
This document is the ownership of EMAC, Inc. Copyright 2003. Unauthorized duplication or copying of this document is strictly forbidden.

Integration Dept. Linux Remote Debug.doc Rev 1.0 - 07/07/03

Remote Debugging using EMAC’s SIB Linux

EMAC's PC-SBC product line consists of hardware equivalent to that of an x86 PC. You can develop programs on a Linux-
based x86 desktop computer with no modification or need for cross-compiling.

Statically Linking Against Libraries
You need to be aware that your application may eventually be linked against libraries that may not be included with
the SBC. In this case, you can a) add the necessary files into the /usr/lib (preferred) or the /lib directories
and run the ldconfig command (not included on the SiB), or b) link your application with static versions of the
required libraries. Dynamic libraries typically end with a .so extension, and static libraries end with .a. EMAC
Linux includes the following libraries as part of the standard build, in the /lib directory:

 libc6-2.2.3.so
 ld-2.2.4.so
 libcrypt-2.2.4.so
 libdb1-2.2.4.so
 libdl-2.2.4.so
 libncurses.so.4.2
 libncurses.so.5.0
 libnsl-2.2.4.so
 libnss_compat-2.2.4.so
 libnss_db-2.2.so
 libnss_dns-2.2.4.so
 libnss_files-2.2.4.so
 libreadline.so.4.2
 libresolv-2.2.4.so
 libutil-2.2.4.so

The following libraries are included in the "extra C++ libraries" module:

libg++-2-libc6.1-1.8.2.so
libm-2.2.4.so
libpthread-0.9.so
libstdc++-3-libc6.2-2-2.10.0.so

Building and Debugging
Debugging on the SBC is accomplished using the gdb program running on a Linux-based desktop PC. Its matching
component on the SIB is a binary named gdbserver. gdbserver allows one to develop code on a host
machine, and still monitor the program running in its native environment on the SIB. You can use gdbserver
over a ethernet link, or a serial link using a null modem cable. Whichever link you use, you will need a separate
connection to the SIB in order to issue commands-one for your gdb session, the other to issue other commands to the
SIB. The rest of this document assumes that you have established an ethernet connection to the SIB.

Selecting a standard location for your binaries

When you are ready to test your newly created binary, use the FTP mechanism to copy the binary over to the
SIB. Use the chmod command to change the ownership so that the binary is executable, and move the
binary to the desired location. The standard locations for binaries on a UNIX system are as follows:

2390 EMAC, Way
Carbondale, IL 62902

Phone: (618) 529-4525
Fax: (618) 457-0110

http://www.emacinc.com

This document is the ownership of EMAC, Inc. Copyright 2003. Unauthorized duplication or copying of this document is strictly forbidden.

Integration Dept. Linux Remote Debug.doc Rev 1.0 - 07/07/03

/sbin System binaries, available as soon as the system starts, before other

filesystems are mounted. Most of the time, this directory is not in a
normal user's path.

/bin Binaries for root and non-root users, available as part of the base
system. Again, this directory should be available before any separate
filesystems are mounted.

/usr/sbin Noncritical system binaries. This may be mounted on a separate
partition, so do not put binaries here which are critical to checking
filesystems, etc.

/usr/bin. Noncritical binaries available for root and non-root users

/usr/local/sbin Binaries for root user, added in addition to any vendor-supplied ones.

/usr/local/bin Binaries for non-root users, added in addition to any vendor-supplied
ones.

System V Init Scripts

EMAC Linux uses System V init scripts. This is a directory structure that allows daemons and programs to
start when the SIB is started. A directory called /etc/init.d holds scripts that facilitate starting and
stopping programs. These scripts, at minimum, take the commandline arguments start and stop. They
may additionally take other arguments such as reload and restart, depending upon the program's
nature. The directories /etc/rc0.d through /etc/rc6.d contain symbolic links to the scripts in
/etc/init.d and allow the SIB's startup scripts to start and stop the programs, depending upon needs.
The directories /etc/rc0.d through /etc/rc6.d correspond to different runlevels, which can be
utilized to offer different SIB functionality depending upon which runlevel setting is made the default in
/etc/inittab. Runlevels 0 and 6 are run on system shutdown and reboot, respectively. As shipped
from EMAC, the default runlevel is 2, which corresponds to the symbolic links in directory /etc/rc2.d.
When a symbolic link is made, it begins with the letter S and a number, typically in the range 00 to 99. The
links are executed numerically; when any two scripts share a number, they are executed alpabetically. An
example is the symbolic link to start the syslog and klog daemons (perform an ls -l command to see
the symbolic link's target):

 /etc/rc2.d/S10sysklogd -> /etc/init.d/sysklogd

This instructs the startup scripts to start the sysklogd script located in the /etc/init.d directory with
the start parameter as the first commandline argument. In certain directories, such as the /etc/rc6.d
and /etc/rc0.d directories, you may notice some symbolic links begin with a K. This instructs the
startup scripts to shut down certain programs upon initialization of a runlevel. This actually causes the
startup scripts to run the script with stop as the first and only commandline parameter. If a script accepts
other parameters such as restart or reload, these must be executed by hand at a command prompt.

Debugging your code

The binary object code can be stripped to remove debugging symbols, before moving it to the SIB.
gdbserver does not need them. In order to invoke gdbserver on an ethernet connection, issue the
following (preferrably as the root user) on the target system:

 target> gdbserver host:2345 <prog_name> <args>

this will start a process listening on TCP port 2345. This is a safe setting; some network configurations
may need to change this value. If you're using a serial connection, the command would be (ttyS1 is COM2):
 target> gdbserver /dev/ttyS1 <prog_name> <args>

This document is the ownership of EMAC, Inc. Copyright 2003. Unauthorized duplication or copying of this document is strictly forbidden.

Integration Dept. Linux Remote Debug.doc Rev 1.0 - 07/07/03

if your binary is already running, you can attach to it (PID is the process ID of your binary, as reported
by the ps command):

 target> gdbserver /dev/ttyS1 --attach <PID>

Of course, prog_name and args are the name of the executable and any arguments to it. If you are using
a serial debugging connection, be aware that you cannot share a COM port between the SIB's serial console
and a debugging console.

On the development platform, you will need an unstripped binary compiled with the proper debugging
symbols. For the gcc compiler, you need to specify the -g option on the commandline during the build
process. Start gdb and load the binary:

 host> gdb <prog_name>

next, you need to connect to the target machine:

 gdb> target remote /dev/ttyS1

 for a serial connection, or

 gdb> target remote target_host_name:2345

Again, this connects on TCP port 2345; You may need to change this value if there is an application running
on the SIB which already uses TCP port 2345.

Using GDB

Refer to the attached GDB manpage for further instructions. You should now have the ability to debug your application as it
runs remotely.

References:
GDB Manpage
GDBserver Manpage

