
EMAC GPIO Class
The EMAC GPIO Class is a generic programming interface for General Purpose Input Output (GPIO) devices in the
Linux Kernel. The GPIO class driver has two main interfaces under standard Linux: Linux sysfs and character
device. The GPIO class is extremely flexible and uses a set of function pointers at the kernel level to allow for
specialized read/write functions for each device. EMAC utilizes the GPIO class to create devices that use the same
simple interface, such as GPIO registers, simple configuration variables, hardware registers, and Analog-to-Digital
converter drivers where the user needs to retrieve a single value from the device.

At this point the EMAC GPIO Class is only available in EMAC patched kernels for select devices.

Components

An EMAC GPIO Class Device has three main components. A clear understanding of these components is important
for proper use and implementation.

Data

The data member of a GPIO device is the primary component. In the most simple devices, this is the only
component accessible from userspace. The data member is read and/or written to access or set the current value of
the GPIO device. The actual function of the data member is implementation specific. For a GPIO device in its
purest form, such as the GPIO ports present in many of EMAC's CPLD designs, the data member is a register value
with each of the 8 least significant bits representing the digital state of a single line in the GPIO port. In contrast,
AtoD devices implemented with the EMAC GPIO Class will typically provide the analog value of the currently
selected channel in the data member.

The data member is allocated as a 32-bit unsigned integer regardless of implementation. Many devices use only the
least significant byte or the least significant bit.

DDR

The ddr or Data Direction Register is a member of the EMAC GPIO Class that is used primarily for direction-
configurable GPIO devices. Many devices do not register this aspect of the interface. The ddr member is used to
determine if a particular device should act as an input or output. Depending on the implementation, many devices
are bit-configurable GPIO devices, meaning that each bit/line in the GPIO device can be configured as an input or
output by its respective value in the ddr. Typically, a '1' value in the ddr configures the device as an output and a
'0 ' value in the ddr configures the device as an input. Bidirectional GPIO devices are generally configured as inputs
by default until explicitly configured as an output to prevent hardware contention.

For example, an EMAC GPIO Class device porta is a one-byte bit-configurable bidirectional GPIO device. Each bit in
the data register corresponds to the digital status of the corresponding line porta[0-7]. On reset, the ddr member
is read at 0x00, indicating that the device is configured with all lines as inputs. If the ddr member is set to 0xAA
(binary 1010 1010) bits 0, 2, 4, and 6 will remain configured as inputs while the rest of the bits will be configured
as outputs. Reading and setting the value in the data member will react according to the configuration set in the
ddr. The ddr is allocated as a 32-bit unsigned integer regardless of implementation.

Index

Many EMAC GPIO Class devices are implemented as indexed GPIO Devices. These devices utilize a member named
index which impacts the device according to the implementation. The index member is typically used to specify a
memory offset from some base for the data member or some type of channel setting or controller selection. Many
devices ignore the index value or do not register this member at all.

An example of an indexed GPIO Class device is the indexed_atod device (and other AtoD devices) found on many
EMAC boards. In this case, the index member is used to set the current channel of the AtoD to read from the data
member. When the index is set to 0, channel 0 will be accessed. When the index is set to 3, the data register will
reflect the current value on channel 3 of the device. Another example would be two identical counter registers in a
device where setting the index would control which counter was accessed when reading the data register. This

linux:emac_gpio_class - EMAC DokuWiki

1 of 13

would be an alternative to registering a separate device for each counter.

Indexed GPIO devices should check the applicable range for the index when the user attempts to set the device. For
example, an 8-channel AtoD device implemented as an EMAC GPIO Class device would have a valid range for the
index member of 0-7. Attempting to set the index to anything greater than 7 would cause the index to be set to
the maximum allowed value of 7.

Lock

Locking support is currently not available on all EMAC boards. This feature was introduced in the later versions of
the 2.6 .28 kernel for the AT91-based boards. It will be implemented in other kernel trees in the future.

Many GPIO devices may be accessed by multiple processes simultaneously, which leads to the possibility of race
conditions. The EMAC GPIO Class includes a locking mechanism to prevent these cases when used correctly.
Without the locking mechanism, synchronization needs to be performed in userspace.

The lock is implemented as a struct mutex in the GPIO Class device structure. The lock is obtained by the GPIO
driver interface through a call to mutex_lock() and freed using mutex_unlock(). This means that any attempts to
lock an already locked device will cause the caller to sleep until the lock is freed by the process holding the lock. A
nonblocking method using mutex_trylock() may be implemented in the future.

All access to a device must be synchronized using the lock. Further details on this implementation are described
in later sections.

User Interfaces

This section describes the two user interfaces available for the GPIO class. The sysfs layer is very handy for
scripting and testing. For higher performance and more flexible access, the character driver interface is used,
generally from a C application. This provides a simple ioctl() interface.

Sysfs

The sysfs filesystem is a virtual filesystem provided by the Linux kernel that allows for a file-based interface to
kernel driver parameters. The EMAC GPIO Class utilizes sysfs to provide a simple read/write interface to the GPIO
Class device. This interface is easily accessible from the Linux shell and through shell scripting.

The GPIO Class driver registers a directory at /sys/class/gpio assuming that sysfs has been mounted on the
system. Under this directory, every GPIO Class device registered with the system will have a directory (i.e.
/sys/class/gpio/porta). Within this directory, there will be some files that are a part of the sysfs heirarchy as
well as the GPIO Class interface files data, ddr, and index. Depending on the type of device and its implementation,
the ddr and index files may or may not exist; data should always be present.

Note that the /sys/class/gpio directory is used by the new I/O driver code in the standard Linux kernel tree. This
location will be changed by EMAC in the near future to avoid conflict.

Reading

Reading the current value of a device's settings is as simple as reading the respective file. The cat command is
typically used for this. The output is formatted as ASCII hexadecimal characters. For example, to read the value of
the data member of the porta device, run the command:

emac-oe$ cat /sys/class/gpio/porta/data

The implementation of the read function for the data, ddr, and index members using the sysfs interface
automatically acquires and frees the lock on the respective GPIO device. The actual value returned depends on the
device implementation.

Writing

linux:emac_gpio_class - EMAC DokuWiki

2 of 13

Writing a new setting to a member of the GPIO device through the sysfs interface is accomplished by writing a
new value to the respective file. The echo command is typically used along with file redirection to set the new
value directly, although the output of any command could be used as long as it is formatted correctly. For
example, to set the porta device to 0xFF (all on) the user would first set all bits to output using the ddr register
and then write 0xFF to the data register as shown below:

emac-oe$ echo 0xff > /sys/class/gpio/porta/ddr
emac-oe$ echo 0xff > /sys/class/gpio/porta/data

The implementation of the write function for the data, ddr, and index members using the sysfs interface
automatically acquires and frees the lock on the respective GPIO device. The low-level effects of the write function
depends on the device implementation.

Character Driver

The character driver interface is the preferred method for accessing EMAC GPIO Class devices from programmed
applications. This interface is significantly more efficient than the sysfs layer and easier to program. In kernels
that support the GPIO Class locking mechanism, the character driver interface offers user control over the lock
that is not available using the sysfs interface. The character driver interface uses the ioctl() system call. Newer
kernels also support an fasync method for signal-based event notification from the driver to the user application.

Available IOCTLs

Several different ioctl command are available for use. The user must know the supported features of the device
before using an ioctl command. For example, many devices do not support the ddr or index functionality. All
ioctl commands will return a negative error code on failure.

Locking

The ioctl commands in this section will acquire and free the GPIO lock on kernels that include support for the
lock. These commands are the most efficient to use when a single GPIO read/write is required. On kernels that do
not support the GPIO lock, these commands simply preform the advertised action.

DATAREAD: Read the current value of the devices data member by calling the data_read function. Return
value is stored in a 32-bit integer which is passed to the ioctl via a pointer.
DATAWRITE: Write a new value to the device's data member by calling the data_write function. The value to
write is passed to the ioctl call through a pointer to a 32-bit integer.
DDRREAD: Read the current value of the device's ddr member by calling the ddr_read function. Return value
is stored in a 32-bit integer which is passed to the ioctl via a pointer.
DDRWRITE: Write a new value to the device's ddr member by calling the ddr_write function. The value to
write is passed to the ioctl call through a pointer to a 32-bit integer.
INDEXREAD: Read the current value of the devices index member by calling the index_read function. Return
value is stored in a 32-bit integer which is passed to the ioctl via a pointer.
INDEXWRITE: Write a new value to the device's index member by calling the index_write function. The
value to write is passed to the ioctl call through a pointer to a 32-bit integer.

Lock Control

The ioctl commands in this section are only available on kernels that support the GPIO Class locking mechanism.
They are used to control the current state of the lock.

GPIOLOCK: Lock the device's mutex through a call to mutex_lock(). This command will sleep until the lock
has been acquired.
GPIOUNLOCK: Release the device's mutex through a call to mutex_unlock(). This command should not be
called unless the lock has already been acquired using GPIOLOCK.

No-Lock

linux:emac_gpio_class - EMAC DokuWiki

3 of 13

The ioctl commands in this section do not affect the lock of the GPIO device and are only available in kernels
supporting the GPIO Class locking feature. They are simple versions of the standard commands listed in the
Locking section. Before calling one of these commmands, the process must acquire the lock using the GPIOLOCK
command. The purpose of these commands is to allow synchronization between multiple processes or threads
when accessing the same device. For example, when preforming a read followed by a write, the lock would need to
be held for the duration of both commands to ensure that incorrect values are not written to the device.

DATAREAD_NL: Read the current value of the device's data member.
DATAWRITE_NL: Write a new value to the device's data member.
DDRREAD_NL: Read the current value of the device's ddr member.
DDRWRITE_NL: Write a new value to the device's ddr member.
INDEXREAD_NL: Read the current value of the device's index member.
INDEXWRITE_NL: Write a new value to the device's index member.

Asynchronous Notification

The ioctl commands in this section are for use with the asynchronous notification feature of the EMAC GPIO
Class. Most devices do not use this feature and these commands are only available on kernel's that support this
feature. Low-level implementation is highly device-specific.

SETNOTIFY: Set a new notification bitmask for the current file descriptor. The value is passed to the ioctl
call as a pointer to a 32-bit integer. The gpio lock is acquired and released during this command.
GETNOTIFY: Get the current notification bitmask for this file descriptor. The value is returned via a pointer
to a 32-bit integer passed to the ioctl call. The gpio lock is not acquired and does not need to be held for this
command.
DATAREADQ: Read the first value from the data queue. The value is returned via a pointer to a 32-bit integer
passed to the ioctl call. The gpio lock is not acquired and does not need to be held for this command.
GETQUEUESIZE: Read the current number of values in the data queue for this file descriptor. The value is
returned via a pointer to a 32-bit integer passed to the ioctl call. The gpio lock is not acquired and does not
need to be held for this command.

Programming

The following general examples demonstrate the character driver programming interface.

The examples below do not check the return value of calls for errors. Be sure to check for and handle errors in a
production system.

To access a device from a C application, it must first be opened using open():

int fd;
fd = open(DEVICE, O_RDWR);
....
close(fd);

If the open command is successful, any supported ioctl command may be used to access the device. The example
below sets the value of the data member to 0xFF:

__u32 arg;
...
arg = 0xff;
ioctl(fd, DATAWRITE, &arg);

The example below uses the locking mechanism to perform a sequence of accesses to a device:

linux:emac_gpio_class - EMAC DokuWiki

4 of 13

#define CONTROLBIT (1 << 3)
__u32 arg;
...
ioctl(fd, GPIOLOCK, NULL);
arg = 1;
ioctl(fd, INDEXWRITE_NL, &arg);
ioctl(fd, DATAREAD_NL, &arg);
/* set control bit */
arg &= CONTROLBIT;
ioctl(fd, DATAWRITE_NL, &arg);
ioctl(fd, GPIOUNLOCK, NULL);

Asynchronous Notification Example

Asynchronous notification for the EMAC GPIO Class is a new feature in some kernels. This was added to the driver
at the same time as locking support and utilizes the fasync system call. Essentially, this feature allows the kernel
driver to notify the user application of some event through a signal. Typically this is used for devices which
support hardware interrupts. Currently, no standard EMAC devices utilize the asynchronous notification feature.

For each open file descriptor of a certain device, it is possible to set a notification mask indicating which types of
events will trigger notification as well as which signal will be sent to the process from the driver. The default
signal is SIGIO. When an event occurs, a value will be written to a queue for each file descriptor that is registered
for notification of the event. The notification mask, events, and queue functionality are all implementation-
specific.

The following example utilizes the asynchronous notification interface for a device that supports it. This
particular device is an interrupt-enabled register that will notify a process if the type of interrupt that occurs
matches the notification mask of the particular file descriptor. When an applicable interrupt occurs, the data
register will immediately be queued into the file descriptor specific data queue.

The device utilized in the example below does not exist on any EMAC systems. The example is provided purely for
the purpose of illustrating the asynchronous notification interface.

gpio-fasync-example.c

linux:emac_gpio_class - EMAC DokuWiki

5 of 13

#define _GNU_SOURCE

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <asm/types.h>
#include <signal.h>
#include "gpio_char.h"

static sig_atomic_t caught = 0;
static sig_atomic_t run = 1;

void sig_handle(int sig)
{

if (sig == SIGIO)
caught = 1;

else /* termination */
run = 0;

}

#define DEVICE "/dev/gpio_async"
#define NOTIFY_MASK (1 << 4)

/**
 * function to enable asynchronous notification on the given file descriptor
 * for the specified signal
 * @param fd the open GPIO device file descriptor to enable notification for
 * @param sig the signal to be sent by the kernel for event notification
 */
static void set_fasync(int fd, int sig);

/**
 * function to set the event notification flags for the driver on a given
 * file descriptor.
 * @param fd the open GPIO device file descriptor for notification
 * @param notify bitmask specifying which events this file descriptor should
 * be notified on
 * @return the result of the ioctl() call to set the notification flags
 */
static int set_notify_flags(int fd, __u32 notify);

/**
 * function to get the queue size for the given file descriptor
 * @param fd the open GPIO device file descriptor to query
 * @return the current queue size as reported by the driver
 */
static __u32 get_queue_size(int fd);

int main(int argc, char *argv[])
{

int fd;
__u32 data;
struct sigaction sact;
sigset_t block_mask;
sigset_t suspend_mask;
sigset_t old_mask;

/* set up signal handlers */
sact.sa_handler = sig_handle;
sigemptyset(&sact.sa_mask);
sact.sa_flags = 0;
sigaction(SIGIO, &sact, NULL);
sigaction(SIGTERM, &sact, NULL);
sigaction(SIGINT, &sact, NULL);

/* Open all devices */
if ((fd = open(DEVICE, O_RDWR)) <= 0) {

fprintf(stderr, "Error on open %s\n", DEVICE);
exit(EXIT_FAILURE);

linux:emac_gpio_class - EMAC DokuWiki

6 of 13

gpio_char.h

#ifndef GPIO_CHAR_H_
#define GPIO_CHAR_H_

/* Userspace version of kernel header file */

#include <linux/ioctl.h>

#define RTDM_CLASS_GPIO 0x80

/* standard read/write functions */
#define DDRREAD _IOR(RTDM_CLASS_GPIO,0,char)
#define DDRWRITE _IOW(RTDM_CLASS_GPIO,0,char)
#define DATAREAD _IOR(RTDM_CLASS_GPIO,1,char)
#define DATAWRITE _IOW(RTDM_CLASS_GPIO,1,char)
#define INDEXREAD _IOR(RTDM_CLASS_GPIO,2,char)
#define INDEXWRITE _IOW(RTDM_CLASS_GPIO,2,char)

/* nolock functions */
#define DDRREAD_NL _IOR(RTDM_CLASS_GPIO, 3, char)
#define DDRWRITE_NL _IOW(RTDM_CLASS_GPIO, 3, char)
#define DATAREAD_NL _IOR(RTDM_CLASS_GPIO, 4, char)
#define DATAWRITE_NL _IOW(RTDM_CLASS_GPIO, 4, char)
#define INDEXREAD_NL _IOR(RTDM_CLASS_GPIO, 5, char)
#define INDEXWRITE_NL _IOW(RTDM_CLASS_GPIO, 5, char)

/* lock/unlock */
#define GPIOLOCK _IO(RTDM_CLASS_GPIO, 6)
#define GPIOUNLOCK _IO(RTDM_CLASS_GPIO, 7)

#define DATAREADQ _IOR(RTDM_CLASS_GPIO, 8, char)
#define GETNOTIFY _IOR(RTDM_CLASS_GPIO, 9, char)
#define SETNOTIFY _IOW(RTDM_CLASS_GPIO, 10, char)
#define GETQUEUESIZE _IOR(RTDM_CLASS_GPIO, 11, char)

#endif /*GPIO_CHAR_H_*/

Kernel Driver Implementation

The EMAC GPIO Class makes it easy to add new devices to the kernel. Function pointers are used to define the
implementation of the read and write functions for data, ddr, and index members. This allows for an efficient
definition of custom implementations. Standard read and write functions for accessing memory addresses are
defined for use if they match the needs of the interface. This section describes the process of creating and
registering an EMAC GPIO Class device in the Linux kernel.

EMAC GPIO Class Definition

The EMAC GPIO Class is implemented in several important files. First, the gpio.h header file defines the structures
used for the GPIO class. This file is located in include/linux/class/gpio.h in the kernel source. It defines the
following types:

linux:emac_gpio_class - EMAC DokuWiki

7 of 13

typedef u32 gpio_data;

typedef struct gpio_s {

const char *name;
int subclass;
gpio_data index;
gpio_data range;
void *ddr;
void *data;
gpio_data shadow;
 gpio_data(*data_read) (struct gpio_s * gpio);
int (*data_write) (struct gpio_s * gpio, gpio_data data);
 gpio_data(*ddr_read) (struct gpio_s * gpio);
int (*ddr_write) (struct gpio_s * gpio, gpio_data data);
 gpio_data(*index_read) (struct gpio_s * gpio);
int (*index_write) (struct gpio_s * gpio, gpio_data data);
struct mutex lock;
struct gpio_irq_data irq_data;

} gpio_t;

struct gpio_irq_data {

int irq;
unsigned int irq_flags;
gpio_data (*handler)(struct gpio_s *gpio);
gpio_data (*get_queue)(struct gpio_s *gpio, gpio_data notify);
void (*irq_config)(struct gpio_s *gpio);
void (*change_notify)(struct gpio_s *gpio, gpio_data curr_notify,

gpio_data new_notify);
};

The struct gpio_s structure is the main GPIO device definition. The data_read, data_write, ddr_read,
ddr_write, index_read, and index_write function pointers define the low-level actions that are performed when
the device is accessed. The struct gpio_irq_data structure is used only for IRQ-enabled GPIO devices as required
for the asynchronous notification feature.

In addition, standard low-level functions are declared for use in accessing 8-bit ports. These functions utilize the
ioread8 and iowrite8 functions for accessing the memory locations associated with the device.

int gpio_ddr_write8(gpio_t *gpio, gpio_data data);
int gpio_data_write8(gpio_t *gpio, gpio_data data);
int gpio_index_write(gpio_t *gpio, gpio_data data);
int gpio_empty_write(gpio_t *gpio, gpio_data data);
gpio_data gpio_ddr_read8(gpio_t *gpio);
gpio_data gpio_data_read8(gpio_t *gpio);
gpio_data gpio_index_read(gpio_t *gpio);
gpio_data gpio_shadow_read8(gpio_t *gpio);
gpio_data gpio_ff_read(gpio_t *gpio);
gpio_data gpio_zero_read(gpio_t *gpio);

Additional functions are provided for registering GPIO devices in the kernel. These will be discussed in the example
implementation below.

The EMAC GPIO Class is implemented in the file drivers/misc/classes/gpio.c in the kernel source tree. This file
implements the functions described above as declared in gpio.h and provides the implementation for the sysfs
interface. More detailed information can be obtained by reviewing the source code.

The character driver interface for the EMAC GPIO Class is defined in drivers/misc/classes/char/gpio_char.c.
This file provides the ioctl interface, character device registration, and asynchronous notification support. All
GPIO class devices create a character device interface upon registration.

Example GPIO Devices

linux:emac_gpio_class - EMAC DokuWiki

8 of 13

GPIO class devices may be defined and registered at any location in the kernel code. Often times, these devices are
hardware-specific and are initialized in the machine initialization code. The example code in this section defines
an EMAC GPIO Class device that is used to control several GPIO lines on an AT91-family processor. This code is
implemented in a separate C file and initialized from the board-specific implementation.

The GPIO device in this example is named ege (EMAC GPIO Example). The following variables and setup functions
are defined:

/**
 * static array defining GPIO set
 */
static unsigned ege_gpio_set[] = {

AT91_PIN_PC0,
AT91_PIN_PC1,
AT91_PIN_PC2,
AT91_PIN_PC3,
AT91_PIN_PB0,
AT91_PIN_PB1,
AT91_PIN_PB2,
AT91_PIN_PB3,

};

#define EGE_NUM_GPIO ARRAY_SIZE(ege_gpio_set)

gpio_data ddr_value_shadow = 0x0;

/**
 * function to initialize the digital inputs and outputs
 */
static int ege_gpio_init(void)
{

int i;

/*
 * set all GPIOs to inputs by default
 */
for (i = 0; i < EGE_NUM_GPIO; i++)

at91_set_gpio_input(ege_gpio_set[i], 0);

return 0;
}

Each value in the ege_gpio_set array represents one bit in the GPIO device data register. Reading or writing bit 0
will access AT91_PIN_PC0 on the processor, while bit 7 will access AT91_PIN_PB3. The ege_gpio_init() function is
required to initialize all of the GPIO pins to inputs prior to the first access.

The first step in creating the GPIO class device is defining the access functions for the data, ddr, and index
members. This device will not use an index member, so the index_write and index_read variables will be set to
NULL. This prevents them from being registered with the device. There will be no index file created for the sysfs
interface, and attempting to access the index through the character interface ioctl will return an error. The
ege_gpio_data_read, ege_gpio_data_write, ege_gpio_ddr_read, and ege_gpio_ddr_write functions are defined as
follows:

linux:emac_gpio_class - EMAC DokuWiki

9 of 13

/**
 * function to read the current value of each GPIO line
 */
static gpio_data ege_gpio_data_read(struct gpio_s *gpio)
{

gpio_data value;
int i;

value = 0;
for (i = 0; i < EGE_NUM_GPIO; i++)

value |= (at91_get_gpio_value(ege_gpio_set[i]) << i);

return value;
}

/**
 * function to set the value of the GPIO lines
 */
static int ege_gpio_data_write(struct gpio_s *gpio, gpio_data data)
{

int i;

for (i = 0; i < EGE_NUM_GPIO; i++)
at91_set_gpio_value(ege_gpio_set[i], (data >> i) & 1);

return 0;

}

/**
 * data direction configuration read
 */
static gpio_data ege_gpio_ddr_read(struct gpio_s *gpio)
{

return ddr_value_shadow;
}

/**
 * data direction configuration write
 */
static int ege_gpio_ddr_write(struct gpio_s *gpio, gpio_data data)
{

int i;

ddr_value_shadow = data;

for (i = 0; i < EGE_NUM_GPIO; i++) {
if(data & (1 << i)) {

/* set to output */
at91_set_gpio_output(ege_gpio_set[i], 0);
at91_set_multi_drive(ege_gpio_set[i], 0);

} else {
/* set to input */
at91_set_gpio_input(ege_gpio_set[i], 0);

}
}
return 0;

}

Note that the code to read the current ddr configuration of each line is replaced by a shadow value that is stored
during the ege_gpio_ddr_write function. After defining these functions, the device must be created and registered.
The ege_gpio_class_create function performs this operation and is shown below:

linux:emac_gpio_class - EMAC DokuWiki

10 of 13

struct device *ege_gpio_class_create(void)
{

gpio_t *gpio = kmalloc(sizeof(gpio_t), GFP_KERNEL);

memset(gpio, 0, sizeof(gpio_t));
gpio->name = "ege_gpio";
gpio->subclass = GPIO_SUBCLASS;
gpio->data_write = ege_gpio_data_write;
gpio->data_read = ege_gpio_data_read;
gpio->ddr_write = ege_gpio_ddr_write;
gpio->ddr_read = ege_gpio_ddr_read;
gpio->index_write = NULL;
gpio->index_read = NULL;
printk("registering gpio device: %s\n", gpio->name);

return gpio_register_device(gpio);

}

Once the ege_gpio_init function is called followed by the ege_gpio_class_create function, the ege_gpio device
will be created and registered with the system.

Adding Asynchronous Notification Support

If required, asynchronous notification support could be added to the ege_gpio device from the example above. This
section provides a simple example of the code required to add this feature.

The irq_data member of the GPIO class device is used to specify the action used for asynchronous notification and
interrupt handling. The IRQ will be requested, configured, and registered in the GPIO character interface
(gpio_char.c) if irq_data is valid.

The handler member of irq_data will be called by the generic GPIO class IRQ handler. This will be scheduled in a
workqueue from the interrupt handler outside of interrupt context and called with the GPIO device lock held. This
allows for the feature to be utilized by interfaces such as SPI devices which may sleep during hardware access. The
function returns a bit mask for comparison with the notification mask set on any open devices. This reflects
which type of hardware event has occurred. Typically, the handler function would read an interrupt status
register from the device associated with the GPIO interface, such as a PLD register. In the most basic form where
only one type of interrupt can occur the handler would simply return 1. The example handler function shown
below calls a function read_interrupt_status() for which the implementation is not discussed here.

static gpio_data ege_gpio_handler(struct gpio_s *gpio)
{

return read_interrupt_status();
}

The get_queue member of irq_data is called by the GPIO class interface to determine what data to add to the
queue for any file-descriptor matching the notify mask of the interrupt type that has occurred. This function will
be called with the device mutex held. The most common implementation of this function is to simply utilize the
data_read function of the associated device and store the current value. This is useful to capture the current
hardware state as instantaneously as possible after the interrupt occurs before the userspace process is notified of
the event. It may be used for other purposes, however, such as taking a timestamp or reading a different hardware
register. The current notify mask returned by handler will be passed to the get_queue function, so it is possible to
customize the action based on the type of event(s) that occurred. The get_queue function shown below simply
reads the current value returned by data_read.

static gpio_data ege_gpio_get_queue(struct gpio_s *gpio, gpio_data notify)
{

return atomic_gpio_data_read(gpio);
}

linux:emac_gpio_class - EMAC DokuWiki

11 of 13

The irq_config member of irq_data is called by the GPIO class interface before calling request_irq. The purpose
of this function is to configure and enable the interrupt in the associated hardware for the GPIO device. In many
cases, this function will have few tasks to perform. In the example irq_config function shown below, the
set_irq_wake() function is called to note that the interrupt should be allowed to wake the hardware from APM
suspend mode.

static void ege_gpio_irq_config(struct gpio_s *gpio)
{

set_irq_wake(gpio->irq_data.irq, 1);
}

The change_notify member of irq_data is used to make any changes to the hardware when the user interface
changes the notification mask. This may or may not be necessary depending on the desired operation. The primary
design function is to keep track of which types of interrupts should be enabled and disabled in the associated
hardware. For example, if no file-descriptors are registered for notification on a certain type of event, the associated
bit should be disabled in the interrupt enable register. The bit should be enabled in the interrupt enable register as
soon as one or more file-descriptors are set up to be notified on this type of event. The current notify mask for the
file-descriptor as well as the new notify mask will be passed as arguments so that change_notify can determine
which bits have been altered. The function for this simple interface does nothing.

static void ege_gpio_change_notify(struct gpio_s *gpio, gpio_data curr_notify,
gpio_data new_notify)

{
}

The final step for adding IRQ handling and asynchronous notification to the interface is to specify the irq_data
structure as part of the device initialization. The irq and irq_flags members are used to denote the specific
interrupt and its features. The updated ege_gpio_class_create function is as follows:

struct device *ege_gpio_class_create(void)
{

gpio_t *gpio = kmalloc(sizeof(gpio_t), GFP_KERNEL);

memset(gpio, 0, sizeof(gpio_t));
gpio->name = "ege_gpio";
gpio->subclass = GPIO_SUBCLASS;
gpio->data_write = ege_gpio_data_write;
gpio->data_read = ege_gpio_data_read;
gpio->ddr_write = ege_gpio_ddr_write;
gpio->ddr_read = ege_gpio_ddr_read;
gpio->index_write = NULL;
gpio->index_read = NULL;

gpio->irq_data.irq = AT91SAM9260_ID_IRQ1;
gpio->irq_data.irq_flags = IRQF_SHARED | IRQF_TRIGGER_RISING;
gpio->irq_data.handler = ege_gpio_handler;
gpio->irq_data.get_queue = ege_gpio_get_queue;
gpio->irq_data.irq_config = ege_gpio_irq_config;
gpio->irq_data.change_notify = ege_gpio_change_notify;

printk("registering gpio device: %s\n", gpio->name);

return gpio_register_device(gpio);

}

After adding the code above, the EMAC GPIO Class driver will register, enable, and handle the interrupt exactly as
specified. Notification can be enabled for userspace processes according to the asynchronous notification example.

linux:emac_gpio_class - EMAC DokuWiki

12 of 13

» terminal » example » newproject » remote » rse » stfp » execute » debug » linux_start » emac_gpio_class

linux/emac_gpio_class.txt · Last modified: 2011/02/07 23:57 by tstratman
Except where otherwise noted, content on this wiki is licensed under the following license:CC
Attribution-No Derivative Works 3.0 Unported (cc-by-nd)

linux:emac_gpio_class - EMAC DokuWiki

13 of 13

