
Boot Process Customization
When designing an embedded system, it is often necessary to add or remove applications and tasks from the system
initialization sequence. This guide describes the initialization method used for EMAC OE systems and provides
information on customiz ing the boot process.

System V Initialization

EMAC OE uses the System V Initialization method. This is a simple method for system initialization using a set
of scripts run in sequential order. When the kernel has finished loading, /sbin/init is started to initialize the
userspace services in the system. init is process id 1 and the parent of all processes in the system.

Runlevels

System V Init uses different runlevels to control the boot process. Each runlevel has a set of scripts that are run
sequentially to start various services on the system. The default runlevel on EMAC OE systems is 5. This is set in
/etc/inittab with the line:

The default runlevel.
id:5:initdefault:

There are a total of seven runlevels available in System V Init, labeled 0 through 6 . Runlevel 5 is the full user level
in EMAC OE systems, regardless of whether a GUI is installed on the board or not. Runlevel 0 halts the system,
and runlevel 6 is used for reboot. The other runlevels can be used for other purposes if desired, such as to configure
different levels of user functionality in each runlevel.

During boot, the scripts /etc/init.d/rcS and /etc/init.d/rc are executed to run the scripts in /etc/rcS.d/
starting with an S in lexicographic order followed by the scripts in /etc/rc5.d/, assuming that 5 is the default
runlevel. All of these startup scripts are passed the argument start. During halt or reboot, the scripts in
/etc/rc0.d/ or /etc/rc6.d/ starting with a K are run in lexicographic order with the argument stop. To control
the order in which the scripts are run, each filename is prefixed with a number from 00 -99 . For example, the
listing below illustrates the files in /etc/rcS.d/ that will be run in order before entering the default runlevel:

som9g45:/etc/rcS.d# ls
S02banner S20modutils.sh S40networking
S03sysfs S30ramdisk S41ifplugd
S03udev S35mountall.sh S45mountnfs.sh
S05devices S37populate-volatile.sh S55bootmisc.sh
S06alignment S38devpts.sh S98ipkg-configure
S10checkroot S39hostname.sh S99finish.sh

The action to perform at each level is specified in /etc/inittab. For example, the following lines are used to
trigger the execution of the /etc/init.d/rcS and /etc/init.d/rc scripts:

si::sysinit:/etc/init.d/rcS
....
l5:5:wait:/etc/init.d/rc 5
....

Initscripts

The directory /etc/init.d/ holds initialization scripts that are run by init during boot or shutdown. These
scripts should be designed to accept at least three arguments: start, stop, or restart. The files in the /etc/rc*.d/
directories are symbolic links to the scripts in /etc/init.d/. This structure allows for easy modification of the
boot process and the ability for a script to be run at different places in different runlevels. The detailed listing of the

linux:boot_process - EMAC DokuWiki

1 of 7

/etc/rcS.d/ directory is shown below:

som9g45:/etc/rcS.d# ls -l
lrwxrwxrwx 1 root root 16 Dec 31 1969 S02banner -> ../init.d/banner
lrwxrwxrwx 1 root root 18 Dec 31 1969 S03sysfs -> ../init.d/sysfs.sh
lrwxrwxrwx 1 root root 14 Dec 31 1969 S03udev -> ../init.d/udev
lrwxrwxrwx 1 root root 17 Dec 31 1969 S05devices -> ../init.d/devices
lrwxrwxrwx 1 root root 22 Dec 31 1969 S06alignment -> ../init.d/alignment.sh
lrwxrwxrwx 1 root root 19 Dec 31 1969 S10checkroot -> ../init.d/checkroot
lrwxrwxrwx 1 root root 21 Dec 31 1969 S20modutils.sh -> ../init.d/modutils.sh
lrwxrwxrwx 1 root root 17 Dec 31 1969 S30ramdisk -> ../init.d/ramdisk
lrwxrwxrwx 1 root root 21 Dec 31 1969 S35mountall.sh -> ../init.d/mountall.sh
lrwxrwxrwx 1 root root 30 Dec 31 1969 S37populate-volatile.sh -> ../init.d/populate-volatile.sh
lrwxrwxrwx 1 root root 19 Dec 31 1969 S38devpts.sh -> ../init.d/devpts.sh
lrwxrwxrwx 1 root root 21 Dec 31 1969 S39hostname.sh -> ../init.d/hostname.sh
lrwxrwxrwx 1 root root 20 Dec 31 1969 S40networking -> ../init.d/networking
lrwxrwxrwx 1 root root 17 Dec 31 1969 S41ifplugd -> ../init.d/ifplugd
lrwxrwxrwx 1 root root 21 Dec 31 1969 S45mountnfs.sh -> ../init.d/mountnfs.sh
lrwxrwxrwx 1 root root 21 Dec 31 1969 S55bootmisc.sh -> ../init.d/bootmisc.sh
lrwxrwxrwx 1 root root 24 Dec 31 1969 S98ipkg-configure -> ../init.d/ipkg-configure
lrwxrwxrwx 1 root root 19 Dec 31 1969 S99finish.sh -> ../init.d/finish.sh

Use the other boot scripts on the system for examples when creating custom initscripts. The application that is
being started should be stored in the system PATH, such as /usr/bin/, and started from the script. For example,
the busybox-httpd initscript is shown below.

linux:boot_process - EMAC DokuWiki

2 of 7

#!/bin/sh
DAEMON=/usr/sbin/httpd
NAME=httpd
DESC="Busybox HTTP Daemon"
#HTTPROOT="/srv/www"
HTTPROOT="/home/www"
ARGS="-h $HTTPROOT"

test -f $DAEMON || exit 0

set -e

case "$1" in
 start)
 echo -n "starting $DESC: $NAME... "
 if [! -d $HTTPROOT]; then
 echo "$HTTPROOT is missing."
 exit 1
 fi
 start-stop-daemon -S -b -n $NAME -a $DAEMON -- $ARGS
 echo "done."
 ;;
 stop)
 echo -n "stopping $DESC: $NAME... "
 start-stop-daemon -K -n $NAME
 echo "done."
 ;;
 restart)
 echo "restarting $DESC: $NAME... "
 $0 stop
 $0 start
 echo "done."
 ;;
 reload)
 echo -n "reloading $DESC: $NAME... "
 killall -HUP $(basename ${DAEMON})
 echo "done."
 ;;
 *)
 echo "Usage: $0 {start|stop|restart|reload}"
 exit 1
 ;;
esac

exit 0

The start-stop-daemon can be used to control the creation and termination of the application as illustrated in the
busybox-httpd initscript above. The available options for the Busybox start-stop-daemon included with EMAC OE
are shown below.

linux:boot_process - EMAC DokuWiki

3 of 7

BusyBox v1.13.2 (2009-06-24 18:00:48 CDT) multi-call binary

Usage: start-stop-daemon [OPTIONS] [-S|-K] ... [-- arguments...]

Search for matching processes, and then
-K: stop all matching processes.
-S: start a process unless a matching process is found.

Process matching:
 -u,--user USERNAME|UID Match only this user's processes
 -n,--name NAME Match processes with NAME
 in comm field in /proc/PID/stat
 -x,--exec EXECUTABLE Match processes with this command
 in /proc/PID/cmdline
 -p,--pidfile FILE Match a process with PID from the file
 All specified conditions must match
-S only:
 -x,--exec EXECUTABLE Program to run
 -a,--startas NAME Zeroth argument
 -b,--background Background
 -N,--nicelevel N Change nice level
 -c,--chuid USER[:[GRP]] Change to user/group
 -m,--make-pidfile Write PID to the pidfile specified by -p
-K only:
 -s,--signal SIG Signal to send
 -t,--test Match only, exit with 0 if a process is found
Other:
 -o,--oknodo Exit with status 0 if nothing is done
 -v,--verbose Verbose
 -q,--quiet Quiet

Adding and Removing Scripts

A new or existing initscript can be added or removed from the start process by simply creating or destroying the
symbolic links from the /etc/rc*.d/ directories. A utility application, update-rc.d is provided to automate this
process. The usage of update-rc.d is shown below:

usage: update-rc.d [-n] [-f] [-r <root>] <basename> remove
 update-rc.d [-n] [-r <root>] [-s] <basename> defaults [NN | sNN kNN]
 update-rc.d [-n] [-r <root>] [-s] <basename> start|stop NN runlvl [runlvl] [...] .
 -n: not really
 -f: force
 -r: alternate root path (default is /)
 -s: invoke start methods if appropriate to current runlevel

update-rc.d can be used to add or remove the startup links for any initscript in the system. For example, the
busybox-httpd script has the following links to it in the boot process.

/etc/rc0.d/K20busybox-httpd
/etc/rc1.d/K20busybox-httpd
/etc/rc2.d/S20busybox-httpd
/etc/rc3.d/S20busybox-httpd
/etc/rc4.d/S20busybox-httpd
/etc/rc5.d/S20busybox-httpd
/etc/rc6.d/K20busybox-httpd

Removing the links from the system startup without removing the /etc/init.d/busybox-httpd file will
effectively disable the application from running at system startup or shutdown. To do this, use the remove
argument to update-rc.d as illustrated below.

linux:boot_process - EMAC DokuWiki

4 of 7

root@som9g45:~# update-rc.d -f busybox-httpd remove
update-rc.d: /etc/init.d/busybox-httpd exists during rc.d purge (continuing)
 Removing any system startup links for busybox-httpd ...
 /etc/rc0.d/K20busybox-httpd
 /etc/rc1.d/K20busybox-httpd
 /etc/rc2.d/S20busybox-httpd
 /etc/rc3.d/S20busybox-httpd
 /etc/rc4.d/S20busybox-httpd
 /etc/rc5.d/S20busybox-httpd
 /etc/rc6.d/K20busybox-httpd

The -f argument is required in this case because /etc/init.d/busybox-httpd exists.

To add the links for the busybox-httpd init script back into the system, use the defaults argument to
update-rc.d, or specify the start and stop number for each runlevel explicitly as show below. Both methods will
yield the exact same results in this case, as the default action is to add S20 and K20 links for the startup and
shutdown runlevels respectively.

root@som9g45:~# update-rc.d busybox-httpd start 20 2 3 4 5 . stop 20 0 1 6 .
 Adding system startup for /etc/init.d/busybox-httpd ...
 /etc/rc2.d/S20busybox-httpd -> ../init.d/busybox-httpd
 /etc/rc3.d/S20busybox-httpd -> ../init.d/busybox-httpd
 /etc/rc4.d/S20busybox-httpd -> ../init.d/busybox-httpd
 /etc/rc5.d/S20busybox-httpd -> ../init.d/busybox-httpd
 /etc/rc0.d/K20busybox-httpd -> ../init.d/busybox-httpd
 /etc/rc1.d/K20busybox-httpd -> ../init.d/busybox-httpd
 /etc/rc6.d/K20busybox-httpd -> ../init.d/busybox-httpd

Custom Initialization

In some designs, the target application is so specific that only one main task will be performed. After a custom
application has been developed and tested, it may be possible to simplify the boot process significantly by replacing
System V Init altogether. The Linux kernel accepts a boot argument named init to specify the application to
execute as init. This section provides a simple example of how to create a custom initialization method.

Using this method will disable all of the standard system services unless they are explicitly started. It is possible to
lock out all access to the system if you have no way of accessing the bootloader.

System Configuration

Generally, some basic system configuration and initialization will be necessary prior to running a custom
application. This can easily be done using a shell script as the init process. The example provided below mounts
procfs and sysfs and then configures the networking interface before starting the custom application. The exec
shell builtin is used to start the custom application as this replaces the process image of the shell script with the
custom application. The script is stored in /sbin/ and is made executable by root.

custom-init.sh

linux:boot_process - EMAC DokuWiki

5 of 7

#!/bin/sh

mount procfs and sysfs
if [-e /proc] && ! [-e /proc/mounts]; then
 mount -t proc proc /proc
fi

if [-e /sys] && grep -q sysfs /proc/filesystems; then
 mount sysfs /sys -t sysfs
fi

ifconfig lo 127.0.0.1 up
ifconfig eth0 10.0.2.41 netmask 255.255.255.0 up

exec /usr/bin/custom-application

More system configuration may be required in certain systems, such as loading required kernel modules.

Custom Application

The custom application that is executed by the script can be simple or complex depending on the purpose. Note
that the application should not exit, as this would leave the system in an invalid state and result in a kernel
panic. In this simple example, the custom application is a shell script that prints “Hello world!” every second in
an infinite loop. The file is given executable permissions by root and stored at /usr/bin/ on the system.

custom-application

#!/bin/sh

while [1]
do
 echo "Hello world!"
 sleep 1
done

Changing the Kernel Arguments

In order to get the kernel to use the custom init design, the arguments passed to the kernel need to be changed to
add the value init=/sbin/custom-init.sh. This must be accomplished by changing the bootloader configuration.
For U-Boot, the bootargs variable will need to be changed to add the init value. RedBoot stores this configuration
in the boot_script_data configuration. The kernel arguments can be modified for LILO by entering them directly
at the LILO prompt or in the LILO configuration file. Refer to the documentation for the bootloader on your
system for more detailed information.

Be very careful when making any changes to settings in the bootloader. It is possible to render a system unusable
from incorrect configuration.

Testing

After booting the system with the new initialization settings, the custom application should be executed. Using
the example above, the “Hello world!” message will be printed to the console repeatedly. Note that boot time will
be significantly reduced because the system is performing a minimal amount of work during the boot process.

» import » qt » install » getting_started » eclipse » uboot_image_loading » emac_oe_fact »
emac_oe_getting_started » linux_start » boot_process

linux:boot_process - EMAC DokuWiki

6 of 7

linux/boot_process.txt · Last modified: 2011/04/07 22:30 by tstratman
Except where otherwise noted, content on this wiki is licensed under the following license:CC
Attribution-No Derivative Works 3.0 Unported (cc-by-nd)

linux:boot_process - EMAC DokuWiki

7 of 7

