Remote System Explorer windows in the
current perspective through the Window menu under Show View.

To open an SSH shell with the target board, right click on Ssh Shells and select Launch Shell. This will
bring up a new view that will allow you to execute commands on the target board. Local shells on the
development host may also be invoked in the same way through the Local connection.

For boards that are running an FTP server, it is possible to browse the remote file system and edit files
remotely using FTP through the RSE plugin as well. To do this, follow the above process to set up a
connection, but select FTP rather than SSH as the connection type. It is not possible to open a remote
shell using FTP, however.

Terminal connections can also be established using the Target Management Terminal SDK, which is
also included with the EMAC Eclipse Distribution. This supports connections through serial terminals,
SSH, and Telnet.

To establish a terminal connection, select Window -> Show View -> Other... and select Terminal from
the list that is brought up. The Terminal view will be opened in the lower window. Next, click on the
Settings tab within the Terminal view and fill in the appropriate information for the connection. After
clicking OK, Eclipse will attempt to establish a connection. The terminal will then be connected to the
Terminal view in Eclipse, allowing full access to the remote system. An example of this is shown in
Figure 14.

3.3 GDBServer and GDB Versions

Once a connection has been successfully established with the target board, the required programs for
debugging on the target board and local development host must be located and installed. The required
GDBServer programs are included with the EMAC Linux distributions for the SoM-5282 and the
SIB/SBS. The appropriate version of GDB must be installed on the host machine, however.

For the SIB, GDB is located in the same location as GCC in the SIB-SDK-3.0 directory. To find it, look
for i486-linux-gdb in SIB-SDK-3.0/gcc-4.1.1-i486-D/bin. Place a link to this executable
somewhere in your path for easier use.

For the SoM-5282, EMAC provides a different configuration of GDB than the version included with the
m68k-elf-tools toolchain to allow for compatibility with Eclipse. This can be located on both the EMAC
FTP site and the CD-ROM. Refer to the instructions in the README.htm file within the SoM-5282EM-

Figure 14: Terminal Connection

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 18

SDK to build this new version of GDB. Replace the version of m68k-elf-gdb installed from the m68k-
elf-tools toolchain with this version. It should be located in /usr/local/bin on the host development
machine.

For other EMAC products, refer to the product specific documentation for information on how to install
the toolchain for the respective device.

3.4 Using GDBServer

After compiling and uploading the required programs and locating and installing the appropriate version
of GDB for your target board, GDBServer must be invoked on the target board. This will allow the
target board to accept incoming connections from GDB on the development machine.

This can be done through a TCP connection or a dedicated serial connection from the host machine to
the target board. In either case, first navigate to the directory of the executable on the target board and
ensure that execute permissions have been enabled for the program (using the chmod command).
GDBServer should be run from this directory.

The general form of the command to initiate GDBServer is gdbserver COMM PROGRAM [ARGS]
where COMM specifies the connection and PROGRAM [ARGS] specifies the program to debug along with
any command line arguments that the program should be passed.

When debugging over a TCP connection, COMM takes the form of HOST:PORT to describe the IP address
and port to listen for connections from. For example, if the development host is at IP address
192.168.0.100, and you want to debug the web_demo.cgi program from the EMAC project examples,
you could enter a command like gdbserver 192.168.0.100:2828 web_demo.cgi to listen for
incoming connections on port 2828. This port number can be anything that you like, as long as it is not a
reserved port number. Leaving the HOST portion of the command blank, as in gdbserver :2828
web_demo.cgi will allow GDBServer to accept connections from any machine with access to it from the
network.

Debugging over a serial connection requires that the COMM portion of the GDBServer command denote
the serial port to listen for connections on. For example, if the host development machine and the target
board have a serial connection on port /dev/ttyS1 on the target board, the command gdbserver
/dev/ttyS1 web_demo.cgi will allow GDBServer to listen for incoming connections over this serial
line.

3.5 Shell Operation

After compiling the executable with debugging symbols for the host machine and starting GDBServer
on the target board, you are ready to start debugging using GDB. Testing GDB and establishing a
connection using the shell on the host machine is a good way to test your GDB and GDBServer setup
before using Eclipse.

From the shell on the development machine, navigate to the directory containing the executable to be
debugged as well as all required source code. From here, issue the command for the appropriate version
of GDB.

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 19

For example, if the executable to be debugged were web_demo.cgi.gdb, issue the command m68k-elf-
gdb web_demo.cgi.gdb or i486-linux-gdb web_demo.cgi.gdb depending on the platform you are
developing for. This assumes that the GDB executable is located in your path as described in section 3.3.

GDB should start and return a prompt for commands. Next, initiate a connection to the remote machine
for debugging by issuing a target command. This command will differ according to the type of
connection (serial or TCP).

To connect over a TCP connection, you must know the IP address of the target board as well as what
port GDBServer is listening for connections on. Following the earlier examples and assuming the IP
address of the target board is 192.168.0.101 listening on port 2828, issue the following command at the
GDB prompt: target remote 192.168.0.101:2828 to establish a connection with the target board.

When debugging over a serial connection, the command becomes even simpler. For example, if the
target board is connected on the host development machine port /dev/ttyS1 and GDBServer is
listening for connections on the respective serial port on the target board, issue the command target
remote /dev/ttyS1 at the GDB prompt to establish a connection.

After the GDB prompt returns, the shell on the target board should report that a connection has been
successfully established. To test your connection, first add a breakpoint in the main function of the
program with the command b main at the GDB prompt. To execute the code up to the breakpoint,
continue by typing c at the GDB prompt. The program should advance and stop. Set other breakpoints in
the program and step through the application. You may use the list command to show the line numbers
of surrounding code that you wish to set a breakpoint at.

The output of the program will be displayed on the shell of the target board through the output of
GDBServer. Any required input for the program will also need to be entered on the target board shell
within the running GDBServer session.

3.6 Remote Debugging with Eclipse

The next step after successfully debugging an application through the shell is to use Eclipse to set up a
remote connection with GDBServer. This will allow for a much more user-friendly interface and make
debugging more efficient. There are currently two main ways to do this: manually establishing a
connection, and using the RSE Plugin to automate the process (for boards with SSH capabilities).

3.6.1 Manually Establishing a Connection

This method requires that the user start GDBServer on the target board and connect using GDB through
Eclipse. The GDBServer command will be exactly the same on the target board as it was when
debugging through the shell. After compiling and uploading the necessary applications, start GDBServer
on the target board according to section 3.3.

On the Eclipse workbench, right click on the application that you are trying to debug. Make sure that
this file has been compiled with debugging symbols. From the menu that is brought up, select Debug As
followed by Debug... as shown in Figure 15. This will bring up a new window to allow you to configure
the way the program is debugged. These features can also be accessed from the Run menu.

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 20

On the new window, select C/C++ Local Application on the left and name the configuration on the right
side of the screen so that your changes are saved for future sessions. Select the project and application to
be debugged if necessary. This is illustrated in Figure 16.

The Debugger tab on this window is where most of the configuration will take place. Select this tab and
choose gdbserver Debugger as the debugger. Next, on the Main tab under Debugger Options, choose the
appropriate GDB Debugger for your platform as described in section 3.3. Also, set the GDB command
set to Standard (Linux) and the Protocol to mi. The EMAC versions of GDB are not configured to use a
GDB command file by default, so this setting is not necessary. The final setup should be similar to
Figure 17.

Figure 15: Debugging an Application

Figure 16: Debugging Configuration

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 21

The Shared Libraries tab can be useful in telling GDB exactly where to search for shared libraries that
are utilized by an application. If GDB cannot find the required libraries, it will print errors while
executing, and the location of the libraries will need to be specified directly through this screen.

On the Connection tab, the connection type and parameters for Eclipse to locate the target board must be
specified. For example, to specify a TCP connection to IP address 192.168.0.101 on port 2828, use the
settings shown in Figure 18.

Connection over a serial line requires setting the device and line speed as in Figure 19 according to the
settings of the serial connection to the target board.

Figure 17: Debugging Configuration (2)

Figure 18: Remote Debugging Configuration for TCP

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 22

Use the Source tab to specify the search path for the program source files. Check to ensure that this is set
so that the directory containing the source files for the program is located in the search path as shown in
Figure 20. If not, add this location to the path.

When you are finished with the configuration and have started GDBServer on the target board, press
Apply. Press Debug to initiate the connection and begin debugging.

3.6.2 Using the RSE Remote Debugging Tool

The RSE plugin can be used to automate the remote debugging and testing process. Essentially, this
consists of automatically uploading the executable to the target board, opening a GDBServer connection
for that application, connecting to the server, and piping the program input and output to the Console
within Eclipse. This is only possible with boards running SSH.

Figure 19: Remote Debugging Configuration for Serial Connection

Figure 20: Setting the Search Path for Source Files

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 23

The process for automated remote debugging is similar to the process discussed before, except that a
Remote C/C++ Application configuration should be used rather than a local configuration. As before,
choose an executable to debug and right click on it. Select Debug As -> Debug... . On the window that
comes up, choose Remote C/C++ Application and enter the information for the connection to the target
board. From this point forward, operation is as described in section 3.6.1, except that output and input
for the program are facilitated through the Eclipse Console.

3.6.3 The Eclipse Debugging Perspective

After establishing a connection with the program on the target board, Eclipse will automatically open the
Debug perspective, locate the source code, and wait for commands. This is shown in the screenshot
below. The GDBServer process running on the shell of the target board should report that a connection
has been established if a connection was established manually (not using the RSE Remote Launch).

In Figure 21 above, the current location in the program is highlighted in green in the source code
window. Directly to the right of the source code, the current location in the assembly code is also
highlighted under the Disassembly tab. Any output from the debugger is displayed in the Console
window at the bottom of the screen. Note that program I/O will still take place on the shell of the target
board if you established the connection manually. Using the RSE Remote Debugging tool automatically
pipes the program I/O to the Eclipse Console. For manual connections, the program can be accessed
from any of the connection types described in section 3.2, including the TM Terminal SDK SSH,
Terminal, or Telnet connections within Eclipse.

Use the various buttons under the Debug tab in the upper left of the screen to manage your debugging
session. You can use these to step through the program, resume and pause execution, and toggle the
stepping mode, along with other options.

Figure 21: Eclipse Debugging Perspective

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 24

To add a breakpoint, simply double click in the gray margin to the left of the source code on the line
where you would like it to be placed. Breakpoints, variables, modules, and registers are monitored in the
window in the upper right of the screen. After adding a breakpoint, it will be marked with a breakpoint
pin to the left of the line on the source code as well as an entry under the Breakpoints tab in the upper
right window.

Step through the application and familiarize yourself with the operation of the Eclipse Debugging
perspective. This will also allow you to test your configuration by ensuring that everything is working
properly before attempting to develop your own applications. For more information on GDB and
debugging within Eclipse, see the links in section 5.

4 Kernel Modules and RTAI

The EMAC SIB-SDK also provides the ability to build modules and RTAI applications that must be
compiled against a specific kernel. RTAI applications are particularly difficult to cross-compile, as they
must be built against the exact same kernel that they will be loaded into and must be compiled with the
same compiler and configuration as the kernel as well. The EMAC SIB-SDK greatly simplifies this
process.

Due to size restrictions and maintainability, EMAC provides kernel sources and RTAI packages
separately from the SDK. Contact EMAC Support for information on where to locate the kernel for your
device. To determine which kernel you need, use the uname -r command. Download the corresponding
kernel source package, and extract it into the gcc-4.1.1-i486-D/sysroot directory. If this is an RTAI
kernel, RTAI headers will be added to your SDK as well. The kernel source will be placed in the
sysroot/usr/src/<kernel version> directory within the SDK. Note that modules that are built
against any other kernel than the one running on the target board will not work.

For an example of how to build kernel modules within the SDK, look at the rtai_sine project. In order to
build this example, change the KERN variable in the Makefile to the version that you are building
against to allow make to find the correct source. This must be an RTAI enabled kernel. When writing
your own kernel modules, be sure to include the header files from the include directory for your kernel,
rather than those from sysroot/usr/include/linux. The files in sysroot/usr/include/linux are
the static kernel headers that glibc was built against. Modules must be built against the running kernel
rather than the glibc headers.

Compile the rtai_sine example just like any of the other projects. Make will automatically build
everything that is needed using the correct kernel version based on the information given in the
makefile. During compilation, you will most likely see several errors, including several about an
unsupported GCC version and undefined modules. The unsupported GCC message comes from the
RTAI headers, and can safely be ignored. The undefined modules messages are caused by the fact that
the modules are not currently loaded by the kernel on the development machine, and will disappear as
soon as the module is loaded onto the target board.

The easiest way to test this example is to use the upload make target to upload the entire example
directory to the target board. Then, execute ./run from within this directory on the target board. This
will load all of the appropriate modules and execute the example. You should then see three scrolling
columns calculating a counter, sine, and cosine values. If this does not work correctly, the dmesg
command can provide valuable clues into what went wrong.

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 25

Use the rtai_sine example as a template for developing your own kernel modules and RTAI
applications.

5 Further Information

The combination of Eclipse and the EMAC development tools should allow you to easily and efficiently
develop, debug, and test custom applications for use on and with EMAC products such as the SoM-
5282M and the SIB. For more information about the software mentioned in this document, start with the
links below.

Eclipse: www.eclipse.org
Eclipse Wiki: wiki.eclipse.org
Java: java.sun.com
GCC: gcc.gnu.org
GNU Make: www.gnu.org/software/make
Makefiles: www.wlug.org.nz/MakefileHowto
Open SSH: www.openssh.com
Target Management: www.eclipse.org/dsdp/tm/
GDB: www.gnu.org/software/gdb
GDBServer: www.linuxmanpages.com/man1/gcc.1.php
Remote Debugging: linuxdevices.com/articles/AT6046208714.html
RXTX: www.rxtx.org/
Eclipse CDT: www.eclipse.org/cdt/
Astyle Eclipse: astyleclipse.sourceforge.net/
EMAC Software: ftp://ftp.emacinc.com/PCSBC/Development_Kits/EMAC_Open_Tools/
 ftp://ftp.emacinc.com/Controllers/Development_Kits/EMAC_Open_Tools/
EMAC Documents: ftp://ftp.emacinc.com/PCSBC/Development_Kits/EMAC_Open_Tools/Manuals/
 ftp://ftp.emacinc.com/Controllers/Development_Kits/EMAC_Open_Tools/

If you have any questions regarding the information described in this document contact EMAC support
(support@emacinc.com) with the subject heading “Eclipse Development Support.”

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 26

Appendix A

A.1 Installing Eclipse Manually

The following instructions cover the installation of Eclipse and the necessary plugins. These steps are
not required for the EMAC Eclipse Distribution.

Eclipse is also available directly from Eclipse at http://download.eclipse.org/eclipse/downloads/. After
downloading the package, unpack the contents of the gzipped tar file to the desired location, such as
/usr/local.

Note that some Linux distributions are releasing Eclipse packages as well. If you decide to use one of
these packages, be aware that the installation procedure will differ slightly from this document. Also,
ensure that the correct version of Eclipse is installed.

After installation is complete, navigate to the top level of the Eclipse directory. The Eclipse executable
is named eclipse. Executing this file will start the Eclipse IDE. For ease of use, place a link to this file
somewhere in your path or add the Eclipse directory to your path. See the Eclipse documentation in the
package and online for more information about command line arguments and other options.

A.2 Installing the CDT Plugin

The utility to locate and install new features in Eclipse is located under the Help menu. Select Software
Updates and then Find and Install, as shown in Figure A-1.

This will bring up a new window, which prompts for the type of features to search for. Select Search for
new features to install and click on Next.

The next screen is important because it determines which sites to search for features. Select the Callisto
Discovery Site, and click on Finish. Eclipse will begin to search for updates, and may prompt you to
select the mirror to download from. Select a mirror and wait for searching to complete.

Figure A-1: Installing Plugins

ENG-00128-12P-Linux_Development_with_Eclipse.doc Rev 1.2 © 2007 EMAC, Inc. 27

Once Eclipse has determined which features are available for your version, it will list them on a new
screen. Expand the Callisto Discovery Site list, check the box next to C/C++ Development Tools, and
click Next. You will be prompted to accept a license agreement for the new features. Following this
screen, check to ensure that the download location is correct, and click Finish. Answer any necessary
questions during installation. After the tools have downloaded and installed, you will be prompted to
restart Eclipse for the changes to take effect.

A.3 Installing the RSE Plugins

Installing the RSE Plugins follows the same process as the CDT Plugin. At this time, TM/RSE provides
the “Terminal SDK” separately from RSE. From the Help menu, go to Software Updates and select Find
and Install. Select Search for new features to install and click Next. Create a New Remote Site named
“RSE” with a URL of “http://download.eclipse.org/dsdp/tm/updates/”. Check the box next to the RSE
site and select Finish. When presented with the available packages, choose those that apply to your
environment and needs, and proceed with the installation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

